1. Introduction

Clusters have been a popular buzzword for close to a decade now, though there is little or no consensus on what is actually meant by the term cluster. In some contexts cluster is meant as loosely as referring to a network of workstations, in other cases cluster is used as the term for a full-blown multi-computer, or even massively parallel processors. Different clusters are designed for various purposes such as from file-serving, large database servers and web services, and uses varying degree of software glue to make the system appear as one unified system.

This book works only with clusters as means of solving super-computing problems. In this context clusters are often called ‘poor-mans-supercomputers’, and have a set of characteristics, which will be covered closer in chapter 2. This book will not focus on other features that may be achieved with clusters, such as error redundancy, etc., but will treat the cluster as ‘yet-another-supercomputer’, with its own unique set of architectural characteristics.

Supercomputer performance has become a catalyst for most sciences, including computer science. While a state-of-the-art modern processor is powerful enough to match the performance of a supercomputer from 20 years ago, the availability of fast processors is not nearly enough to meet the processing demands. As processor performance passed one giga-flops or 109 floating-point operations per second, many important applications require one or one hundred tera-flops, i.e. 1014 floating-point operations per second, to execute in acceptable time. Example tera-flop applications include the human genome project, car crash simulations, weather forecasting beyond one week, ocean current circulation etc. Rather than simply wait for processors to reach the required performance levels to solve these important problems, a common solution to the lack of processing power has always been to harness the power of multiple CPUs to circumvent the natural processor evolution. Using more processing units, i.e. parallel processing, has been around for almost as long as computers themselves. Early on, parallel processing moved to the chip level, in order to speed up processor power, beyond what smaller feature size can contribute. First we saw bit-level parallelism, then instruction level parallelism and we now start to see thread level parallelism on the chip. Techniques to adapting parallelism to achieve better system performance may be split into three main groups, vector processors, shared memory processors and massively parallel processors, MPPs.

Vector processors are essentially an approach of taking the processor parallelism into the extremes. By making the processor so large that it can operate on 1Kbit large numbers significant processing power can be harnessed. This resulted in an era where vector computers were synonymous for supercomputers, the period where vector machines ruled the supercomputing arena ranges from the mid ‘70s to the late ‘80s.

There are two major problems with vector processors as supercomputers. First of all, as the name indicates, vector processors are focused on vector operations. As long as an application can be expressed as linear algebra, the vector processors can achieve the very high speed they are known for, however as soon as parts of an application is not vectorizable the machines slow to all but a complete stop. The other problem which is associated with vector processors is the fact that they, from their very design, are of interest only to a small group of supercomputing applications, this makes production small, which in turn increases cost. The high cost decreases the potential customer group even further, and thus the death-cycle of the vector machines continues. The small customer group and the following limited production make vector computers unable to follow the development cycle of mainstream processors, and thus vector processors cannot exploit the technological advancements as fast as other machines. In addition to these problems, modern grand challenge problems do not all fit well into the vector model. Today vector machines are still made but they do no longer dominate the supercomputing arena, instead they service a niche of the field. It is worth noticing however that all modern processors have incorporated vector techniques, most are designed specifically for graphics operations, but others provide more generic vector operations.

Vector machines is the one class of supercomputers that we will not examine any further in this book since their architectural features are not closely emulated by any cluster programming API.

The massively parallel processor, MPP, architectures are machines which consist of a large set of commodity CPUs, from hundreds of processors into thousands of processors. The processors have each their own memory and are connected via a high performance interconnect structure. Since the MPP use standard CPUs, they are able to utilize new processor technologies as they appear. Unfortunately MPPs are fairly hard to program, since they require the programmer to consider the parallelism and perform explicit message passing between processes. Programming tools, including compilers, have been developed to ease MPP programming, but it is not yet possible to completely hide the communication requirements from the programmer. Chapter 5 will examine the MPP class architectures in further depth and will demonstrate how to treat a cluster as if it is a MPP machine.

Shared memory processors are also made from commodity processors, but rather than each processor having its own memory and communicating explicitly with other processors, all processors are connected to the same memory. The shared memory approach makes the machines much simpler to program. Unfortunately the physical shared memory limits the number of processors that can be in a machine. The typical limit today is 64 CPUs in a machine, these architectures and their role in cluster architectures are examined in chapter 3. The ease-of-use that the shared memory architectures provide has encouraged much research into breaking the limitation in the number of processors that can be used in these architectures. The resulting architectures are called non-uniform memory architectures, and these architectures and how a cluster comes to act like them, is described in chapters 6 and 8.
1.1. Clusters

By a cluster, we will refer to a set of interconnected machines. A cluster may be homogeneous, which means that all the nodes in the cluster are identical in configuration, e.g. all have the same type of CPU, memory and other vital components. Alternatively the cluster may be heterogeneous, which is to say that the machines may be different from one another, both slightly different, i.e. different amount of memory or different clock-speed. As it turns out the nature of the cluster is essential to the way programs should be written for the cluster, and heterogeneous clusters may not be utilized for a large set of applications. In addition the machines in a cluster may only be accessed as part of that cluster, e.g. they will not double as workstations – at least not while cluster applications are running. Machines may double as both workstations and computational resources for a cluster, often called cycle-harvesting, however this also severely limits the use of the cluster techniques this book covers.

