
D6.10 
FAST BIT-REVERSAL ALGORITHMS 

Anne Cathrine Elster 

School of Electrical Engineering 
Come11 University 

Ilhaca, New York 14853 

Abstract 
Several numerical computations, including the Fast 

Fourier Transform 0, require that the data is ordered 
according to a bit-reversed permutation. In fact, for several 
standard FIT programs, this pre or post computation is 
claimed to take 10-50 percent of the computation time [l]. 
In this paper, a linear sequential bit-reversal algorithm is 
presented. This is an improvement by a factor of logzn over 
the standard algorithms. Even at the register level (where 
additions and multiplications are not considered to be con- 
stant operations), the algorithm presented is shown to be 
linear with a low constant factor, 

The recursive method presented extends nicely to 
radix-r permutations; mixed-radix permutations are also 
discussed. Most importantly, however, the method is shown 
to provide an efficient vectorizdle bit-reversal algorithm. 

1. Introduction 
The bit-reversal permutation is a common data ordering, 

its most prominent application being the pre-computation step 
of the Cooky-Tukey Fast Fourier Transform (FFT) algorithm 
[2,3]. Other applications include image transpositions [4] 
and generalized sorting of multidimensional arrays [5]. 

Bit-reversal might be defined for n = 2' as the nxn  
permutation matrix P, such that: 

z = P z x  = > z ( k ) = x ( r , , ( k ) )  k = O . . . n - l ,  (1 )  

where r , (k)  is the integer obtained by reversing the bit-order 
in k 'S r -bit representation: 

( k ) z  = bo ' ' ' 4 - 1  
(2) 

=> (T,,(k))z = 4 - 1  . ' bo 

OOO 
001 
010 
011 
100 
101 
110 
111 

OOO 
100 
010 
110 
001 
101 
01 1 
111 

The question is how fast such a permutation can be obtained 
for a given sequence 0 . . . n-I? Parallelization? 

2. Previous Work 
Several algorithms have been developed to compute 

bit-reversed indices. The most common are derivatives of 
techniques testing each bit of the binary representation of 
each index. Consequently, tbe most common technique for 
computing the bit-reversed ordering of a sequence is by a 
series of shifts and additions, e.g. the technique included in 
Cooley and Tukey's original paper [2,6]. 

In 1969, Fraser [7] demonstrated that by working 
entirely in bit-reversed form (no regular integer increments), 
a sequence of bit-reversed integers could be generated by 
finding the leftmost 0, replacing it by 1 and clearing any 
leading ones. A possible order of magnitude speed-up was 
achieved by taking advantage of floating point hardware. If 
the bit-reversed number, treated as a normal fraction was 
negative (from a corresponding odd non-reversed integer), a 
conversion to floating point and back automatically gave the 
desired leftmost 0. Interchanging it and performing shifts 
equal to the magnitude of the exponent yielded the desired 
result. Bit-reversed integers corresponding to the even entries 
may then be generated by flipping the most significant bit of 
the preceding integer in the bit-reversed sequence generated. 

In 1984, Johnson and Burrus [SI presented an in-order, 
in-place radix-2 FFT algorithm which eliminated the need for 
the bit-reversal permutation of data (which they claimed takes 
10-5096 of the computation time). A double butterfly opera- 
tion was, however, needed to avoid permuting the data. 

In 1985, Fraser [SI proposed a bit-reversal algorithm 
attempting to minimize main memory accesses for large 
memory systems. He achieved this by noting that the bit- 
reversal permutation can be achieved by a series of cyclic 
shifts: 

e.g. n = 24 = 16 

(3) R 4  = ($4 . i s 4  ' ZSJ, 

where R 4  is the bit-reversal permutation on 4 bits, and D(j4, 
,S4, and s4 cyclically shift 4,3. and 2 bits of each number 
respectively. Combining cyclic shifts and direct bit-reversal 
permutations, fewer main-memory accesses are required, 
though the time complexity of this algorithm still remains at 
[o ( n  logzn 11. 
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Example: In 1987, Evans [9] proposed a linear digit-reversal per- 
mutation algorithm (which is bit-reversal for base=2) which 
uses a seedtable of precalculated digit-reversed numbers. 

Finally, in 1988. Bums [ l ]  showed that any radix-2'- 
FFh and mixed-radix FFTs can be written to scramble the 
data in a bit -reversed order. 

