
 Vik, Elster & Hallgren: Real−time Simulations of Smoke

REAL−TIME SIMUALTION OF SMOKE
THROUGH PARALLELIZATIONS

Torbjørn Vik, Anne C. Elster & Torbjørn Hallgren
NTNU, Norway

Animation/visualization of smoke has long been a topic of interest in computer
graphics, and following the increase in common processing power researchers have
started using physical simulations to generate these animations. Smoke, and other
fluids, is extremely hard to animate by hand, and simulation techniques producing
realistic results are highly applicable and desirable in areas ranging from computer
games to weather forecasts. To maintain a reasonable level of usability, these
techniques should allow a certain degree of control, and not be prohibitively
expensive computationally. However, since these tasks are extremely compute−
intensive, powerful parallel hardware systems is needed to solve these tasks in real−
time, thus elevating the programming challenges up to a higher level.

Our work combined mathematical, graphical and technical techniques which resulted
in a real−time application exploiting dual−cpu hardware to visualize rolling and
twirling smoke in three dimensions. One of the essential goals was for our simulation
to run in real−time, producing satisfactory visual results. In order to have a basis of
comparison, we defined real−time to approx 1 fps (frames per second).

Smoke Simulations

The modeling of natural phenomena such as smoke remains a challenging problem in
computer graphics. This is not surprising since the motion of gases/fluids such as
smoke is highly complex and turbulent. Also, building animation tools for such
fluid−like motions is an important area with many obvious applications in the
industry including special effects and interactive games. Physical models, unlike key
frame or procedural based techniques, permit an animator to almost effortlessly
create interesting, swirling fluid−like behaviors. Also, the interaction of flows with
objects and virtual forces is handled elegantly. Ideally, a good smoke model should
both be easy to use and produce highly realistic results.

Obviously the modelling of smoke and gases is of importance to other engineering
fields as well. More generally, the field of computational fluid dynamics (CFD) is
devoted to the simulation of gases and other fluids such as water. Only recently have
researchers in computer graphics started to excavate the abundant CFD literature for

1

 Vik, Elster & Hallgren: Real−time Simulations of Smoke

algorithms that can be adopted and modified for computer graphics applications.
Unfortunately, many computer graphic smoke models are either too slow or suffer
from too much numerical dissipation.] adapts techniques from the CFD literature
specific to the animation of gases such as smoke, and the model used are stable, rapid
and doesn’t suffer from excessive numerical dissipation. This makes it possible to
produce animations of complex rolling smoke even on relatively coarse grids (as
compared to the ones used in CFD).

Our Smoke Simulation

Our smoke simulations is based on an approach described in [0] that exploits physics
unique to smoke in order to design a numerical method that is both fast and efficient
on the relatively coarse grids traditionally used in computer graphics applications (as
compared to the much finer grids used in the computational fluid dynamics
literature). The model uses inviscid Euler equations instead of Navier−Stokes, as the
former usually are more appropriate for gas modeling and less computationally
intensive.

Both simulation and visualizing algorithms needed to handle three dimensional
domains. Compared to our original 2−dimentsional prototype, our 3D work
introduces a more complicated data structures and rendering code while the
simulation code stays more or less the same. The linear interpolation of off−grid
values now involve eight reference points instead of four, and the matrix built for
solving Poisson equations, of course, grows accordingly to the extra dimension. The
relationship between rendering and simulation also changes as the model is extended
to three dimensions. More processor intensive calculations are required to render the
results, especially in respect to lighting as the effect of self−shadowing is a very
important aspect when rendering volumes of smoke. This is currently achieved using
a fast Bresenham line drawing voxel traversal algorithm [0] to trace rays of light
through the volume.

Both simulation and rendering code needed to detect and exploit hardware capable of
running multiple parallell instructionstreams (dual−cpu). Algorithms must were
hence chosen and designed to make efficient use of such hardware.

Top level pseudocode for our simulation program is presented in Figure 1.

For each frame

1 Add forces to velocities

2

 Vik, Elster & Hallgren: Real−time Simulations of Smoke

2 Solve advection term (Semi−Lagrangian)

3 Solve Poisson equations

4 Conserve mass by subtracting gradient

5 Advect density and temperature (Semi−Lagrangian)

6 Calculate lighting

7 Render

Figure 1 Top level pseudocode.

Step 1: Add forces to velocities

Step 1 updates the velocity field, according to different forces. This is done simply
by multiplying the force of each voxel with the timestep ∆t and adding the result to

the voxel’s velocity. The forces include user defined fields and the buoyancy force.

For each voxel

1.1
dtFUU u *+=

1.2
dtFVV v *+=

1.3
dtFWW w *+=

Figure 2 Low level pseudocode for Step 1

In other words, these computations involve standard vector−vector additions. A
simple data−parallel approach would do for this step of the algorithm. Some care had
to be taken to avoid several threads trying to access the same cacheline at the same
time.

Step 2: Solve advection term (Semi−Lagrangian)

This step solves for the advection term in , using a Semi−Lagrangian Semi−Implicit
(SLSI) scheme. This builds a new grid of velocities from the ones already computed,
using the trapezoidal method as integration method. The center of each voxel is

traced through the velocity field, and the velocities ()txu , are linearly interpolated at
the arrival points. The values are then transferred back to the cells the trajectories
originated from. Simple linear interpolation is easy to implement, gives satisfactory
results and is unconditionally stable as it never overshoots data. Higher order
interpolation schemes are, however, desirable in some cases for high quality
animations, but as our prototype aimed for a real−time environment, the processing
cost of higher order interpolation was not considered worth the effort.