Clusters are a very attractive way of purchasing large amounts of computing power. In this aspect clusters have several advantages over conventional supercomputers. First of all the per-CPU price is lower in a cluster than in a supercomputer. This is due to several things; the workstation is simpler to design and build naturally, but more importantly the basic market mechanisms drives the price of workstations down because of the volume of systems that is shipped and the actual competition in the market. Supercomputers are sold in very small numbers and the competition is weaker since no two companies produce the same type of machine, thus price comparisons becomes blurred due to the very different nature of the machines. So by purchasing a number of workstations and connecting them by a network, one may match the performance of a supercomputer but at a fraction of the price. Cluster architectures and concepts are introduces more thoroughly in the next chapter.

1.2. Approach of this text

There is a multitude of books on parallel algorithms and parallel computer architecture, and a few books are emerging on cluster computing as well, unfortunately these first generation books does not provide a easy entry into the field. Since cluster computing includes architectural elements as well as algorithms and programming issues this text takes the approach of introducing clusters as emulators of classic supercomputer-architectures and shows how these are most efficiently programmed.

There is a large and diverge set of approaches to programming clusters, and while one will often meet an almost fanatic devotion towards one particular approach from some programmers, the fact is that every approach has its strengths and is preferable over others for some set of applications. Most of these approaches are inherited from the classic supercomputing field, and can be traced back to a supercomputing architecture. With this in mind one may say that a cluster is in fact able to emulate any parallel computer architecture, though with different characteristics with respect to a set of parameters. This text will take this relation as its origin and describe, briefly, different parallel architectures and the way they are programmed, and how this is translated into clusters.

Chapter 3 describes the architecture of ordinary shared memory machines, sometimes referred to as uniform memory access machines, UMA, or symmetrical multi processors, SMP. There are several reasons for including these architectures into a cluster textbook; first of all they provide a very simple introduction to parallel programming and parallel architectures. Secondly, when a parallel version of an algorithm need to be developed it is often convenient to develop a version for shared memory architectures before one goes on to develop versions for more advanced architectures, and finally because more and more clusters are build using shared memory nodes.

The first cluster programming API, Parallel Virtual Machines, is introduced in chapter 4, the programming with PVM differs from the shared memory API, in that there is no shared memory and thus all communication must be made by explicit message passing within the tasks in an application. PVM is developed to run on networks of heterogeneous workstations and does not correspond directly to any parallel architecture however there is a large set of applications available for PVM and for heterogeneous clusters this is a very suitable programming API. Moreover as a student PVM will force you to realize what is needed for two CPUs to communicate, this improved understanding is valuable for improving the performance of your applications for other types of programming APIs also.

From the virtual parallel architecture we go on to look at real massively parallel processors, in chapter 5. MPPs often use a Single Instruction Multiple Data, SIMD programming API, the Message Passing Interface which is simply called MPI. With MPI programming takes another, more synchronous, turn and the idea of tasks with individual assignments within the application is replaced with a model of a set of processes that all perform the same operations, but on different portions of the application data. This chapter also takes a look at some real MPP architectures, the Intel Paragon and the two fastest computers in the world
 the ASCI Red and the ASCI White which is the latest in IBM’s range of MPPs called IBM SP machines.

From the SIMD model we go on to eliminate the concept of explicit message passing and introduces remote memory architectures and remote memory programming techniques in chapter 6. Remote memory is based on the idea that one processor may read and write the memory of another processor, but a processor may only cache data from its own memory blocks. From a programming perspective access to other processors memory greatly simplifies things, but performance is likely to suffer if one is not careful. The machine that will make the link to ‘real’ supercomputers of this class is the Cray T3E.

In chapter 7 an alternative memory model is introduced, where the location of data is completely hidden and the contents of a data-block is used for addressing instead. This memory model, which is called associative memory, is only seen in supercomputers as pure-software implementations.

After this the programming model complete a cycle by returning to the shared memory approach in chapter 8, where the cc-NUMA architectures are introduced and the shared virtual memory programming concept is described. The cc-NUMA class of machines is an exceedingly important one since they are the scalable architecture that is most easily programmed and well suited for porting existing parallel applications to. We will take a closer look at the SGI Origin 3000 and the Sequent NUMA-Q to see how these machines are physically built, and naturally how they may be emulated using clusters.