3. A Fast Bit-Reversal Algorithm 
Any algorithm which implicitly checks each bit of each 

number of a regular sequence in order to create a bit-reversed 
permutation, will clearly be of O(nlog2n). The trick is to 
view the computation as a mupping from one sequence to 
another. The problem is then to search for this mapping 
function. A linear recursive sequential algorithm was found 
by factoring out the bit-reversed number sequence with 
powers of two. Figure 1 shows how this was done for 
n = 16 = 2' = Z4. 

Notice that r16(k) = Ck.2'- with ck odd. 

Definition 1: 

If n = 2'. 1 S q < t,and 2'7-' S k S 24 

then the odd constant ck is defined by: 

r, ( k )  1 q . 2 '9 ,  ck [odd integer 1 
(4) 

That ck is an odd integer can be deduced from the definition: 

Definition 2:  
r,,(k) I c, . 2l-4 

k = (0 ' ' ' Olb44  ' ' ' bo), => (5) 

r , (k)  = (bo bl . . . b4-2 l h .  2'-.  

Hence ck will always have a 1 in the least significant bit- 
position, so ck is odd. 

The stippled lines in Figure 1 discern the recursive pat- 
tern of the ck s. This pattern is more visually shown in Figure 
2. 

Notice that ca = ck, and 
in the following theorem: 

Theorem: 

= ct + L. This is formalized 

Let n = 2' and 1 S q c t 
If k satisfies 

L0=2q- '  S k c 24 r L  (6) 
then 

=ck (7) 

Proof of Theorem: 

representations must be of the form: 
Because LO I k < L ,  k ' s  and r,(k)'s binary 

k = (0 . . Olb,, . ' b& (9) 

Figure 1: Factorizing r&). 

2 4 8 L = p :  1 

1 c, :  l- l- l-  

3 \  
5 
3 
1 $! 1 1  1 

15 Notice: C, = % 

'2K+I =% + 

Figure 2: DiSEmhg the recursive pattern of the Cxs, 

Consequently, from the definition of ck we have: 

r,,(k) = (bobl . . . b4-21), . 2 ' 9  

=> Ck = (b&l ' '  ' bq-21)2, 

However, since 2k and 2k+l are as follows: 

2 = (0 ' ' Olb,-2 ' ' ' b 9 ) 2  
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We thus have the factorizations: . Though factorizing r,(k) was helpful to discern its 
recursive nature, factorization is not necessary for obtaining a 
linear sequential algorithm. A bit-reversed sequence may 
also be generated recursively directly by following the same 
method since the factors follow the same logarithmic pattern 
(both follow q ) .  Algorithm lb shows such a subroutine 
implemented in Fortran for the IBM 3090. 

rn(2k) = (Obo . . . b,+l) . Zr--l 

rn(2k+l) = ( l b o .  . . bqJ) . 2 I - q - l .  

(14) 

and 

(15) 

The theorem follows. 0 

It can be deduced from the above theorem that the C ~ S  

can be generated recursively; i.e. having generated Algorithm Ib: Linear Bit-Reversal - 
cLo. . . . ,eL-,, then cL, . . . may readily be computed 
from cLo, . . . . c ~ - ~ .  The linear sequential algorithm follows 
by noticing that the 2 r 9  factors follow a similar recursive 
pattern. 

In the advent of the increasing number of parallel com- 
puters, the most interesting case is, perhaps, how the method 
presented in the previous section can help improve parallel 
versions of the bit-reversal algorithm. Algorithm l a  with its 
"vector" notion, shows, in fact, the parallelization of the 
method. The inner loop operates on independent data and can 
hence be performed in one parallel step. This yields an 
O(logzn) algorithm for the parallel case (order of main 

Parallelizing the "standard" algorithm, one could look at 
the corresponding bits of the representation in parallel. The 
same performance in the big -Oh sense can thus be achieved. 
However, n processors would be required throughout the 
computation, whereas the proposed algorithm requires only 
n/2 processors, and that occurs only during the last computa- 
tional step. 

loop). 

Algorithm la: Fast Bit-Reversal 

XOC". n = 2' 

x <- P, ' X  

z := x ; c(1) := I ;*(I) := z(nl2) 

L := 24, r := nlL. Lo := U 2  
(* Find ( P , x )  *) 
For j = 0 to Lo 

For q = 2 to t 

c(L + 2j) := c(Lo + j) 
c(L + 2j + 1) := c(Lo + j) + L 
x(L + 2j) := z(c(L + 2j) . r) (* r = 2'- *) 
x(L + 2j + I) := z(c(L + 2j) + L) r) 

end 

SUBROUTINE BITREV (t,c) 

IMPLICIT INTEGER*4 (A-C), (a-c) 
DIMENSION C(O*) 
n = 2 * * t  
L =  1 
c(0) = 0 
DO 1 q = 0, t-1 

n = d 2  
Do 2 j =O,L-1 

c(L+j) = c(i) + n 
2 CONTINUE 

1 CONTINUE 
L = L * 2  

RETURN 
END 

4. O(n) Register-Level Algorithm 
Having shown that sequential bit-reversal takes 0 ( n )  in 

an algorithmic sense, the question of whether this can be 
achieved at the ngister level remains. Also, by considering 
the method at this level, a better understanding of the magni- 
tude of the constant related to the linear factor can be 
achieved. 

