
A Super-Efficient Adaptable Bit-Reversal Algorithm for Multithreaded
Architectures

Anne C. Elster and Jan C. Meyer
Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
elster@idi.ntnu.no and janchris@idi.ntnu.no

Abstract

Fast bit-reversal algorithms have been of strong interest
for many decades, especially after Cooley and Tukey in-
troduced their FFT implementation in 1965. Many recent
algorithms, including FFTW try to avoid the bit-reversal all
together by doing in-place algorithms within their FFTs. We
therefore motivate our work by showing that for FFTs of up
to 65.536 points, a minimally tuned Cooley-Tukey FFT in
C using our bit-reversal algorithm performs comparable or
better than the default FFTW algorithm.

In this paper, we present an extremely fast linear bit-
reversal adapted for modern multithreaded architectures.
Our bit-reversal algorithm takes advantage of recursive
calls combined with the fact that it only generates pairs
of indices for which the corresponding elements need to be
exchanges, thereby avoiding any explicit tests. In addition
we have implemented an adaptive approach which explores
the trade-off between compile time and run-time work load.
By generating look-up tables at compile time, our algorithm
becomes even faster at run-time. Our results also show
that by using more than one thread on tightly coupled
architectures, further speed-up can be achieved.

1. Introduction

Bit reversal (or shuffle) algorithms are an essential part of
several Fast Fourier Transform (FFT) algorithms, including
the original Cooley-Tukey FFT [8], [4]. Other applications
include image transposition and generalized sorting of mul-
tidimensional arrays. Like the FFT, bit-reversal has been
studied extensively in the literature. A nice summary looking
at 30 methods for bit-reversing an array on uniprocessors
was done by Karp in 1996 [16]. Here, Elster’s linear
algorithm [1] was shown to be the fastest, beating algorithms
proposed by [10], [11], [12], [17], [14], among others.

The bit-reversal algorithm presented in this paper is,
like Elster’s original algorithm, a linear O(N) algorithm,
but based on improvements suggested by Huff and Elster
[13] and later implemented by Strandh and Elster [2]. By
extending this algorithm with an adaptable scheme, we show

that combining our resulting efficient implementations with
a fairly straightforward Cooley-Tukey FFT, we can achieve
results comparable to or better than the default FFTW [3].

2. Background and Related Work

The naive approach to bit reversal, such as the one used
by the FFT algorithm in [18], is O(NlogN), for generating
the bit-reversed sequence of N numbers. A typical approach
is here to loop from 0 to N-1 and for each iteration compute
the bit pattern corresponding to the reversed loop variable.

A slightly better approach is to keep a count of a binary
number corresponding to the bit-reversed version of the loop
variable, and then for each loop iteration, use binary arith-
metic to increment the bit-reversed number. Before swapping
the corresponding elements of the array, the algorithm
performs a test to determine whether one of the numbers
(index and bit-reversed index) is greater than the other. Only
in this case are they exchanged, so N−

√
N

2 exchanges are
performed. However, all indices and corresponding indices
need to be generated and tested. Since reversing the bits of
the index is O(logN), these algorithms are still O(NlogN).

Another approach is to compute the bit-reversed index
from the normal index, which is also O(NlogN) since each
bit of the index has to be examined and put into the bit-
reversed index. However, if one uses a pre-computed table,
the overall algorithm is still O(NlogN) unless we for any
particular value of N, keep a table of size N containing a
bit-reversed value for each value of the index itself. There
are two problems with such tables. First, the tables have to
be computed. If it is computed each time an FFT is called,
nothing is gained. If it is instead computed statically, tables
for all possible Ns will need to be kept, wasting storage.
Note, however, we will be using smaller such tables in our
adaptive approach described in more detail later.

2.1. Elster’s Linear Bit Reversal Algorithm

Since Elster’s algorithm is nice and simple, yet seems to
be reinvented several times – even in recent years – less
efficiently since its original publication, we include it here.