An interesting feature with cc-NUMA architectures is that it almost takes us ‘home’ to the basic, and un-scalable, shared memory architectures.

[image: image1.wmf]Shared Memory

Parallel Virtual Machine

SIMD

Remote Memory

Structured Memory

Shared Virtual Memory

Figure 1 Logical structure of the book

1.3. Scope of this text

This book is meant for graduate level students and as such a set of prerequisites are presumed. To have any use of this text the reader is expected to have a rather thorough understanding of operating systems, their nature, limitations and the cost associated with activating different operating system components. Just as important is a good knowledge of computer architecture most significantly it is imperative to understand the workings of the memory hierarchy and the IO-bus. In addition it is expected that the reader is not a novice to programming.

It is important to understand that this book is meant for teaching cluster computing, it is by no means meant as an introduction to parallel algorithms, parallel computer architecture or parallel programming. Should anybody wish to study these topics further I highly recommend ‘Parallel Computer Architecture’ by Culler and Singh and ‘Parallel architecture and algorithms’ by S.

1.4. Using this text

Some examples are written in Java. While Java might seem like an odd choice for a performance oriented class, Java does have a set of advantages, it is easy to read and easy to debug. In fact Java has become a focal point for high performance computing due to a set of features that are very attractive to high performance computing. It is expected that the performance of well-written Java program will be within a few percent of a similar program in C or Fortran, within a few years. All Java examples and exercises are easily converted into C for those that favor this over Java.

1.4.1. Software requirements

This book is focused on the practical aspects of cluster computing, thus in order to benefit fully from this course, experimenting with the examples and implementing the case studies is vital. In order to be able to do so a set of software packages is requires. The good news is that they are all available at no cost. All the software and examples has been tested under Linux, and the examples that are written in Java should be able to execute under any Unix like OS or Windows platform, without problems, as long as a current version of Java is available.

All projects are written in Java, and thus a Java compiler and runtime environment is necessary. If Java for some reason is undesirable C or C++ may be easily substituted, with more difficulty Ada or Fortran may be used. If another language is chosen examples and case studies will have to be modified slightly, the object-orientation in Java is kept at an absolute minimum to allow a minimum effort if using a different language. The programming projects in PART IV. uses Java for the sequential version that make the basis for the parallel version, these too should be easily converted into C or C++, except for the graphical parts which will require more porting work, but which aren’t essential to the applications and may be left out.

Parts of this text use Java-MPI, which in turn require a native MPI implementation. The part that uses Java RMI (Remote Method Invocation) does not depend on anything out of the standard Java distribution form SUN; those that do not wish to use Java must instead use standard RPC (Remote Procedure Call). RPC requires special software; this software is most often distributed with a compiler and should not pose a problem. Porting the examples and Project that uses RMI to C or C++ with RPC will require a little effort but not too much I hope. Finally one distributed shared memory system, TSpaces, is used. For the examples and Project the TSpaces package from IBM is required. Those that use C will find that there is a set of Linda implementations that may be used, C++ users may use the C versions under certain restrictions, and otherwise there are a few C++ versions of Linda out there.

To fully benefit from this text it is necessary to have access to a cluster. Development of the examples has been done on Intel x86 architecture based machines, however nothing is specific to this architecture and any platform may be used. Most likely however must readers will have access to x86 based clusters as the PC architecture is simply the cheapest approach to building clusters. This text takes its origin in shared memory programming, as a reference for further work with distributed memory and distributed shared memory. Apart from the obvious pedagogical advantage of starting with a shared memory machine, it is recommendable to build a cluster from shared memory nodes. Shared memory nodes has the primary advantage that they, in the form of dual CPU machines, is the lowest cost per CPU one can achieve, moreover there are interesting challenges in programming clusters with a higher hierarchy of communication cost. The cluster should consist of at least eight nodes, since achieving good speedup on anything less is fairly simple, if at all possible the cluster should contain at least 16 nodes to truly test scalability, even more is naturally better, but not really necessary. The nodes in the cluster should be connected by a high bandwidth, low latency interconnect, minimum a 100Mb Ethernet, see chapter 11 for a coverage of interconnects and their advantages. The machines in the cluster should be reserved for cluster use, and not be general workstations.

1.5. Acknowledgements

Many people have contributed to this book to which I am much obliged, specifically I’d like to thank Tim Doege for the N-Body codes in chapter 16, and Morten Monrad who has written the Alpha-Beta searching code in chapter 18.

� At the time of writing

PAGE
2

