Parallel Overlapped Block-Matching Motion
Compensation Using MPI and OpenMP

Elias Pschernig and Andreas Uhl
Salzburg University, Department of Scientific Computing

Jakob Haringer-Str. 2, A-5020 Salzburg, Austria

Digital video compression is the computationally most demanding algorithm in the area of multi-
media signal processing. Block-matching motion compensation covers about 60-80% of the runtime
of all standardized video coding schemes. Overlapped block-matching motion compensation (OBM)
enhances the prediction results of classical non-overlapped block-matching at a high additional com-
putational cost.

In this context, we investigate two OBM algorithms, the Raster Scan Algorithm (RAST) and an
iterative algorithm, based on the Iterative Conditional Mode (ICM). We experimentally show that
both approaches improve the prediction quality as compared to classical block-matching significantly.

Both algorithms were implemented using MPI and OpenMP and executed on SGI and HITACHI
shared memory architectures. There exist several different granularity levels for parallel BM. In
our context, we use intra-frame parallelization (distributing single blocks to the PEs) since this is
the approach most suited for applications on a majority of hardware systems. This block based
parallelism (BBP) works very well in the case of ICM, whereas for RAST this approach is not
straightforward. The error for a block depends on the MVs of neighbour blocks, which are expected
to be available in the sequential raster-scan order. This means, that simply working on blocks in
parallel won’t work. As a consequence, only few of the available PEs can be used in parallel for the
majority of blocks. The maximum number of simultaneously processed blocks is half the number of
columns of the frame.

For the experiments, we use the test-sequence “Mobile” with 720 x 576 pixels. Note that for MPI
implementation each communication event needs to be explicitely stated whereas OpenMP facilitates
parallleization by simple loop distribution using comiler directives (e.g. #pragma parallel pfor).
As a consequence, the implementation effort is significantly higher in the MPI case. On the other
hand, OpenMP is restricted to multiprocessors whereas MPI may be used on almost any high per-
formance computing architecture.

Whereas for classical block-matching the advantage of the OpenMP implementation over MPI is
clearly exhibited, the situation entirely changes for ICM. Due to the higher amount of computations
required for each block, the computation/communication ratio changes and facilitates very good
efficiency for both approaches on an almost identical level. RAST on the other hand again requires
more communication and especially synchronization effort as explained before. For these reasons,
again the OpenMP implementation outperforms the MPI message passing approach. However, the
execution efficiency is on a satisfying level for both approaches since the scalability constraints of the
RAST parallelization are valid for a higher number of PEs only in case of a large video sequence like
Mobile.

In contrast to classical block-matching we achieved satisfying efficiency for the MPI implemen-
tation as well as for the OpenMP implementation for all two types of OBM. As a consequence,
the decision which programming model has to be chosen does not depend on the required efficiency
but mainly on the nature of the target environment. On multiprocessors, OpenMP will be cho-
sen due to its low implementation costs. In case of heterogenous target hardware platforms (e.g.
multiprocessors, multicomputers, clusters) MPI will be chosen.



