High-Performance Computing:
Past, Present and Future

Anne C. Elster!

Norwegian University of Science and Technology (NTNU),
NO-7491 Trondheim, Norway
elster@computer.org,

WWW home page: http://www.idi.ntnu.no/&lster

Abstract. Although the power of ”yesterday’s” supercomputers is now
available on the desktop, our yearning for even more computational
power to solve even larger problems continues to grow. This paper cov-
ers the highlights of some of the author’s High Performance Computing
(HPC) experiences dating back one of the first commercial supercom-
puters — Intel IPSC hypercube in the mid-80’s — through today where
her current HPC work focuses on cluster computing using MPIL.

The author will also give some of her prediction on where she thinks the
HPC field is heading in the future. Her ” Ant Theory” (even sugar ants
display more complex planning and data processing than any human-
built system of today) tells us we have a long way to go. Through newer
technologies such as nanotubes and Bose-Einstein condensates, our fu-
ture should even prove Moore’s law wrong, and let the HPC field tackle
even bigger and more complex problems.

1 Introduction

Bell and Gray recently wrote an article [1] on what they think is next in HPC
that includes a nice overview of the early days of HPC including pioneering
work by the authors, Cray and others. My high-performance computing (HPC)
experiences date back to when I joined Cornell University in New York State,
USA, about the time they established their super computing center known as
”The Theory Center” in the mid 1980’s.

Although as an undergraduate I had envisioned focusing on computer ar-
chitecture, I was a good match for parallel computing since back then it was
especially useful to know a lot about hardware when developing parallel pro-
grams since the systems were so crude. I also took several computer science
and mathematics classes in addition to my standard undergraduate curriculum
in computer engineering. These classes included linear algebra with APL pro-
gramming and writing a program simulating an HDLC layer protocol (acks and
nacks) using Concurrent Pascal as part of one of my computer network classes,
both which proved very useful when I later got into parallel programming.

My first task in graduate school, outside classes, was a Master’s project [7]
that involved porting a Parallel Pascal translator from a VAX 780 to an IBM

RX where I had to partition the code over several memory segments in order for
it to fit. In retrospect, I think of this as my first experience with caching, only
that it was on a slightly different scale.

The next section describes some of my graduate work on hypercubes. I also
extended the work on hypercube algorithms in collaboration with Hungwen Li
of IBM looking at a toroidal networks of processors [3].

My graduate work on HPC systems also included multitasking across several
IBM3090s at IBM Yorktown Heights, [8] and as part of my dissertation work,
writing particle simulations for Kendall Square Research (KSR) machines in the
early 90’s [9]. Some of the highlights from my PhD work will be covered in
Sections 3-5.

Section 6 discusses current work related to cluster computing, MPI and nu-
merical libraries, PETSc in particular. I discuss grid computing in Section 7 and
Sections 8 and 9 includes several of my predictions for the future computing
regarding where I thinks the HPC field is heading. Finally, I end with my ” Ant
Theory” of Section 10 that tells us we have a long way to go.

2 Hypercubes and PBLAS

The following summer (1986), I got to work on the first IPSC (Intel Personal
Super Computer) hypercube outside the US at Christian Michelsen’s Institute
(CMI) in Bergen, Norway, where my first task was to write a matrix-vector
multiplication routine for their computational library aimed at petrochemical
related codes. [2]

The Intel hypercube was a distributed memory machine that had full hyper-
cube connectivity (i.e. the number of connections per node increases logarith-
mically with the number of processors.) This was done so that communication
costs could be minimized, but of course its physical wiring limitations for sys-
tems with more than a few hundred processors. My computer science training
made me quickly realize that that matrix-vector multiplication could be done
on a hypercube very efficiently with respect to communication by mapping or-
thogonal tree structures on to the hypercube links using Gray codes [2]. Good
hardware and system knowledge was also important since our debugging tools
were primitive (read:print statements and watching processor LED lights form
tree patterns).

I also did some work jointly with Uyar and Reeves on how to redistribute
data on hypercube networks when processor(s) fail and its impact on algorithm
efficiency [4].

