Cluster Computing AS A TEACHING TOOL
Otto Anshus, Anne C. Elster and Brian Vinter

Clusters built using commodity workstations give you a large amount of computing power for a fraction of the hardware costs associated with purchasing traditional supercomputers with the same amount of CPUs and memory. This makes them very suitable teaching tools for operating systems and other HPC related courses.
This paper summaries our experiences with using computing clusters as such tools for university level classes at University of Texas at Austin, USA and Norwegian University of Science and Technology (Elster), the University of Tromsø, Norway (Anshus) and at Univ. of Southern Denmark (Vinter) the past 3 or more years. All the courses have heavy project /exercise components that give the students a lot of hands-on experience with parallel computing. Hopefully, it will provide other educators with ideas for their classes and inspire future students to get involved in cluster computing. Feedback will also be most appreciated.
OUTLINE

The first part of this paper describes how students in operating systems courses as well as advanced courses on parallel computing may use a network of workstation and MPI to learn about process synchronization and parallelization issues.
We then describe how an advanced course on cluster architecture and programming may use clusters as part of teaching students how to give robots the compute performance needed. The robots are built using cheap Legos and demonstrate the principles and practice of distributed computing in general, and high performance parallel computing in particular.
Finally, we describe our experiences with teaching a graduate-level course on cluster computing. In this course we use SMP clusters and focus on the distributed shared memory paradigm. Software used for the projects in this course includes JAVA-MPI, JAVA PMI (RPC may be substituted for C users) and Tspaces, a distributed shared memory system from. Those that use C or C++ will find that there are sets of Linda implementations that may be used.
Operating Systems and Parallel Computing: Teaching Process Synchronization and Parallel Paradigms Using MPI on a Network of Workstations.

Operating system classes are often students’ first encounter with the concept of resource allocation and process synchronization. Since task-based parallelism is based on essentially the same concepts, the stretch to cluster computing is not so far-fetched.

The first part of the course is taught in the more traditional way where the students got to build a simple operating system on PCs inside a given framework. It teaches the students about interrupt handling and all the other lower levels of operations systems. After a lecture on embedded operating systems, the students are then introduced to the 6 basic MPI commands: Send, receive, broadcast, gather, MPI_INIT and MPI_FINALIZE. With this they are able to write a simple parallel program.

One fun exercise that we have used is to have the students write a distributed images manipulator. Here the MPI programs read in an image, distributes it to a given number of processes (given as a flag when running MPI), manipulates it in parallel in some simple way, then gathers the result on one node and print the final image out to a file. To challenge the students, we have them figure out how to deal with xmb images (i.e. covert them to pixels data). We also made each student do a slightly different image manipulation (e.g. contract (eliminating pixels), expand (adding pixels), bit or color-reverse half the image, etc.). This is not necessary, but was a good way to make the students feel ownership of their implementation.
The operating system courses uses our regular Linux workstations. Our system staff allowed us to install the public domain MPI implementation from Argonne National Labs called mpich on these machines. We made several mini clusters with 4-8 processors, some of which were dual-processor systems.

Details regading MPI can be found at:

http://www-unix.mcs.anl.gov/mpi/mpich/
Course detail from a class Elster taught at the University of Texas at Austin can be found at:

http://www.ece.utexas.edu/~elster/ee360p-f00
Our more advanced courses uses our AMD-based cluster that has around 40 nodes. This system is currently split into an 8-node interactive systems and a 30+ node batch systems (we sometimes add and subtract nodes to use for other purposes.

Our Parallel Computing course is a 4th year class. These students are in a 5-year Masters program in computer engineering. We do not give Bachelors degrees at our institution (NTNU), but some of the students transfer in with 3-year degrees from other colleges.

The course teaches MPI programming in addition to focusing on both serial and parallel optimizations. Peter S. Pacheco’s Parallel Programming with MPI (1997) and Richard Gerber’s The Software Optimization Cookbook (2002) are used as supporting text book. There are several other texts on MPI as well as on-line tutorials, but we find Pacheco’s text to be the favored one from a pedagogical standpoint. Additional material in the course is taken from Goedecker & Hoise: Performance Optimization of Numerical Intensive Codes, SIAM 2001.
The course webpage for our spring 2003 Parallel Computing course can be found at:

http://www.idi.ntnu.no/~elster/sif8044-sp03/

Advanced Architecture & Programming: Robots Using Cluster Performance
As a part of an advanced course on cluster architecture and programming, we have the last three years developed a system where the students program cheap Lego robots, and supporting computers. We use the distributed and parallel robot system as an instrument to demonstrate the principles and practice of distributed computing in general, and high performance parallel computing in particular. The students use computers with different performance characteristics, and must learn to utilize the resources in a distributed system in practice. In particular, they must find ways of utilizing a compute cluster to support the robots with compute performance. The robots need lots of processing cycles to solve the given tasks, including finding the position of other robots when their position has been encrypted to avoid detection.

