MPI and OpenMP implementations of
Branch-and-Bound Skeletons *

I. Dorta, C. Leén, C. Rodriguez and A. Rojas

Departamento de Estadistica, I.O. y Computacién
Universidad de La Laguna. Edificio de Fisica y Matematicas
E-38271 La Laguna, Tenerife, Spain

(isadorta, cleon, casiano, arodroj)@ull.es

Abstract

This work presents two skeletons to solve optimization problems using the branch-
and-bound (BnB) technique. Sequential and parallel code of the invariant part of the
solvers are provided. The implementation of the skeletons have been made in C++, and is
divided into two different parts: One that implements the resolution pattern provided by
the library and a part which the user has to complete with the particular characteristics of
the problem to solve, that will be used by the resolution pattern. Required classes are used
to store the basic data of the algorithm. BnB uses the class Problem to define the minimal
standard interface to represent a problem, and the class Solution to typify a solution.
The class Subproblem represents the area of not explored solutions. Its method branch()
generates from the current subproblem the subset of subproblems to be explored. The
lower_bound() and upper_bound() subproblem methods calculate a lower and upper
bound respectively of the objective function for a given problem. Furthermore the user
must specify in the definition of the Problem class whether the problem to solve is a
maximization or minimization problem.

The solvers are implemented by the provided class Solver. In the class hierarchy
there is one skeleton implemented using MPI and another using OpenMP. This is one of
the main contributions of this work. Once the user has represented the problem, he/she
obtains for free two parallel solvers without any additional effort: one using the message
passing paradigm and other with the shared memory one.

In the implementation of the BnB message passing resolution pattern, we uses a Mas-
ter/Slave scheme. The Master is in charge of the generation of new subproblems, and of
the coordination between subtasks. The slaves work bounding and branching the received
problem. The implementation of the BnB shared memory resolution pattern works with
a global shared queue of tasks from which, the subproblems are removed and assigned to
each processor.

An algorithm for the resolution of the classic Knapsack 0/1 problem has been imple-
mented using the BnB skeletons. The obtained computational results for its execution on
an Origin 3000 and a cluster of PC are studied.

*This work has been partially supported by the EC (FEDER) and the Spanish MCyT with the I+D+1I
contract numbers: TIC2002-04498-C05-05 and T12002-04400-C03-03.



