
D6.10
FAST BIT-REVERSAL ALGORITHMS

Anne Cathrine Elster

School of Electrical Engineering
Come11 University

Ilhaca, New York 14853

Abstract
Several numerical computations, including the Fast

Fourier Transform 0, require that the data is ordered
according to a bit-reversed permutation. In fact, for several
standard FIT programs, this pre or post computation is
claimed to take 10-50 percent of the computation time [l].
In this paper, a linear sequential bit-reversal algorithm is
presented. This is an improvement by a factor of logzn over
the standard algorithms. Even at the register level (where
additions and multiplications are not considered to be con-
stant operations), the algorithm presented is shown to be
linear with a low constant factor,

The recursive method presented extends nicely to
radix-r permutations; mixed-radix permutations are also
discussed. Most importantly, however, the method is shown
to provide an efficient vectorizdle bit-reversal algorithm.

1. Introduction
The bit-reversal permutation is a common data ordering,

its most prominent application being the pre-computation step
of the Cooky-Tukey Fast Fourier Transform (FFT) algorithm
[2,3]. Other applications include image transpositions [4]
and generalized sorting of multidimensional arrays [5].

Bit-reversal might be defined for n = 2' as the nxn
permutation matrix P, such that:

z = P z x = > z (k) = x (r , , (k)) k = O . . . n - l , (1)

where r , (k) is the integer obtained by reversing the bit-order
in k 'S r -bit representation:

(k) z = bo ' ' ' 4 - 1
(2)

=> (T,,(k))z = 4 - 1 . ' bo

OOO
001
010
011
100
101
110
111

OOO
100
010
110
001
101
01 1
111

The question is how fast such a permutation can be obtained
for a given sequence 0 . . . n-I? Parallelization?

2. Previous Work
Several algorithms have been developed to compute

bit-reversed indices. The most common are derivatives of
techniques testing each bit of the binary representation of
each index. Consequently, tbe most common technique for
computing the bit-reversed ordering of a sequence is by a
series of shifts and additions, e.g. the technique included in
Cooley and Tukey's original paper [2,6].

In 1969, Fraser [7] demonstrated that by working
entirely in bit-reversed form (no regular integer increments),
a sequence of bit-reversed integers could be generated by
finding the leftmost 0, replacing it by 1 and clearing any
leading ones. A possible order of magnitude speed-up was
achieved by taking advantage of floating point hardware. If
the bit-reversed number, treated as a normal fraction was
negative (from a corresponding odd non-reversed integer), a
conversion to floating point and back automatically gave the
desired leftmost 0. Interchanging it and performing shifts
equal to the magnitude of the exponent yielded the desired
result. Bit-reversed integers corresponding to the even entries
may then be generated by flipping the most significant bit of
the preceding integer in the bit-reversed sequence generated.

In 1984, Johnson and Burrus [SI presented an in-order,
in-place radix-2 FFT algorithm which eliminated the need for
the bit-reversal permutation of data (which they claimed takes
10-5096 of the computation time). A double butterfly opera-
tion was, however, needed to avoid permuting the data.

In 1985, Fraser [SI proposed a bit-reversal algorithm
attempting to minimize main memory accesses for large
memory systems. He achieved this by noting that the bit-
reversal permutation can be achieved by a series of cyclic
shifts:

e.g. n = 24 = 16

(3) R 4 = ($4 . i s 4 ' ZSJ,

where R 4 is the bit-reversal permutation on 4 bits, and D(j4,
,S4, and s4 cyclically shift 4,3. and 2 bits of each number
respectively. Combining cyclic shifts and direct bit-reversal
permutations, fewer main-memory accesses are required,
though the time complexity of this algorithm still remains at
[o (n logzn 11.

CH2673-2/89/Ot3M-lW S1.00 0 1989 IEEE

Example: In 1987, Evans [9] proposed a linear digit-reversal per-
mutation algorithm (which is bit-reversal for base=2) which
uses a seedtable of precalculated digit-reversed numbers.

Finally, in 1988. Bums [l] showed that any radix-2'-
FFh and mixed-radix FFTs can be written to scramble the
data in a bit -reversed order.

3. A Fast Bit-Reversal Algorithm
Any algorithm which implicitly checks each bit of each

number of a regular sequence in order to create a bit-reversed
permutation, will clearly be of O(nlog2n). The trick is to
view the computation as a mupping from one sequence to
another. The problem is then to search for this mapping
function. A linear recursive sequential algorithm was found
by factoring out the bit-reversed number sequence with
powers of two. Figure 1 shows how this was done for
n = 16 = 2' = Z4.

Notice that r16(k) = Ck.2'- with ck odd.

Definition 1:

If n = 2'. 1 S q < t,and 2'7-' S k S 24

then the odd constant ck is defined by:

r, (k) 1 q . 2 '9 , ck [odd integer 1
(4)

That ck is an odd integer can be deduced from the definition:

Definition 2:
r,,(k) I c, . 2l-4

k = (0 ' ' ' Olb44 ' ' ' bo), => (5)

r , (k) = (bo bl . . . b4-2 l h . 2'-.

