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Abstract—One of the main challenges of modern
computer systems is to overcome the ever more
prominent limitations of disk I/O and memory band-
width, which today are thousands-fold slower than
computational speeds. In this paper, we investigate
reducing memory bandwidth and overall I/O and
memory access times by using multithreaded com-
pression and decompression of large datasets. Since
the goal is to achieve a significant overall speedup of
I/O, both level of compression achieved and efficiency
of the compression and decompression algorithms,
are of importance. Several compression methods for
efficient disk access for large seismic datasets are
implemented and empirically tested on on several
modern CPUs and GPUs, including the Intel i7 and
NVIDIA c2050 GPU. To reduce I/O time, both lossless
and lossy symmetrical compression algorithms as well
as hardware alternatives, are tested.

Results show that I/O speedup may double by
using an SSD vs. HDD disk on larger seismic datasets.
Lossy methods investigated include variations of
DCT-based methods in several dimensions, and com-
bining these with lossless compression methods such
as RLE (Run-Length Encoding) and Huffman encod-
ing. Our best compression rate (0.16%) and speedups
(6 for HDD and 3.2 for SSD) are achieved by using
DCT in 3D and combining this with a modified RLE
for lossy methods. It has an average error of 0.46%
which is very acceptable for seismic applications.

A simple predictive model for the execution time
is also developed and shows an error of maximum
5% vs. our obtained results. It should thus be a
good tool for predicting when to take advantage of
multithreaded compression. This model and other
techniques developed in this paper should also be ap-
plicable to several other data intensive applications.

Keywords-Multithreading; GPU compression; I/O
acceleration; large datasets; SSD Disk

I. INTRODUCTION

With the introduction of accelerators and ever
faster and more parallel processors, the gap be-
tween bandwidth and computational throughput is
growing even larger causing a further challenges.
As stated by Hennessey and Patterson [8] current
trends show that the gap will only widen in the
future as illustrated in Figure 1. This is especially
the case for data-intensive algorithms.

There are both hardware and software alter-
natives for optimizing the I/O bandwidth. One
can upgrade the hardware platform such as using
generally faster SSDs (solid state disks) rather than
HDDs (Hard disk drives). However, SSDs are both
expensive vs HDDs and although about twice as
fast, as illustrated later in this paper, they also
have bandwidth limitations similar to HDDs. This
paper investigates another alternative which accel-
erates the I/O process by using fast and efficient
compression algorithms that take advantage of the
computational power of the modern multithreaded
system including multi-core CPUs and GPUs. As
we have already discovered in our previous work
[2], [16], [11], [1], [17], and as it has been shown in
several other cases [12], the computational power
of modern GPUs are often superior to the CPU.
Our work explores the computational capabilities
of the GPU for compression both as an accelerator
and a supporter for the CPU during computations.

The case of using compression to improve I/O
time has some unique properties. In the usual com-
pression scenario, one is aiming for high compres-
sion rates and neglect the execution time cost to
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Figure 1. Increasing gap between processor and memory
speeds (with permission from D. Patterson [13].)

achieve this compression, which is typical of effec-
tive lossless compression methods such as LZMW
[15] or lossy methods such as GenLOT [4] with
transform coding [14]. However, when optimizing
for I/O, one not only needs efficient compression
rates, but also fast compression algorithms. The
next section describes the compression methods
studied followed by some words about related
seismic imaging and filtering. Compression com-
putations and trade-off are the discussed, followed
by the predictive model we developed. The rest of
the paper analyzes and discusses our work followed
by detailed conclusions and ideas for future work.

A. Compression Methods

Lossless compression is when one does not loose
any data during compressing, which is optimal in
cases where one is very concerned about data accu-
racy. In lossy compression on the other hand, some
data is lost during compression. In seismic filtering,
it is acceptable to lose some data, as long as
one maintains two decimal accuracy. In this paper,
both lossless and lossy compression algorithms are
considered. Our main focus is on simpler, faster,
lossless algorithms and transform coding because
of their proven usefulness on seismic data [5].

Lossy methods investigated include variations of
DCT in several dimensions, and combining these
with lossless compression methods such as RLE
(Run-Length Encoding) and Huffman encoding.
Since seismic data may tolerate lossy compression,
compression algorithm based on the DCT (Discrete
Cosine Transform) [6] [10] [7] is evaluated as well
combining it for 3D data with a modified RLE. As

will be seen from our results this lossy method
proved to be the fastest for large seismic dataset.