Robots with small on-board computers cooperate or compete inside an arena according to a set of rules. Separate support computer, one per robot, enhances the robots low processing, memory, and I/O performance. A compute cluster and a file server provide even higher performance. The robots are under constant surveillance by a positioning computer with a video camera. The camera positioning system enhances the robots very limited on-board sensors, and provides the robots with positioning information. To report the progress and the state of the system, a scoreboard computer monitors many activities, and report them on a scoreboard through a projector. A control and management computer starts, stops, and manipulates the system according to user input. Finally, an infrastructure computer can be added making the system independent of other infrastructures and networks by providing network services (DNS, DHCP, gateway to other networks).

The code is developed using Linux as a platform, and C as the language. A cross compiler is used to create code for the robots. The robots use the BrickOS operating system supporting multiple threads.

[image: image1.jpg]Wireless Access Point

LAN
Scoreboard
Camera and Infrared
“ Blade server
Robot laptops File server
Scoreboard

&

DNS, DHCP, Gateway (GPRS, ++)

V-7 7 A oog

Development laptops Control and Management Handheld computers.

Figure 1: Technical solution – Robot based course
Overall, the system is simple enough to be understood by students, but complex enough to provide for an interesting distributed system with specialized services including a cluster for high performance computing. The system is visual, and invites both students of the course and other students to speculate how it is done. Even if a single powerful server can handle some functions, this is contra productive with regards to making the system both technically and pedagogically interesting and useful. This will give many opportunities to explain how the system is built, and why it is built as it is. In particular, the role of the compute cluster will be simple to demonstrate by running two demonstrations, one with the cluster, the other without. The behavior of the robots will dramatically change when they must wait longer for solutions to time critical and processor intensive computations.

The system has been used for mandatory student projects and in three robot competitions. It is our experience that the robot system creates a great deal of attention from people both outside and inside of the academia, and furthers the interest in the established solution and in the technology behind.
Hands-on Cluster Computing Course (Graduate-level)
This course is targeted graduate level students and as such a set of prerequisites are presumed. The students are expected to have a rather thorough understanding of operating systems, their nature, limitations and the cost associated with activating different operating system components. Just as important is a good knowledge of computer architecture most significantly it is imperative to understand the workings of the memory hierarchy and the IO-bus. In addition it is expected that the students are not a novice to programming.

Different clusters are designed for various purposes such as from file-serving, large database servers and web services, and uses varying degree of software glue to make the system appear as one unified system.

This graduate-level course focuses on clusters as means of solving super-computing problems. The course does not focus on other features that may be achieved with clusters, such as error redundancy, etc., but treats the cluster as ‘yet-another-supercomputer’, with its own unique set of architectural characteristics.

Since cluster computing includes architectural elements as well as algorithms and programming issues, this course takes the approach of introducing clusters as emulators of classic supercomputer-architectures and shows how these are most efficiently programmed.

There are several reasons for including SMP architectures into a cluster course; first of all they provide a very simple introduction to parallel programming and parallel architectures. Secondly, when a parallel version of an algorithm need to be developed it is often convenient to develop a version for shared memory architectures before one goes on to develop versions for more advanced architectures, and finally because more and more clusters are built using shared memory nodes.

The first cluster programming API we use in our course is Parallel Virtual Machines (PVM. PVM differs from the shared memory API, in that there is no shared memory and thus all communication must be made by explicit message passing within the tasks in an application. PVM is developed to run on networks of heterogeneous workstations and does not correspond directly to any parallel architecture however there is a large set of applications available for PVM and for heterogeneous clusters this is a very suitable programming API. Moreover as a student PVM will force you to realize what is needed for two CPUs to communicate, this improved understanding is valuable for improving the performance of your applications for other types of programming APIs also.

From the virtual parallel architecture we go on to look at real massively parallel processors (MPPs). MPPs often use a Single Instruction Multiple Data, SIMD programming API, the Message Passing Interface which is simply called MPI. With MPI programming takes another, more synchronous, turn and the idea of tasks with individual assignments within the application is replaced with a model of a set of processes that all perform the same operations, but on different portions of the application data. Here we also a look at some real MPP architectures including the Intel Paragon and the latest ASCI machines.