I then did a lot of work on parallelizing Basic Linear Algebra Subroutines
(BLAS) for the hypercube with an aim towards a standard subroutine inter-
face calling sequence for both the parallelized BLAS and their communication
routines [5]. Like many of my colleagues, I was particularly careful to reduce com-
munication overhead by using the extra communication links that hypercubes
provided.

These libraries were later forwarded to Intel and also used in a parallelization
effort of a charge transport simulation code jointly with Xerox [6]

Communication overhead was easily traced on early hypercube models since
it did not overlap at all with computations. This, of course, changed when sep-
arate communication processors were introduced on later models, and one then
had to see if one could ”eliminate” communication costs by doing alternate com-
putations as one waited for data from other processors. In practice, this was very
hard to achieve since communication times were orders of magnitude larger than
computations speed.

Unfortunately, this is even more true today both for distributed systems
and with respect to accessing different levels of the memory hierarchy on single
processor or shared memory systems.

3 Modularizing Large Codes

My dissertation work [9] involved modularizing and implementing a functional
parallelized particle code. Particle simulations are fundamental in many areas of
applied research, including astrophysics, plasma physics, semiconductor device
physics, and xerography. These simulations often involve tracking of charged
particles in electric and magnetic fields.

At the time of my dissertation, these simulations had, due to their high de-
mand for computer resources (especially memory and CPU power), been limited
to investigating local effects — typically using up to an order of 1 million particles.
By developing novel algorithmic techniques to take advantage of modern paral-
lel machines such as the Kendall Square Research (KSR) machine and employ
state-of-the-art particle simulation methods, my PhD work targeted simulations
with 10-100 million particles in order to study interesting larger-scale physical
phenomena. Other numerical codes that target parallel computers would also
benefit from many of the techniques developed in this work.

Our application fell in the category of collisionless systems, where each simu-
lation particle, often referred to as a “superparticle”, represents millions of phys-
ical electrons or ions in a collisionless plasma. The numerical techniques used
usually involve assigning charges to simulated particles, solving the associated
field equations with respect to simulated mesh points, applying the field solution
to the grid, and solving the related equations of motion for the particles. Codes
based on these numerical techniques are frequently referred to particle-in-cell
(PIC) codes.

We used a 2-D FFT-solver (assuming periodic boundaries) as the field solver,
but also considered other techniques, including finite difference (e.g. SOR). A
leapfrog particle pusher was used to advance the particle positions and velocities.
However, our choices of particular numerical methods were not the focus of my
dissertation work; instead, we concentrated on general approaches of how to
parallelize these methods. We also paid close attention, from the viewpoints
of memory usage and speed, to the manner in which these parallelized
methods interact with other sections of the code.

The primary goal was hence to investigate how best to incorporate parallel
methods to invoke numerical algorithms with an eye towards maintaining their
applicability to more sophisticated PIC methods to be developed in the future.

Our test code was implemented in C using Pthreads on the KSR1. Optimiza-
tions were guided by the methods dictated by our analytical and experimental
results. The dissertation included several graphs depicting the performance of
codes using replicated grids (fixed particle partitioning), a partitioned grid (par-
ticles move among processors), and adaptive methods. These results were then
compared with our analyses.

3.1 Threads vs. Processes

One of the nice things about the KSR and other parallel systems in the 1990’s
was that they started to use threads (light-weight processes) rather than fork
regular (heavy-weight) processes. This meant a lot of operating system (OS)
kernel overhead was now avoided in parallel programs. A further discussion of
thread vs. processes is discussed in the intro of my PhD thesis [9].

4 Testing Large Codes

In addition to the standard test one would do for each numerical module as
a computer science/math person, I took the testing of my PIC code one step
further by plugging in real physics constants and running the code with initial
conditions leading to known phenomena.

One such test involved the plasma frequency which is are observed in real
plasmas. To get a feel for where these oscillation stem from, one can take a look
at what happens to two infinite vertical planes of charges of the same polarity
when they are parallel to each other and occur repeatedly as in periodic systems.

In order to verify that our code actually would behave according to the
physical laws, an in-depth analysis of one general time step was used to predict
the general behavior of the code. The analytic derivations provided in Appendix
B of the thesis proved that our numerical approach indeed produces the predicted
plasma frequency which in turn was shown in our simulation results.