Figure 1. Discerning the Recursive Pattern of the cks

Table 1. Factorizing r16(k)

n = 2t = 24 = 16
(k)2 k r16(k) q
0000 0 0 = 0 · 24 0000 0
0001 1 8 = 1 · 23 1000 1
0010 2 4 = 1 · 22 0100 2
0011 3 12 = 3 · 22 1100
0100 4 2 = 1 · 21 0010
0101 5 10 = 5 · 21 1010 3
0110 6 6 = 3 · 21 0110
0111 7 14 = 7 · 21 1110
1000 8 1 = 1 · 20 0001
1001 9 9 = 9 · 20 1001
1010 10 5 = 5 · 20 0101
1011 11 13 = 13 · 20 1101 4
1100 12 3 = 3 · 20 0011
1101 13 11 = 11 · 20 1011
1110 14 7 = 7 · 20 0111
1111 15 15 = 15 · 20 1111

The trick for going from an O(NlogN) algorithm to
a linear algorithm is to view the computations of a bit-
reversed index as a mapping from one sequence to another,
rather than looking at each bit of a bit-reversed number.
Elster’s algorithm was found by factoring out the bit-
reversed number sequence with powers of two. Table 1
shows how this was done for N = 16 = 2t = 24. Note
that r16(k) = ck ∗ 2t−q with ck odd, so the cks can be
generated recursively as illustrated in Figure 1. Elster’s linear
sequential algorithm follows by noticing that the 2t−q factors
follow a similar recursive pattern. Figure 2 shows an iterative
FORTRAN implementation of the resulting algorithm as
originally described in [1]. Dr. Fred Gustavson helped Elster
with this IBM 3090 encoding.

Having shown that the sequential bit-reversal takes O(N)
in an algorithmic sense, Elster showed that the constant
related to the linear factor is also quite small. By avoiding
multiplications, and only using load, store, shift, and OR-
masking, Elster ended up with the fast linear bit-reversal for
uniprocessors as seen in Figure 3. Note that this algorithm
can be further optimized by generating the first n

2 indices,

SUBROUTINE BITREV(t,c)
IMPLICIT INTEGER*4 (A-C),(a-c)
DIMENSION c(0:*)
n = 2 ** t
L = 1
c(0) = 0
DO 1 q=0, t-1

n = n/2
DO 2 j=0, L-1

c(L+j) = c(j) + n
2 CONTINUE
L = L*2

1 CONTINUE
RETURN
END

Figure 2. Linear Bit-Reversal in FORTRAN

x[0] = 0, x[1] = n/2
FOR L=2 to N-1 STEP 2:

x[L] = shift-right (x[L/2])
x[L+1] = x[L] XOR x[1]

END FOR

Figure 3. Elster’s Bit-Reversal

then the second half by flipping the least significant bits.
Unfortunately, this algorithm does use O(N) space, which

on modern architectures can have serious impact on cache
performance.

Karp [16] points out that Elster’s algorithm is an inter-
esting derivation of the one presented in [15]. This is no
surprise given that Elster showed her algorithm to Van Loan
and others right after she discovered it in 1987, and Van
Loan helped her with the MATLAB style formulation of
the algorithm [1]. It was the same year also presented at an
IBM seminar at Cornell. Elster’s algorithm was explicitly
referenced in the main text of an earlier draft of [15], but in
the final version she is referenced only as part of an exercise.

As described by Karp[16], Polge[9] proposed an algo-
rithm which did not need extra storage, but it requires more
extra computations than standard O(NlogN) algorithms.

Improvements of Elster’s original algorithm suggested by
Huff and Elster [13] and implemented by Strandh and Elster
as described in [2], reduces the use of extra storage space
to four registers. This idea is also alluded to by Karp [16].

3. Efficient Recursive Bit-Reversal

Subsection 3.1 describes the Elster-Huff-Strandh bit-
reversal algorithm [13], [2], which shuffles N elements in
less than 5N cycles. Subsection 3.2 presents an overview of
its execution, which is the basis for later discussion of our
new adaptable implementation.