For each voxel at position []zyxx ,,=

2.1 Calculate
() ()()[]tttxtuxutxu

t
xx nnn ∆−∆−+∆−= ,,,

2
*

3

 Vik, Elster & Hallgren: Real−time Simulations of Smoke

2.2 Set temporary velocity *u for each voxel to
)*,(txu

Figure 3 Low level pseudocode for Step 2

Step 2.1 involves linear interpolations of two velocity vectors. The first, ()txu , , is the

current velocity at the voxel to be updated. The other, ()()tttxtuxu nn ∆−∆− ,, , is an
off−grid velocity vector needed in the trapezoidal method. At first glance, step 2
seems just as suitable for a simple data−parallel approach as step 1. Unfortunately,
the off−grid interpolation involves several other voxels in addition to the current
voxel. Depending on the length of the velocity vector, the additional voxels need not
even be neighbouring voxels but could be located far away from the voxel to be
updated. If a data−parallel approach is chosen, this fact may cause race conditions as
several threads may try to access a given voxel at the same time. Restricting the user
defined velocities/forces would reduce the possibility of this condition to occur, but
such limitations would also reduce the simulator’s useability and hence isn’t very
desirable. In general, these race conditions may be reduced by giving the different
threads working areas located sufficiently far away from each other in memory. The
distance between the memory locations depends on the relation between total number
of threads and number of voxels in the grid. More threads/less voxels will result in
smaller working areas, thus locating them closer to each other and higher possibility
of race conditions.

Step 3: Solve Poisson Equations

In step 4, the velocity field is forced to conserve mass, and this requires the solution
of a Poisson equation for the pressure in Step 3. A matrix of coefficients is
constructed using the five−point formula approximation to Laplace’s equation, and
the system of equations is solved using the Conjugate Gradient method (CG).
Details of this step is show in Figure 4 (next page).

PETSc implements a number of different preconditioners for CG, together with a few
direct solvers. Table 1 shows a comparison of the different PETSc preconditioners
we tested. Two of the most promising preconditioners (Incomplete Cholesky and
Multigrid) were not implemented for our test program’s matrix format, and hence not
included in the table.

4

 Vik, Elster & Hallgren: Real−time Simulations of Smoke

3.1 Build solution vector b
r
. For each voxel

[]kji ,, :
*

1
,,,,

2
,, kjikjikji u

t
pb ⋅∇

∆
=∇=

r

3.2 Solve equations (CG):

1

50

0

0
2

max

0

+⇐
+⇐

⇐

⇐

⇐
−⇐

−⇐

+⇐

⇐

⇐

><

⇐
⇐

⇐

−⇐

⇐

ii

drd

rr

qrr

else

xAbr

bydivisibleisiIf

dxx

qd

dAq

doandiiwhile

rr

rd

xAbr

i

old

new

T
new

newold

T

new

new

new

T
new

rrr

rr

rrr

rrr

rrr

rr

rr

rr

rr

rrr

β

δ
δ

β

δ

δδ
α

α

δ
α

δεδ

δδ
δ

Figure 4 Low level pseudocode for step 3

Preconditioner Time Iterations Error

None 13.25 s 475 0.000944

Jacobi 13.59 s 475 0.000944

SOR 38.92 s 1000 34101857.585735

Block Jacobi 7.40 s 142 0.000690

Eisenstat 11.49 s 168 0.000747

Redundant 8.66 s 142 0.000690

Asm 9.89 s 142 0.000690

Incomplete LU 8.50 s 142 0.000690

Table 1 Comparison of PETSc’s preconditioners

5

 Vik, Elster & Hallgren: Real−time Simulations of Smoke

Direct solvers

SLES 55.49 s 2 0.000000

LU 4.75 s 1 0.000000

Table 2.

The PETSc solver was tested with a set of equations with 40.000 unknowns, built out
of a standard 2D Laplace problem. All benchmarks were run with a suggested
solution vector. This vector was exported from the prototype, hence representing an
actual situation in the simulator.

Step 4: Conserve mass by subtracting gradient

Step 4 is a standard vector−vector subtraction:

For each voxel []kji ,,

4.1 Update velocity kjikjikji ptuu ,,,,,, * ∇∆−=

Step 5: Advect density and temperature (Semi−Lagrangian)

For each voxel at position []zyxx ,,=

5.1 Calculate
() ()()[]tttxtuxutxu

t
xx nnn ∆−∆−+∆−= ,,,

2
*

5.2 Set temporary velocity *u for each voxel to)*,(txu

Figure 5 Low level pseudocode for step 5

Final Comments:
Numerically, we have so far focused on selecting an appropriate preconditioner for
the Conjugate Gradient method, based on "benchmarks" for the different alternatives.
Alternatives to CG solving the equations of fluid flow should also be investigated.

Our final paper will include performance results and resulting visual images.

References

[0] R. Fedkiw, J. Stam, and H. W. Jensen. Visual Simulation of Smoke. In SIGGRAPH 2001

Conference Proceedings, Annual Conference Series , pages 15−22, August 2001

[0] J. D. Fowley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and

Practice. Second Eidtion. Addison−Wesley, Reading, MA, 1990.

6