Hence ck will always have a 1 in the least significant bit-
position, so ck is odd.

The stippled lines in Figure 1 discern the recursive pat-
tern of the ck s. This pattern is more visually shown in Figure
2.

Notice that ca = ck, and
in the following theorem:

Theorem:

= ct + L. This is formalized

Let n = 2' and 1 S q c t
If k satisfies

L0=2q- ' S k c 24 r L (6)
then

=ck (7)

Proof of Theorem:

representations must be of the form:
Because LO I k < L , k ' s and r,(k)'s binary

k = (0 . . Olb,, . ' b& (9)

Figure 1: Factorizing r&).

2 4 8 L = p : 1

1 c, : l- l- l-

3 \
5
3
1 $! 1 1 1

15 Notice: C, = %

'2K+I =% +

Figure 2: DiSEmhg the recursive pattern of the Cxs,

Consequently, from the definition of ck we have:

r,,(k) = (bobl . . . b4-21), . 2 ' 9

=> Ck = (b&l ' ' ' bq-21)2,

However, since 2k and 2k+l are as follows:

2 = (0 ' ' Olb,-2 ' ' ' b 9) 2

1100

We thus have the factorizations: . Though factorizing r,(k) was helpful to discern its
recursive nature, factorization is not necessary for obtaining a
linear sequential algorithm. A bit-reversed sequence may
also be generated recursively directly by following the same
method since the factors follow the same logarithmic pattern
(both follow q) . Algorithm lb shows such a subroutine
implemented in Fortran for the IBM 3090.

rn(2k) = (Obo . . . b,+l) . Zr--l

rn(2k+l) = (l b o . . . bqJ) . 2 I - q - l .

(14)

and

(15)

The theorem follows. 0

It can be deduced from the above theorem that the C ~ S

can be generated recursively; i.e. having generated Algorithm Ib: Linear Bit-Reversal -
cLo. . . . ,eL-,, then cL, . . . may readily be computed
from cLo, c ~ - ~ . The linear sequential algorithm follows
by noticing that the 2 r 9 factors follow a similar recursive
pattern.

In the advent of the increasing number of parallel com-
puters, the most interesting case is, perhaps, how the method
presented in the previous section can help improve parallel
versions of the bit-reversal algorithm. Algorithm l a with its
"vector" notion, shows, in fact, the parallelization of the
method. The inner loop operates on independent data and can
hence be performed in one parallel step. This yields an
O(logzn) algorithm for the parallel case (order of main

Parallelizing the "standard" algorithm, one could look at
the corresponding bits of the representation in parallel. The
same performance in the big -Oh sense can thus be achieved.
However, n processors would be required throughout the
computation, whereas the proposed algorithm requires only
n/2 processors, and that occurs only during the last computa-
tional step.

loop).

Algorithm la: Fast Bit-Reversal

XOC". n = 2'

x <- P, ' X

z := x ; c(1) := I ;*(I) := z(nl2)

L := 24, r := nlL. Lo := U 2
(* Find (P , x) *)
For j = 0 to Lo

For q = 2 to t

c(L + 2j) := c(Lo + j)
c(L + 2j + 1) := c(Lo + j) + L
x(L + 2j) := z(c(L + 2j) . r) (* r = 2'- *)
x(L + 2j + I) := z(c(L + 2j) + L) r)

end

SUBROUTINE BITREV (t,c)

IMPLICIT INTEGER*4 (A-C), (a-c)
DIMENSION C(O*)
n = 2 * * t
L = 1
c(0) = 0
DO 1 q = 0, t-1

n = d 2
Do 2 j =O,L-1

c(L+j) = c(i) + n
2 CONTINUE

1 CONTINUE
L = L * 2

RETURN
END

4. O(n) Register-Level Algorithm
Having shown that sequential bit-reversal takes 0 (n) in

an algorithmic sense, the question of whether this can be
achieved at the ngister level remains. Also, by considering
the method at this level, a better understanding of the magni-
tude of the constant related to the linear factor can be
achieved.

In order to obtain a true linear register-level algorithm,
additions and multiplications cannot be allowed since these
operations are not constant at the register level. (Fast addi-
tion uses carry look-ahead adders, fast multiplications,
carry-save adder trees -- both operations of about
0 (log2(no.ofbitsinrcpresentation)). The following operations
are, however, considered linear at the register level:

LOAD
STORE
SHIlW (left or right)
MASK (e.g. OR each elem. in reg.

with a given mask)

end
By studying Figure 1 and relating the recursive pattern

Notice that this algorithm in the sequential setting requires
only o (n) memory and O (n) integer arithmetic.
However, an integer n-vector workspace (e) is needed for

discerned to what ishappening on the bit-level the following
algorithm is achieved for generating the coefficients Ck for

= ' ' . '-' (*lgorithm 2).

storing the bit-reversed index, and a complex n-vector
workspace (z) is needed as a temporary array. The integer
workspace may be reduced to n / 2 by noticing the following
relation:

c(n/2) ... c(n-2) c(n-1) =
c(0) + 1 ... c(n12-2) + 1 (16) c(n/2-1) + 1

Hence, the second-half indices can be generated by adding
one to the corresponding fust-half indices.