3.1. The Basic Recursive Algorithm

The Elster-Huff-Strandh algorithm works by storing a pair
of values which are maintained as bit-reversed counterparts

throughout a run. This is done by performing each operation
on both values, using mirrored bitmasks to reverse their
endianness relative to each other. The masks address two
bits at a time, beginning with the MSB/LSB pair and shifting
inwards towards the middle. The choice on how to apply
the masks at each successive pair of intermediate values
depends on the values they may attain by assigning the
remaining bits in the middle. If the values are equal up to
the remaining bits in the center, their comparative values
may not yet be determined. If they differ, the greater/smaller
relation between their values will hold for any assignment
of the remaining middle bits, as bits of greater significance
have already been assigned.

Let the mutually reversed pair of values be denoted V
and V ′. With the understanding that bit masks only address
two specified bits, and that their relative shifted positions
are determined by the step at which a mask is applied, we
have 4 possible bit masks: (0 · · · 0, 0 · · · 0), (1 · · · 1, 1 · · · 1),
(1 · · · 0, 0 · · · 1), and (0 · · · 1, 1 · · · 0).

Since the application of one mask to one value uniquely
determines which must apply to the other, (V, V ′) can
undergo 4 possible modifications at each step of the al-
gorithm. The simplest case is when an already equal pair
is assigned equal masks, maintaining the equality of the
values. In this case, only (0 · · · 0, 0 · · · 0) and (1 · · · 1, 1 · · · 1)
are appropriate pairs of masks. As an example, choosing
alternating such steps for a pair of 6-bit values produces
intermediate values (V0, V

′
0) = (0......0, 0....0) from ap-

plying (0 · · · 0, 0 · · · 0), (V1, V
′
1) = (01..10, 01..10) from

applying (1 · · · 1, 1 · · · 1), and (V2, V
′
2) = (010010, 010010)

from applying (0 · · · 0, 0 · · · 0). Maintaining equality at each
step yields duplicate palindromes, which are not interesting.

The intermediate values of these cases are of greater
interest, however, as each equal pair gives a starting point
for assigning unequal mirror pairs to the middle bits. When
inequality is introduced, all 4 mask pairs become relevant to
subsequent steps. Note that applying both of the two unequal
mask pairs to a pair of equal intermediate values corresponds
to how identical pairs can be generated in opposite order.
As an example, selecting each of them as the final step
of the 6-bit example above produces (011010, 010110) and
(010110, 011010), respectively. Generating both is redun-
dant work, so we will restrict the number of applicable mask
pairs to 3 for those steps which change an intermediate
pair Vi = V ′i into Vi+1 6= V ′i+1. We arbitrarily choose
(1 · · · 0, 0 · · · 1), giving Vi+1 > V ′i+1.

These considerations imply a simple recursive statement
of the algorithm for an n-bit reversal in pseudocode, given in
Figure 4. As the pseudocode and above discussion indicate,
the algorithm demands that generated bit patterns are of
even length. Mirroring the added middle bit in an odd-
length pattern is a matter of finding the even-length pairs
of length n-1, and duplicating them with infixes 0 and 1 in
the center. This can be achieved by a constant-time extension

Input : n (even) bit pattern length
generate_pairs (0, 0, 0, 1<<n, 1)
FUNCTION generate_pairs (V, V’, step, l, r)
// l is leftmost bit of mask , r is rightmost,
// step tracks the length of the execution path
IF (step != n/2) THEN
IF (V == V’) THEN
// Intermediate values are equal still
// (0...0, 0...0) step
generate_pairs(V,V’,step+1,l>>1,r<<1)
// (1...1, 1...1) step
generate_pairs(V+l+r,V’+l+r,step+1,l>>1,r<<1)
// (1...0, 0...1) step
generate_pairs(V+l,V’+r,step+1,l>>1,r<<1)

ELSE
// Intermediate values already differ
// (0...0, 0...0) step
generate_pairs(V,V’,step+1,l>>1,r<<1)
// (1...1, 1...1) step
generate_pairs(V+l+r,V’+l+r,step+1,l>>1,r<<1)
// (1...0, 0...1) step
generate_pairs(V+l,V’+r,step+1,l>>1,r<<1)
// (0...1, 1...0) step
generate_pairs(V+r,V’+l,step+1,l>>1,r<<1)

END IF
ELSE
IF (V != V’) THEN
// Completed V and V’ in n/2 steps
output (V, V’)

END IF
END IF
END FUNCTION

Figure 4. Recursive Statement of the Basic Algorithm

of the work involved in applying final results. Treating this
otherwise trivial case can only make the presented algorithm
less readable, so it will not be discussed further here.