B. Seismic Imaging

Oil exploration is heavily dependent upon seis-
mic imaging, which is considered very data inten-
sive. Seismic imaging is a method of exploring
the layers of earth by using signal technology,
which like ultrasound imaging, includes recording
waves, reconstruction, filtering and analysis. It is
the common case that seismic data is recorded,
reconstructed and then stored for later filtering and
analysis. In this paper, we will focus on the data
after it is reconstructed. This part of the seismic
process is termed seismic filtering.

The seismic filtering process is built upon two
parts: 1) the transfer of data to a computation
platform and 2) the actual filtering. In our previous
work [2], off-loading computations to the GPU was
explored for a typical filtering algorithm, namely
3D convolution.

Our initial results showed that the transfer time
consumed 2% of the total execution time. As fil-
tering was optimized by utilizing the computations
capabilities of the GPU, the transfer time was 90%
of execution time, making it the biggest limit-
ing factor for further optimization. Another aspect
worth noting is that this is not only a limiting factor
for our work, but for all data intensive algorithms
such as seismic processing.

II. COMPRESSION COMPUTATION AND I/O
TRADEOFFS

Generally, the tradeoff when using compression
to reduce I/O time is the time taken to compress
and the resulting compression rate. Optimally, one
would like to have a compression algorithm that
both takes little time to execute and compresses
the data well. This way one would reach the best
speedup compared to the normal I/O process. In
reality, however, there is a relation between the
time one uses on compressing data versus the
execution time– i.e. the more time one spends on
compression, the more one is able to compress.
This works, of course, only to a certain extent, that
is, until the data is no longer compressible.
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Figure 2. Execution time for combinations of fast/slow compression, high and low compression rates and asynchronous compression

Generally, when using compression, the main
goal is to compress as much as possible while there
is no time-limiting factor i.e. one can use a lot of
time to achieve the best possible compression. In
our case, however, we are limited by the normal
I/O time. If the execution time of a compression
algorithm exceeds that of standard I/O then it will
never be able to achieve speedup, and therefore
should use standard I/O. That is why we are aiming
at using the computation power of the GPU to be
able to run the heavier compression algorithms fast
enough to gain I/O speedup. This also means that
when comparing to faster I/O units such as the SSD
disk, one has even more limited time and must
therefore depend even more on fast compression
algorithms, which limits compression options.

In the case of performing the compression and
I/O operations synchronously, one would be lim-
ited by the execution time of both since they are
performed after one another. This is always the
case when performing on a single CPU core –
everything is performed sequentially. While in the
case of parallelism and using several threads on a

multi-core CPU, one can perform the computations
and I/O asynchronously, thus being only limited
by the execution time of the part that is the most
time consuming. This way one can hide either
the I/O or the computations in by overlapping the
two and the one with the highest execution time
will be overshadowing the other. This gives more
dimensions and possibilities to use more compre-
hensive compression algorithms even on fast I/O
units, up to a certain point, of course. Similarly, if
the compression algorithm is more time consuming
than the original I/O time, then it will not give any
speedup. See Figure 2 for details.

III. PREDICTIVE MODEL FOR I/O
COMPRESSION

The new compressed I/O process can be mod-
eled in two parts as given in Equation 1. It ex-
presses that the I/O time is now the time it takes
to read or write the compressed amount of data,
tcompressedIO, plus the time it takes to compress
or decompress the data. This concept reflects the
synchronous model. One is also able to model this
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asynchronously, which we will look at later.

t(n)SyncI/O = t(n)compressedI/O

+t(n)compress/decompress (1)

A. Synchronous Model

When using the conceptual model and express-
ing it as a function of the original data size n, it
will be as in Equation 2 for the case of reading
from disk, and Equation 3 for when writing. Here
ncompressed is the amount of compressed data in
bytes, which is dependent of the algorithm one
uses to compress and can also be expressed as
ncompressed = n ∗ C, where C is the compression
factor and n is the original data size in bytes.
rdisk is, as earlier, the rate at which the disk
reads or writes seismic data depending on the
formula and is expressed in bytes per second.
Whereas r(n)decompress is the rate, in bytes per
second, n bytes are produced by the decompressing
algorithm, and r(n)compress is the the rate at which
n bytes are compressed. It is important to note the
difference to avoid erronious estimates.

