
OpenMP vs. MPI on a Shared Memory Multiprocessor

J. Behrens (GWDG), O. Haan (GWDG), L. Kornblueh (MPI f. Meteorology)

up to only 14.

Abstract

The change in parallel computer architecture from distributed memory systems, as e.g. Cray
T3E, to (clusters of) shared memory multiprocessors, as e.g. IBM SP or pSeries 690, was
accompanied by a widening gap between processor and communication speed, e.g. the prod-
uct of peak performance and latency for MPI point-to-point communication is 6 for T3E1200
and 50 for pSeries 690 in units Gflop/s times microseconds. The speed up of a parallel appli-
cation will be reduced accordingly on the new platform
 Two routes can be taken to improve the situation: 1. Optimising the communication scheme
for the application with regard to the communication granularity. Reducing the granularity
diminishes the impact of latency. 2. Using the shared memory programming model on the
shared memory system. This will reduce the software overhead of the MPI implementation,
which is largely responsible for the latency of message passing in shared memory.
 We report on results for this two step procedure for a particular example, the climate
simulation program ECHAM5. With MPI parallelisation ECHAM5 for a 128x64x19 grid
achieved a speed up of 30 on a 32 processor Cray T3E. With minor changes the same pro-
gram on a 32 processor pSeries690, using the IBM’s shared memory MPI implementation
sped
 The granularity of communication could be reduced for the transport phase of ECHAM5,
which rearranges the global data structure between different phases of local computations. For
this part of the code the parallel efficiency improved from 11 to 15. This improvement is the
net effect from several modifications of the original communication scheme: 1. combining the
rearrangements for all layers into a single communication phase, 2. changing the distribution
of layers to tasks, 3. increasing the message size by using derived MPI data types.
 The shared memory parallelisation of the transport part of ECHAM5 was straightforward,
starting from the serial version. Inserting parallelisation directives around the loops stepping
through the horizontal layers and declaring common blocks with intermediary data as thread-
private were the only changes needed. The speed up was poor, because cache misses in-
creased with the number of threads. This unexpected behaviour disappeared after reducing the
data size during the local computations, which interleave the data rearrangements. After this
reduction the increase of cache misses disappeared, the OpenMP parallelisation showed a
speed up of 20 on 32 processors.
 There have been comparisons of shared memory and message passing parallelisation for
various applications in the literature. Here we add an example with clear advantage to the use
of shared memory. The direct use of shared memory communication obviously reduces the
communication overhead in comparison to the case when the additional layer of MPI calls is
involved. A further advantage within the OpenMP framework is the availability of dynamic
load scheduling which can be used to overcome speedup limitation due to load imbalance.
Unfortunately with increasing numbers of processors and small iteration space this procedure
is not efficient. We implemented a different scheduler that extrapolates collected timings and
considers distribution overhead that leads to a much higher speedup with OpenMP. The MPI
version does not benefit from this scheme due to additional overhead, e.g., initialisation of
domain decompositions, and the importance of communication limitations.