3.2. Recursive Computation Tree

The pseudocode in Figure 4 proceeds by an exhaustive
depth-first backtracking trace of a tree where the interesting
pairs are generated at the leaf nodes. The structure of this
tree features a set of nodes of degree 3 at the upper levels,
corresponding to the two steps which produce equal interme-
diate values, and the one step which introduces inequality.
Subtrees below the former cases retain the same structure,
while subtrees below the latter have constant degree 4,
with one step for each possible combination of masks. An
example of the structure for a 4-bit reversal is given in
Figure 5. Note that for the sake of simplicity, the pseudocode
implies that traversal proceeds to the bottom even in the
case where equality is retained throughout, filtering the
output where the final results are equal. These cases are
marked with parenthesized pairs in Figure 5. Letting the
traversal proceed this far is redundant work, which can easily
be omitted by splitting the two phases of recursion into
separate, dedicated functions, and halting the recursion of
the equal case one stage before completion.

Additionally, straightforward recursive implementation

Figure 5. 4-bit Reversal Computation Tree

utilizes the run-time stack to store the state of computation
for backtracking; as pointed out by Strandh and Elster[2],
this state information can be retained in global variables by
reversing each mask operation after call return instead. This
can eliminate the need for establishing a stack frame for
every function call, reducing the workload per step to a small
number of shift, add and jump operations, and avoiding
the memory traffic cost potentially caused by recursion. It
also creates a sequential dependency between function calls,
making it difficult to parallelize such an implementation.

4. Application to the Fast Fourier Transform
on Modern Architectures

A common use of bit-reversal permutations is as a pre- or
post-processing step to the Cooley-Tukey Fast Fourier Trans-
form [8] [4], which computes its results in digit-reversed
order. The algorithm achieves its favorable asymptotic time
complexity by expressing an N-point transform value in
terms of two N

2 -point transforms (odd and even terms),
suggesting a computation tree which may be approached
in both depth-first or breadth-first manners. The depth-first
approach favored by the highly efficient FFTW library [3]
lends itself to recursive statement, and has the side-effect of
implicitly reordering output during the computation as each
partial transform is completed before proceeding. The FFTE
library [6] also orders output implicitly, applying autosorting
FFT on small partial transforms. Textbook implementations,
on the other hand, often favor a breadth-first approach [7],
which results in the need for a separate reordering phase
which restores the output to natural order.

The existence of efficient FFT libraries which do not
require a bit-reversal phase [3] [6] makes it appropriate to
question whether bit-reversal algorithms have any significant
practical mandate. This section argues that they do, by
describing a prototype breadth-first FFT implementation
with bit-reversal, measuring its performance, and outlining
its suitability for multi-core processors.

4.1. CT-FFT Implementation

Our tested implementation was initially written as an
in-place 1-dimensional breadth-first FFT, similar to the
FORTRAN routine given in [4]. This program is a triply
nested loop, ordering the computation by the size of partial
transforms, next by sequence of applicable twiddle factors,
with an innermost loop generating the indices of pairs and
applying butterfly operations.

Initial runs using the -O2 optimization flag of gcc
were verified to produce correct results. They also indicated
that the cost of complex multiplications in the innermost
butterfly operations was reduced by compiler optimizations
when multiplying real and imaginary components separately.
Further improvements were made by separating the initial 2-
point transform iteration into a single pass, thereby reducing
the expression for each pair of values to additions.

In order to break sequential dependencies and improve
locality, memory usage was extended to include workspace
equal to the transform size N . This permits the butterfly
operation to store the even and odd partial transforms
sequentially in separate arrays, unifying them with a single
sequential copy operation between stages. This uses an extra
N
2 space, and reorders values throughout the computation

such that the inputs to each butterfly in a phase are stored
consecutively. With this improvement in memory locality, it
is beneficial to reorder the innermost loops to one sequential
pass over the intermediate values instead of ordering it
by generating applicable twiddle factors on the fly. The
remaining N

2 workspace was used to precompute a lookup
table of these factors, as half of them are used in more
than one stage of the computation. Finally, the bit-reversing
stage included by Cooley et. al.[4] was replaced with the
optimized Elster’s algorithm described in Subsection 3.1.