t(n)read =
ncompressed

rdisk
+

n

rdecompress
(2)

t(n)write =
ncompressed

rdisk
+

n

rcompress
(3)

The main difference between Equation 2 and 3
is that when compressing, the original data size
is compressed into a compressed file size. While
when decompressing, the compressed file size is
used to reproduce the original file size. The dif-
ference is in the amount of reads and writes to
memory. When compressing one reads the original
file size n than writes ncompressed = n∗C amount
of compressed data, where C is the compression
factor dependent on the algorithm used. When de-
compressing it is the opposite situation, where one
writes to memory more than reading. The total time
used to compress or decompress symmetrically is
about the same because one performs the same
operations in reverse, but usually decompression
is considered slower because one has to write

Figure 3. Asynchronous I/O Pipeline, with dominant I/O time

more. In our case, we only decompress to memory
to perform calculations and then compress the
data again when storing it back to disk making
the compression and decompression times quite
similar. This is reflected in our results.

B. Asynchronously

When using more than one processor and par-
allelize code, one can split the reading and com-
putations into different threads and perform them
in parallel. This way one would hide a lot of the
computation time with I/O time or the other way
around depending on which step is the most time
consuming. By reading the data asynchronously,
one would have to divide it into blocks. Thus,
one could read a small part and start performing
computations on that, only to read the next part as
these computations are being performed in parallel.
This would hide these computations. In Figure 3,
we illustrate the scenario of asynchronous reads by
splitting the data into 5 blocks.

Conceptually this would result in the model
presented in Equation 4, where b is the number of
blocks and Max(x,y) is a function that returns the
greater execution time between processes x and y.
the other variables have been explained previously
in the synchronous model.

t(b, nb) = t(nb)compI/O + t(nb)comp +

(b− 1)MAX(t(nb)compI/O, t(nb)comp) (4)

A clear advantage would be to increase the
number of blocks to decrease the overhead from
the first and last block of the asynchronous process.
However, one has to keep in mind that all reads
and writes have an overhead when invoked, which
means that if one reads small amount of values per
read than the read process will take much longer
than reading a larger amount of sequential data.
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Table I
COMPONENTS OVERVIEW IN SYSTEM 1 & SYSTEM 2

Component system 1 system 2
CPU Intel Intel

Q9957 2.81GHz i7 2.81GHz
RAM 8 GB DDR3 12 GB DDR3
Disk 1 750 GB 7200 rpm Corsair SSD

256 GB
Disk 2 500 GB 10000 rpm

GPU 1 (display) NVIDIA No display
Geforce 8600

GPU 2 NVIDIA NVIDIA
Tesla c1060 Tesla s1070

GPU 3 NVIDIA
Tesla c2050

This is why we try to fetch a large amount of data
per read and use specific blocking techniques to do
so. This was explored in our earlier work with seis-
mic data [2]. Therefore there is a tradeoff between
increasing block size and execution speeds.

IV. TEST PLATFORM

Our implementations have been tested on two
machines that have different hardware specifica-
tions. The first system is one that is put together by
us and runs on a Windows 7 operating system. A
list of the hardware in the first system is described
in Table I. It is worth noting that we have men-
tioned alternative options on the hardware such as
the disk and GPU. This is mainly to underline that
we have used the same system, but have changed
to the alternative option such as when we tested the
new Fermi architecture of NVIDIA. When it comes
to the alternative disk we added another disk to add
more variety to our I/O tests.

The second system is put together by the person-
nel of the group, which is a powerful system that
has some of the newest hardware one can find, but
since the systems is used as a server, we cannot
easily change the hardware on this system. This
is why we did not test the combination of SSD
and Fermi, which also would have been interesting.
The second system uses a Linux operating system
and is accessed remotely. Note that the change
in operating system can be a source of different
results in that the operating system schedule tasks
differently. An overview of the hardware of the

Figure 4. Execution time results for AAN DCT 3D algorithm

Figure 5. CUDA profiler snapshot of the DCT AAN 3D
execution

second system is also given in Table I.

V. RESULTS & ANALYSIS

In Figures 4 and 5 one can see the results we
achieved at speeding up the DCT AAN algorithm
in 3 dimensions. This is essential in the results we
further achieved in I/O speedup.