Notice that no actual additions, multiplications, or divisions
were used (division and multiplication by 2 are simple shift
operations).

Since 2' = 1, by computing the cks,
ra((n-1)/2) . . . rn(n-1) have been generated. The rest of
the bit-reversed indices may be generated recursively by
using the even enhies of the subsequent q-range and left-
shifting them (multiply by 2) as shown in Algorithm 3.

1101

Algorithm 2: Register-Level Generation of cks:

Assume n = 2‘

c(0) := 0
c(1) := 1
L := 2
WHILEL<n

(* base case *)

FOR i = L TO 2*L - I (* expand*)

c(i) := c(i - i/2) (* load *)

c(i) := c(i-1) + L

IF (integer is odd)

ELSE [even) (* load and OR in bit set by L *)

END (* for*)
L := L * 2 (* left-shift *)

END (* while *)

Algorithm 3: Linear Register-Level Bit-Reversal

L := nl2
FOR q = 1 TO t-1

FOR i =W T O L by 2 (* L n : 2 : L *)
x(i) : = x (i)
x(i) := left-shifr(x(i))
L :=

END
END

Notice how low the constant factor for this linear method is.
The total number of operations required was n / 2 loads (odd),
n12 transfers with OR-masking, and n12 transfers followed
by shifts. Comparing this to the n loads and n .logpi shifts
required for the “standard” case, it was shown how the con-
stant is kept very small.

5. Radix-r and Mixed-Radix Algorithm
The extension to radix representations other than the

radix-2 (binary) case, is easily achieved by discerning a simi-
lar recursive pattan. By factoring the reversed integers as
powers of r rather than as powers of 2, a radix-r index-
reversal is achieved. For the mixed-radix case, the patterns
are discerned in groups for each radix type. In the case of
FFlk, the plain bit-revmal algorithm could be used if care is
taken [11.

6. Conclusions
A novel fast algorithm for computing a sequence of bit-

reversed integers was presented. By finding a mapping func-
tion from a sequence of integers to a sequence of their bit-
reverse. a recursive approach was taken to overcome the log-
arithmic factor burdening the standard scheme. The associ-
ated constant for the timing factor was also shown to be very
low-even at the register level. Most importantly, however,
the method generalized for radix-r and mixed radix cases, as
well as provided an efficient vectorizable scheme with the
same low constant. Algorithmic details for radix-r and mixed
radix permutations are outlined in the technical report associ-
ated with this paper.

Acknowledgements
The author wishes to thank her advisor, Prof. Charles

Van Loan, for his encouragement and support, and for the
help with formalizing Algorithm la. Gratitude is also
extended to Dr. James W. Cooley and Prof. C. Sidney BUMS
for pointing out references, and to Dr. Fred Gustavson for
demonstrating how the recursive linear approach might be
encoded on the IBM 3090 (Alg. lb).

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

C. S. B m s , “Unscrambling for Fast DFT Algo-
rithms,” IEEE Transactions on ASSP, 36,(7), pp.
1086-1087, (July 1988).
J. W. Cooley and J. W. Tukey, “An algorithm for the
machine calculation of complex Fourier Series,” Marh.
of Comput., 19,(90), pp. 297-301, (Apr. 1965).

W. T. Cochran and J. W. Cooley et al., ‘‘What is the
Fast Fourier Transform?,” Proceedings of the IEEE,
55,(10),(0ct. 1967).
D. Fraser, R. A. Schowegert, and I. Briggs, “Rectifica-
tion of Multichannel Images in Mass Storage Using
Image Transposition,” Computer Vision, Graphics, and
Image Processing, 29, pp. 23-36, (1985).
D. Fraser, “Bit-Reversal and Generalized Sorting of
Multidimensional Arrays,” Signal Processing,
9,(3), pp. 163-176, North-Holland, (Oct. 1985).
J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The
Fast Fourier Transform and Its Applications,” IEEE
Transactions on Education, E-12,(l), pp. 27-34, (Mar.
1969).
D. Fraser, “Incrementing a Bit-Reversed Integer,’’
IEEE Transactions on Computers, p. 74, (Jan. 1969).
H. W. Johnson and C. S.’Burms, “An In-Place, In-
Order Radix-2 FFT,” ICASSP 1984 Proceedings,
(1984).
D. M. W. Evans, “An Improved Digit-Reversal Permu-
tation Algorithm for the Fast Fourier and Hanley
Transforms,” IEEE Transactions on ASSP, 35, pp.
1120-1 125, (Aug. 1987).

1102

. . .-