It should be noted that none of the FFT optimizations
are particularly novel: the benefits of substituting simpler
arithmetic operations are all but universally recognized,
and the locality improvement from reordering intermediate
values is mentioned by Frigo and Johnson[3]. The purpose
of describing our test program in detail is to illustrate that
its simplicity would permit most programmers to create a
similar implementation with little effort.

4.2. Test Results and Discussion

Timings for even powers of 2 from 28 through 218 are
given in Figure 6. Reported results were collected from
test runs on AMD Athlon64 and Intel Core 2 architectures.
Measurements are median values from 11 batches of 25-
run averages. Sample size was chosen for quick execution,
while producing repeatable results in the presence of OS
jitter and minimal background load. Testing was done using
the ESTIMATE planner of FFTW[3], and regular native C99

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 100 1000 10000 100000 1e+06

T
im

e
[s

]

Size [points]

FFTW, Core 2
CT-FFT, Core 2

FFTW, Athlon64 X2
CT-FFT, Athlon64 X2

Figure 6. Even Power-of-Two FFT Timings on Athlon64
and Core 2

complex arithmetic in our CT-FFT implementation. ESTI-
MATE mode causes FFTW to plan based on the number of
operations, as opposed to tuning wrt. timings from a specific
processor. The optimizations of our implementation are
similarly generic, relying only on the principle of locality.
While benchmarking the full potential of FFTW requires its
PATIENT planning mode and multithreaded execution, such
a comparison would also require similar tuning capabilities
in our prototype, leading to a significant development effort
beyond the scope of this work. Our results are therefore
not intended to show peak achievable FFT performance on
the target platforms, but merely to argue that bit-reversing
breadth-first FFT approaches may still have applications.

The most notable feature of Figure 6 is the transition
which occurs in the last two measurements (N = 216,
N = 218), where the relative performances of our imple-
mentation and the FFTW on Athlon64 trade places in favor
of FFTW. This can be explained by the transition between
transform sizes which fit in the 256KB level 2 cache of
the test processor. Comparing this with the Core 2 results,
the test processor featured a 6MB L2 cache, in which all
test cases fit comfortably. The resulting performance figures
remain relatively close to each other on this architecture.

It is not surprising that the memory wall has a significant
impact on an algorithm featuring a separate bit-reversal
phase. The algorithm outlined in subsection 3.1 indicates
a negligible arithmetic intensity (a handful of shifts and
additions per mutually reverse pair), while the resulting
memory traffic when executing a shuffle is bound to display
poor locality: ordering the swap operations by the bits of one
word will create an access pattern which alternates between
upper and lower halves of the address space of the other.

What is interesting to note is that the performance gap
between computation and memory access is sufficiently

Figure 7. 4-bit Reversal Computation Tree, Last Stage
Tabulated

closed already at the L2 cache level that this effect becomes
insignificant, even lending a slight performance edge to our
simple prototype implementation on the Athlon64. This ob-
servation is of particular importance to multi-core processor
design, as L2 cache size has displayed considerable growth
in recent hardware generations, and contemporary multi-core
architectures feature large L2 caches shared between multi-
ple cores. This suggests that high-performance parallel FFT
solvers for in-cache transforms may benefit from optimized,
threaded bit-reversal.

5. Parallel Implementation on Multi-Core

Subsection 5.1 describes how a tradeoff between lookup
table size and run-time computation forms a performance
parameter which we target for parameterized adaptation[5].
Subsection 5.2 describes how this strategy is further ex-
ploited in our parallel implementation.

5.1. Parameterized Adaptation

The simplest strategy for implementing an N-element
shuffle is through using a lookup table. As the bit-reversed
pairs for a given pattern length are immutable, the pairs
can be pregenerated once and for all using even the trivial
algorithm which counts from 0 to N −1 and reversing each
number bit by bit. When such a computation completes, its
result can be stored in an array, reducing the work of sorting
in bit-reversed order to a sequence of memory reads. Note
that terminating recursion with s stages remaining means
that the computation may be cut short along a path in the
tree both with and without equality being preserved at the
last intermediate stage. This means that the lookup table
must contain tuples for equal pairs also, but taking care to
order the lookup table with greater-than tuples collected at
one end allows table access to proceed sequentially. Figure
7 shows this for a 4-bit reversal, with 1 stage tabulated.