From the SIMD model we go on to eliminate the concept of explicit message passing and introduces remote memory architectures and remote memory programming techniques. Remote memory is based on the idea that one processor may read and write the memory of another processor, but a processor may only cache data from its own memory blocks. From a programming perspective access to other processors memory greatly simplifies things, but performance is likely to suffer if one is not careful. The machine that will make the link to ‘real’ supercomputers of this class is the Cray T3E.

We then introduce an alternative memory model where the location of data is completely hidden and the contents of a data-block is used for addressing instead. This memory model, which is called associative memory, is only seen in supercomputers as pure-software implementations.

After this the programming model complete a cycle by returning to the shared memory approach where the cc-NUMA architectures are introduced and the shared virtual memory programming concept is described. The cc-NUMA class of machines is an exceedingly important one since they are the scalable architecture that is most easily programmed and well suited for porting existing parallel applications to. We will take a closer look at the SGI Origin 3000 and the Sequent NUMA-Q to see how these machines are physically built, and naturally how they may be emulated using clusters.

An interesting feature with cc-NUMA architectures is that it almost takes us ‘home’ to the basic, and un-scalable, shared memory architectures.

[image: image2.wmf]Shared Memory

Parallel Virtual Machine

SIMD

Remote Memory

Structured Memory

Shared Virtual Memory

Figure 2: Logical structure of cluster computing course

While Java might seem like an odd choice for a performance oriented class, Java does have a set of advantages, it is easy to read and easy to debug. In fact Java has become a focal point for high performance computing due to a set of features that are very attractive to high performance computing. It is expected that the performance of well-written Java program will be within a few percent of a similar program in C or Fortran, within a few years. All Java examples and exercises are easily converted into C for those that favor this over Java.

If Java for some reason is undesirable C or C++ may be easily substituted, with more difficulty Ada or Fortran may be used. If another language is chosen examples and case studies will have to be modified slightly, the object-orientation in Java is kept at an absolute minimum to allow a minimum effort if using a different language. The programming projects in PART IV. uses Java for the sequential version that make the basis for the parallel version, these too should be easily converted into C or C++, except for the graphical parts which will require more porting work, but which aren’t essential to the applications and may be left out.

The course also uses Java-MPI, which in turn requires a native MPI implementation. The part that uses Java RMI (Remote Method Invocation) does not depend on anything out of the standard Java distribution form SUN; those that do not wish to use Java must instead use standard RPC (Remote Procedure Call). RPC requires special software; this software is most often distributed with a compiler and should not pose a problem. Porting the examples and Project that uses RMI to C or C++ with RPC will require a little effort but hopefully not too much.
For the examples and Project on distributed shared memory system, the TSpaces package from IBM is required. Those that use C will find that there is a set of Linda implementations that may be used, C++ users may use the C versions under certain restrictions, and otherwise there are a few C++ versions of Linda out there..

We developed our examples on Intel x86 architecture based machines, however, nothing is specific to this architecture, so any platform may be used.
Apart from the obvious pedagogical advantage of starting with a shared memory machine, it is recommendable to build a cluster from shared memory nodes. Shared memory nodes has the primary advantage that they, in the form of dual CPU machines, is the lowest cost per CPU one can achieve, moreover there are interesting challenges in programming clusters with a higher hierarchy of communication cost. The cluster should consist of at least eight nodes, since achieving good speedup on anything less is fairly simple, if at all possible the cluster should contain at least 16 nodes to truly test scalability, even more is naturally better, but not really necessary. The nodes in the cluster should be connected by a high bandwidth, low latency interconnect, minimum a 100Mb Ethernet, see chapter 11 for a coverage of interconnects and their advantages. The machines in the cluster should be reserved for cluster use, and not be general workstations.

Conclusions

In summary we all strongly feel that giving students hand-on experiences using low-cost clusters is an invaluable way for them to get a feel for the issues related to operating systems, computer architecture, parallel programming as well as parallel computing in general.
We hope that this paper will provide other educators with ideas for their classes and inspire future students to get involved in cluster computing.

Feedback will also be most appreciated so please contact us at:

Otto Anshus
|
otto@cs.uit.no

Anne C. Elster
elster@computer.org

Brian Vinter

vinter@imada.sdu.dk

- 2 -