In order to obtain a true linear register-level algorithm, 
additions and multiplications cannot be allowed since these 
operations are not constant at the register level. (Fast addi- 
tion uses carry look-ahead adders, fast multiplications, 
carry-save adder trees -- both operations of about 
0 (log2(no.ofbitsinrcpresentation)). The following operations 
are, however, considered linear at the register level: 

LOAD 
STORE 
SHIlW (left or right) 
MASK (e.g. OR each elem. in reg. 

with a given mask) 

end 
By studying Figure 1 and relating the recursive pattern 

Notice that this algorithm in the sequential setting requires 
only o ( n )  memory and O ( n )  integer arithmetic. 
However, an integer n-vector workspace (e) is needed for 

discerned to what ishappening on the bit-level the following 
algorithm is achieved for generating the coefficients Ck for 

= ' ' . '-' (*lgorithm 2). 

storing the bit-reversed index, and a complex n-vector 
workspace (z) is needed as a temporary array. The integer 
workspace may be reduced to n / 2  by noticing the following 
relation: 

c(n/2) ... c(n-2) c(n-1) = 
c(0) + 1 ... c(n12-2) + 1 (16) c(n/2-1) + 1 

Hence, the second-half indices can be generated by adding 
one to the corresponding fust-half indices. 

Notice that no actual additions, multiplications, or divisions 
were used (division and multiplication by 2 are simple shift 
operations). 

Since 2' = 1, by computing the cks, 
ra((n-1)/2) . . . rn(n-1) have been generated. The rest of 
the bit-reversed indices may be generated recursively by 
using the even enhies of the subsequent q-range and left- 
shifting them (multiply by 2) as shown in Algorithm 3. 
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Algorithm 2: Register-Level Generation of cks: 

Assume n = 2‘ 

c(0) := 0 
c(1) := 1 
L := 2 
WHILEL<n 

(* base case *) 

FOR i = L TO 2*L - I (* expand*) 

c(i) := c(i - i/2) (* load *) 

c(i) := c(i-1) + L 

IF (integer is odd) 

ELSE [even) (* load and OR in bit set by L *) 

END (* for*) 
L := L * 2 (* left-shift *) 

END (* while *) 

Algorithm 3: Linear Register-Level Bit-Reversal 

L := nl2 
FOR q = 1 TO t-1 

FOR i =W T O L  by 2 (* L n  : 2 : L *) 
x(i) : = x ( i )  
x(i) := left-shifr(x(i)) 
L := 

END 
END 

Notice how low the constant factor for this linear method is. 
The total number of operations required was n / 2  loads (odd), 
n12 transfers with OR-masking, and n12 transfers followed 
by shifts. Comparing this to the n loads and n .logpi shifts 
required for the “standard” case, it was shown how the con- 
stant is kept very small. 

5. Radix-r and Mixed-Radix Algorithm 
The extension to radix representations other than the 

radix-2 (binary) case, is easily achieved by discerning a simi- 
lar recursive pattan. By factoring the reversed integers as 
powers of r rather than as powers of 2, a radix-r index- 
reversal is achieved. For the mixed-radix case, the patterns 
are discerned in groups for each radix type. In the case of 
FFlk, the plain bit-revmal algorithm could be used if care is 
taken [ 11. 

6. Conclusions 
A novel fast algorithm for computing a sequence of bit- 

reversed integers was presented. By finding a mapping func- 
tion from a sequence of integers to a sequence of their bit- 
reverse. a recursive approach was taken to overcome the log- 
arithmic factor burdening the standard scheme. The associ- 
ated constant for the timing factor was also shown to be very 
low-even at the register level. Most importantly, however, 
the method generalized for radix-r and mixed radix cases, as 
well as provided an efficient vectorizable scheme with the 
same low constant. Algorithmic details for radix-r and mixed 
radix permutations are outlined in the technical report associ- 
ated with this paper. 
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