The most obvious drawback of this strategy lies in the size
of the table required. The table size grows linearly with input
size, effectively doubling the memory requirement of the

array to be sorted. In addition to the potentially prohibitive
storage requirement for large lookup tables, the relative
costs of replacing a number of computational operations
with memory transfers are not obvious with the non-uniform
access times introduced by hierarchically organized memory
systems. As witnessed in Figure 6, the cost of accessing a
cached memory element can significantly reduce the impact
of a program’s memory access pattern at best, but caching
both a large lookup table and an equally large array of data
to be shuffled will either cause memory traffic, or reduce
the size of admissible problem sizes by at least 1

2 .
Noting that the efficiency of a lookup table is strongly

tied to its size, we expect a given processor to provide
performance improvements in return for using lookup tables
only up to a certain table size, determined by the balance of
costs between its cache/memory access and computational
operations. As these properties vary even between revisions
of a single processor model, it is desirable to parameterize
programs with respect to lookup table size, to simplify
performance tuning for a specific machine. The idea tested
in this work is to combine moderately sized tables with the
recursively defined algorithm, exploiting the fact that the
middle bits of intermediate pairs are undefined at the upper
levels of the computation tree. Any number of middle bits
can be precomputed into a set of bit masks, and recursion
can end when it reaches the first pair of bits for which a
mask has been computed. This replaces the lower levels of
the recursion tree with a linear loop accessing a precomputed
set, giving some control over the balance between table
lookups and computation. Our expectation is that this will
allow table size to be empirically adjusted to a processor’s
optimal point for table size vs. performance benefit.

5.2. Thread-level Parallelism

A side effect of tabulating a set of pregenerated masks
is that it suggests a simple approach for thread-level paral-
lelism. The table of masks which applies to the interior of the
patterns is accessed in a read-only manner when it has been
generated, which lets it be shared between cores without
contention. This suggests a parallelization approach where
the beginning and end bits of patterns can be generated on
the fly, and cutting off recursion, reducing the remaining
work to the sequential masking of all pregenerated table
entries for the middle bits. The following subsections report
performance figures collected from an implementation which
is parameterized to perform this cutoff for a table of bit
patterns of length 2s, with s indicating how many levels of
recursion have been cut short as in Figure 7. Single-thread
and 2-thread versions are tested. The single-thread version
alters its execution to an iterative application of all masks
at the cutoff level. The 2-thread version features a master
thread to generate the outer bits, dispatching the remaining
work to a workpool where it is picked up by another thread

which applies the tabulated values. The master thread joins
the workpool when all pattern exteriors have been generated.

6. Performance Measurements

6.1. Experimental Methodology

Our tests were run in batches of 100 consecutive execu-
tions, and median timing values were collected to filter the
offset from occasional background load interference. Time
is reported in terms of clock cycles per shuffled element,
and is normalized by a factor 1

N , in order to present the
relatively large range of problem sizes on comparable terms.
The program performed a full bit-reversal permutation of a
complex number array, like the input to the FFT program
in Figure 6. The parameter space is explored from array
sizes 28 through 220, with cutoff values from s = 0 through
s = N

2 − 1, and single vs. two-thread versions are covered.
The omission of the cutoff value s = N

2 is made for
the sake of presentation clarity. Our results already show
that the table approach has reached diminishing returns by
s = N

2 − 1, so the inclusion of the final possible table size
only obscured figures by requiring graphs with larger scale.

As the Core 2 test processor actually featured 4 cores,
preliminary tests were performed using 4 threads, but per-
formance results did not differ noticeably from the 2-thread
version. This is probably a reflection of the fact that the L2
caches of the processor are shared between pairs of cores.