The I/O speedup is for our tests are measured
as in Equation 5 where we compare the new I/O
time using compression to the normal sequential
I/O time. The aim is to study the advantage the
compression algorithms give for disk access, and
to map which option is the most effective. We study
two scenarios of I/O: one being synchronous and
the other asynchronous. Our tests were also con-
ducted on two hard disk drives (HDD) of varying
transfer rates: One with 40 MB per second and
the other with 70 MB per second. A solid state
disk (SSD), which is of newer technology and has
a speed of 140 MB per second for transfers, was
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Figure 6. Execution time for synchronous I/O with CPU and GPU acceleration (CPU: Intel Q9958, GPU: NVIDIA Tesla c2050)

Figure 7. Execution time for asynchronous I/O with CPU and GPU acceleration (CPU: Intel Q9958, GPU: NVIDIA Tesla c2050)
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Figure 8. Visual results of data loss

Figure 9. Predicted execution time for synchronous and asynchronous model

also tested. Note that it is twice as fast as the faster
HDD disk, a figure later reflected in our results.

I/O speedup =
Sequential I/O time

I/O time w. compression
(5)

Figures 6 and 7 display the I/O speedup results
for our three different disks for each of the com-
pression algorithms implemented for both our syn-
chronous and asynchronous threaded implementa-
tions. Only the fastest resulting execution times are
presented – that is, some are preformed on only
the CPU and others with the aid of the GPU. The
lossless algorithms as discussed earlier are the ones
that benefit most from the CPU, and the transform

encoding algorithms are run on the GPU for the
same reasons. The CPU used to benchmark these
results is the Intel Q9958, and the the GPU is the
NVIDIA Tesla c2050. To see how they performed
compared to other alternatives see [3].

The visual results of the data loss are displayed
in Figure 8. This figure has been colored using a
sharp threshold to make all changes evident, but in
reality if one uses a gradient to color the seismic,
the loss in close to non-visible.

A. Expected versus achieved results

Our model was tested by using a couple of
measurements on a smaller block, and given those
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results we estimate the execution time of the larger
blocks of data. A graph representing the estimated
and actual execution times for the synchronous and
asynchronous model is shown in Figure 9.

Given that our models used are quite simple, the
predictions were surprisingly close to the actual
execution times and thus performed well. There
are of course some errors that can occur, including
some functions become more evident in their scal-
ing such as standard C functions like memcpy()
and memset(). But, the results prove that these
estimates can be used with an error of +-5%, which
is quite accurate given the simplicity of the models.

VI. CONCLUSIONS

This paper investigated how to reduce memory
bandwidth and overall I/O and memory access
times by using multithreaded compression and
decompression of large datasets. Since the goal
was to achieve a significant overall speedup of I/O,
both the level of compression achieved and the
efficiency of the compression and decompression
algorithms, were of importance. Several compres-
sion methods for efficient disk access on both the
CPU and GPU were implemented and empirically
tested on large seismic datasets. To reduce I/O
time, both lossless and lossy compression algo-
rithms as well as hardware alternatives were tested.
Compressed I/O and compression/decompression
were also overlapped for maximum efficiency.

The lossless compression algorithms tried were
RLE (run length encoding) and Huffman encoding.
These were tweaked and optimized for compress-
ing of seismic data, and resulted in a compres-
sion ratio of 0.83 and 0.71, respectively on all
platforms tested. Both of these algorithms were
chosen on the criteria that they are known to be
fast. However, since they do not compress much of
the data, the bandwidth bottleneck was still evident.
Nevertheless, they resulted in 1.08 and 1.1 speedup
respectively in disk access in the synchronous
case, and 1.3 and 1.4 speedups respectively, in
the asynchronous case. The implementations were
tested two HDD disks with average transfer rates of
35MB/s and 70MB/s, respectively. Note, however,
these lossless compression algorithms both gave

negative speedup results when run on faster plat-
forms such as SSD disk which averaged 140MB/s
transfer rates. This showed that either the algo-
rithms are slow or the compression is little. When
tested on the GPU these algorithms performed even
slower than on the CPU. This is likely because
the GPU is slower on bit-wise operations and
since both algorithms have a sequential nature,
we are not able to take advantage of the vast
parallel computation capabilities of the GPU. In
other words, the CPU was superior in these cases.