6.2. Results and Discussion

Our results are presented in Figures 8, 9, 10, and 11.
The first thing to notice in the presented results is that

they verify our expectation of an optimal table size for
various choices of s, which marks a turning point for where
the precomputed table strategy yields performance benefits.
This effect is most clearly visible in the single-thread results
(Figures 8 and 10), but it is present also in the 2-thread
version. To highlight this point, the 18-bit reversals for both
2-thread test sets are plotted together in Figure 12. The
range of s is cut down in this figure to show the area where
the optimal value is found. Figure 12 also makes it visible
that the optimal table size varies not only with problem
size, but also with the test processor. This justifies that
code which admits a range of table sizes permits processor-
specific tuning which can be automated.

Another notable result is that while cache size limitations
result in very pronounced performance gaps in the single-
thread results of Figures 8 and 10, the 2-thread results in
Figure 9 and 11 do not display this sensitivity. This can be
attributed to the fact that in the single thread implementation,
execution will stall every time a memory request must be
satisfied. This can account for substantial overhead due to
the somewhat erratic access pattern of the swap operations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8 9

cy
cl

es
 /

 e
le

m
en

t

s [2s reverse bits tabulated]

N=8
N=10
N=12
N=14
N=16
N=18
N=20

Figure 8. Single Thread Performances on Athlon64

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

cy
cl

es
 /

 e
le

m
en

t

s [2s reverse bits tabulated]

N=8
N=10
N=12
N=14
N=16
N=18
N=20

Figure 9. 2-Thread Performances on Athlon64

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9

cy
cl

es
 /

 e
le

m
en

t

s [2s reverse bits tabulated]

N=8
N=10
N=12
N=14
N=16
N=18
N=20

Figure 10. Single Thread Performances on Core 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9

cy
cl

es
 /

 e
le

m
en

t

s [2s reverse bits tabulated]

N=8
N=10
N=12
N=14
N=16
N=18
N=20

Figure 11. 2-Thread Performances on Core 2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.5 1 1.5 2 2.5 3 3.5 4

cy
cl

es
 /

 e
le

m
en

t

s [2s reverse bits tabulated]

N=18, Athlon64
N=18, Core 2

Figure 12. 2-Thread Performances for N=18, both
architectures

The threaded version will not suffer from this to the same
extent, since further partial patterns can be generated inde-
pendently of the completion of each swap.

Figure 12 also shows that although the optimal table size
for the compared processors differs between them, both
cases provide the best tradeoff in exchange for reasonably
small tables. This suggests that modern processors with large
caches space can use them for storing lines containing the
exchanged values themselves. This means that a separate bit-
reversal phase may fill the cache before the computation of
the transform, compensating in some measure for the time
spent extending the overall computation with an additional
phase. Establishing the magnitude of this effect would
require profiling work beyond the scope of this paper, but it
is a relevant consideration for future experiments.

Finally, our results indicate that the division of labor

between two threads substantially speeds up the bit-reversal
algorithm in tightly coupled scenarios. While the parallel
scalability of the approach is likely to remain limited,
this still suggests that its application to in-cache Fourier
transforms is an interesting direction for future research, sug-
gesting a threaded implementation for shared-cache multi-
core processors as a natural first step.

7. Conclusions

On modern architectures, a diverse range of performance
parameters can be found even between different processor
models of a single architectural family. This creates a grow-
ing need for software to be adaptable to a range of hardware
configurations, in order to provide portable performance.

Our adaptable bit-reversal implementation finds an op-
timal tradeoff between precalculated results and run-time
computation on modern multithreaded architectures. This
is motivated by the observation that a breadth-first FFT
with a separate bit-reversal phase can provide competitive
performance results for in-cache transform sizes.

The ideal table size for our test processors turns out to
be small, which indicates that the strategy is well suited for
coupling with further exploration of FFT optimizations on
an appropriate scale. Our implementation is also suited for
parallel implementation, displaying favorable speedup when
distributed across 2 tightly coupled cores. We expect similar
speedup for 3 or more cores, as long as the cores share cache.

8. Future Work

A natural extension to this work is to examine the rela-
tive costs of different FFT implementations for cacheable
problem sizes more thoroughly. The coarse tests which
justify a more sophisticated bit-reversal implementation in
this work indicate that the relative rates of computation and
communication on the chip-local level presents a different
performance tradeoff to parallel implementations than larger
problems, making it interesting to explore the limits of
various algorithms on this level.

Finally, we note that finding the ideal table size for a
given processor model is easily quantified, and would make
a suitable candidate for an automated implementation which
adapts the algorithm to the processor it is being generated for
at compile time. One extension of our lookup table method is
that recursion may also be cut off by calling a pregenerated
subroutine with bit masks stored in instruction operands. In
the terminology of the AEOS approach described by Whaley
et. al.[5], this would correspond to source code adaptation,
as opposed to the parameterized adaptation described here.
Such an approach would utilize instruction cache, which
may lead to different results. An optimal combination of
these two methods is not obvious, and therefore presents an
interesting parameter space to explore.

References

[1] A. C. Elster, Fast Bit-Reversal Algorithms, IEEE International
Conf. on Acoustics, Speech, and Signal Processing 1989
(ICASSP’89), Vol. 2, pp. 1099–1102, May 1989.

[2] R. Strandh and A. C. Elster, A Very Efficient Linear-time
Logarithmic-Space Bit Reversal Algorithm, Center for Numer-
ical Analysis, Tech. rep. no CNA-288, The University of Texas
at Austin, Oct. 1998

[3] M. Frigo and S. G. Johnson, The Design and Implementation
of FFTW3, Proc. IEEE, Vol. 93, No. 2, pp. 216–231, Feb. 2005

[4] J. W. Cooley and P. A. Lewis and P. D. Welch, The Fast
Fourier Transform and Its Applications, IEEE Transactions on
Education, Vol. 12, No. 1, Mar. 1969

[5] R. C. Whaley and A. Petitet and J. Dongarra, Automated
Empirical Optimization of Software and the ATLAS Project,
Parallel Computing, Vol. 27, 2001

[6] D. Takahashi, A Blocking Algorithm for Parallel 1-D FFT
on Shared-Memory Parallel Computers, in LNCS 2367, J.
Fagerholm et. al., Ed. Springer-Verlag, 2002, pp. 380–389

[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Addison-Wesley, ISBN 0-201-60078-1, 1992

[8] J. W. Cooley and J. W Tukey, An Algorithm for the Machine
Calculation of Complex Fourier Series, Math. of Comput., Vol.
90, pp 297-301, Apr. 1965.

[9] R. J. Polge et al., Fast Computation Algorithms for Bit Rever-
sal, IEEE Trans. on Computers, Vol C-23, No. 1, Jan. 1974.

[10] Gold and C. M. Rader. Digital Signal Processing, McHraw-
Hill, 1969 (reprinted 1983).

[11] D. M. W. Evans, An Improved Digit-Reversal Permutation
Algorithm for the Fast Fourier and Hartley Transforms, IEEE
Transactions on ASSP,Vol. 35, pp 1105-1125, Aug. 1987.

[12] C. S. Burrus, Unscrambling for Fast DFT Algorithms, IEEE
Transactions on ASSP, Vol 36, pp. 1086–1087, Jul. 1988.

[13] R. Huff, Bit Reversal in Linear Time, Course presentation
notes, Computer Science Dept., Cornell University, 1990. http:
//www.idi.ntnu.no/∼elster/doc/huff-notes.pdf

[14] J. Jeong and W. J. Williams, A Fast Recursive Bit-Reversal
Algorithm, IEEE International Conf. on Acoustics, Speech and
Signal Processing, Apr. 1990.

[15] C. F. Van Loan, Computational Frameworks for the Fast
Fourier Transform, SIAM Philadelphia, PA., 1992.

[16] A. H Karp, Bit-Reversal on Uniprocessors, SIAM Review,
Vol. 38, No. 1, pp. 1–26, 1996.

[17] J. J. Rodriguez, An Improved Bit-Reversal Algorithm for the
Fast Fourier Transform, IEEE International Conf. on Acous-
tics, Speech, and Signal Processing 1988 (ICASSP’88), pp.
1407–1410.

[18] W. H. Press. and B. P. Flannery and S. A Teukolsky and
W. T. Vetterling, Numerical Recipes in C, Second Edition,
Cambridge University Press, 1992.