Fortunately we were much more successful
when it came to lossy compression. Seismic data is
typically noisy, which makes it hard to compress.
However, by filtering the noise and transforming
the data to the frequency domain, one can achieve
great compression rates with little error. We experi-
mented with transformations in several dimensions
and used algorithms that were usually used in im-
age compression such as the DCT (discrete cosine
transform), and the LOT (lapped orthogonal trans-
form). The best compression rates were achieved
by using the DCT in 3D and combining this with
a modified RLE. This gave a compression ratio
of 0.16. The transform in this case was performed
on the GPU because of its parallel nature (which
showed an 8 time speedup compared to the CPU),
and the RLE was performed on the CPU because
of its sequential nature.

Testing on HDD and SSD platforms, we
were able to achieve respectively 3.7 and 2.5
speedups on the synchronous implementations, and
a speedup of 6 and 3.2, respectively on the asyn-
chronous model. This was done with an average
error of 0.46% per float in the seismic data, which
is within a reasonable loss of two decimal places.
We later tested for LOT to see if we could reduce
the error, but results show that this effects speedup
and compression size more than the error term and
that is why we did not look at this any further.

A mathematical model was further developed
and empirically tested against our results. The
model proved to be accurate, with up to 5% error
in some cases, despite its simplistic nature. This
model can be used to estimate running larger data
sets, by measuring variables on smaller sets and
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adapting the model to the device it runs on. The
intention of the model is to give an estimate of
execution time for I/O on a system using compres-
sion both synchronously and asynchronously, and
it proved to be reasonably accurate for both.

VII. FUTURE WORK

Autotuning: One of the major challenges GPU
programmers are facing is the blocking of the data
such that separate threads can perform calculations
on them. Presently, the programmer must match
the block size and thread count to the capabili-
ties of the GPU and the kernel. This greatly af-
fects performance, and increasing thread counts or
rewriting kernel for different work distribution can
sometimes make the difference. This is a problem
for both CUDA and OpenCL. NVIDIA has its
CUDA calculator to help choose an optimal thread
count to gain most occupancy, but it is also stated
that anything above 50% occupancy will give an
optimal execution situation. This comes from the
scheduler that runs these kernels. A very useful
thing to work on further is an auto-tuning program
that is able to choose these factors for the program-
mer to optimize the running of the kernels on the
GPU. This will make GPU programming easier and
will automatically give the optimal running time.
One could also experiment with assembly level
autotuning to rewrite the kernels for efficiency.

3D visualization: During this work we have
produced 2D images storing uncompressed data
before visualizing it. This is of course not the case
in a seismic application, which is why methods to
present the data in its compressed format should
be investigated. The challenge here is that the
compression is non uniform, meaning that one
does not know which compressed block has which
part of the original image. This makes 3D rep-
resentation challenging and less effective in some
cases. 3D representation can be done with the help
of the level of detail algorithms such that one
selectively chooses what to show given the scope.
Visualization is an area where compression will
have great effects and present challenges for large
data sets, where one has to decompress several
blocks to select a few data points.

GenLOT: During this work we have been per-
forming many transforms on the GPU in CUDA,
and have mentioned how building upon the fast
DCT would give room for more speedup. In our
case of compression to beat I/O, it did not help
speedup when we increased to the next step,
namely LOT. But when looking at general com-
pression of seismic data the GenLOT is used. A
CUDA implementation of this would be interest-
ing for testing how well the algorithm runs on
the GPU. The preliminary tests show that good
speedup is expected in running on the GPU.

Hardware: because of time limitations in this
work, we were not able to optimize our code to run
on the Fermi architecture. Although we have tested
it and shown its performance, one can also look at
cache optimizations for the new architecture. An-
other aspect that can be tested is multiple GPUs for
compression. Although we tested that convolution
scales almost perfectly by using several GPUs [2],
the other transforms we have created in this work
should be tested. Preliminary results show that the
problem will scale well.

OpenCL: The end goal of our work would
be to provide I/O compression for heterogeneous
platforms in the form of a library. Using OpenCL
may make the transition easier. There can be some
optimization limitations since the compilers for C
and CUDA are more optimal than that of OpenCL
at the moment, which is why we avoided using it.
In the future when this is no longer an issue, it is
an good alternative to look into.

Finally, throughput computing remains a chal-
lenge on GPU systems [9], but as the CPUs
and GPUs get integrated for more high-end sys-
tems, the bottleneck between CPUs and GPUs will
shrink, and give us further opportunities to reduce
the I/O bandwidth even further.
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