A detailed description of the physics behind plasma frequencies and how we
set up our tests were described in the thesis [9].

4.1 Two-stream Instability Test

To further test whether our codes were able to simulate physical systems, we also
performed a two-stream instability test [10]. In this case, two set of uniformly
distributed particles (in our case 2D particle grids) are loaded with opposite
initial drift velocities. Detailed knowledge of the non-linear behavior associated
with such simulations was developed in the '60s.

Systems that simulate opposing streams are unstable since when two streams
move through each other one wavelength in one cycle of the plasma frequency,

the density perturbation (bunching) of one stream is reinforced by the forces due
to bunching of particles in the other stream, and wvice versa. The perturbations
hence grow exponentially in time. In order for this test to work, care must
be taken in choosing the initial conditions. In our case, we chose to test each
dimension separately using an initial drift velocity vgrif¢ = wp * L, for half the
particles and vgp;ft = —wjp * L, for the other half of the particles.

Our code was able to capture the characteristic non-linear “eyes” associated
with two-stream instabilities. Our time-step was set to 1.5 - 10~7. The “eyes”
appeared within 10 time-steps of the large wave appearing. Notice that these
are distance versus velocity plots showing 1D effects. We hence also obtained
similar plots for a corresponding test of and v, to check the second dimension.

5 Cell Caching

Many scientific codes access data grid cell (squares, cubes, etc) or stencils/templates
rather than by vectors. However, these objects are typically stored and accessed
either column or row-wise (or block-column or block-row-wise) using the stan-
dard array indexing features provided by the programming language.

My dissertation work showed that for systems with memory hierarchies, es-
pecially systems with caches, these storage schemes are not necessarily the best
for these kinds of codes.

For instance, in 2-D PIC (Particle-in-Cell) Codes when the particles’ charge
contributions are distributed to the grid points (scatter) or field contributions
from the grid points are collected at each particle (scatter), each particle will be
accessing the four grid points of its cell (assuming a quadrangular grid). If the
local grid size exceeds a cache line (which they invariably do since cache lines
tend to be very small compared to system grids), and the traditional column
or row oriented storage of the grid is used, each particle will need at least two
cache lines to access the four grid points it is contributing to.

Since typically a significant overhead is paid for each cache hit, we proposed
that one instead stores the grid hierarchically according to a cell caching scheme.
This means that instead of storing the grid row or column-wise during the par-
ticle phase, one should store the grid points in a 1-D array according to small
sub-grids that would fit into one cache-line. For 3-D codes, sub-cubes should be
accommodated assuming the caches are large enough. In other words, the cache
use should try to reflect the access pattern these codes use.

However, even on systems where the cache line is only 128bytes, and hence
can hold a maximum of 16 64-bit floating point numbers, which means each
cache-line can accommodate 8X2 or 4x4 sub-grids, one can still get significant
improvements with respect to cash hits through cell cashing. Assuming one used
the 4x4 sub-grids (which would minimize the border effects) the traditional col-
umn/row storage approaches would use 2 x 16 cache-hits whereas cell-caching
would use [(3x3) * 1] + [(3+3)*2] 4+ 4 = 25 cache-hits, an improvement of more
than 25%!

To access array element A(i,j), when the cache size is CXC, we need:
A(i, §) = A[((i/C) % (C? % C?)) + ((j/C) * C*) + (jmodC) + (imodC) x C].

Although these index calculations require more operations than the typical
A(i,j) = A[i * Ny + j], most of these operations can be performed by simple
shifts when C is a power of 2. Compared to grabbing another cache-line which
accesses a different level of the memory hierarchy, this is still a negligible cost.

Notice that this cell-caching technique can be applied recursively to systems
with a memory hierarchy. For larger caches or intermediate memory this tech-
nique may also extended to any finite dimension. Therefore, both parallel and
”serial” cell codes for any system with a hierarchical memory would benefit from
using this alternative block storage scheme.

6 Modeling Codes with Memory Hierarchies

When moving from sequential computer systems to high-performance worksta-
tions with caches (hierarchical memory) and parallel systems with layered dis-
tributed memory, data locality becomes a major issue for most application. Since
intermediate results and data need to be shared among the processing elements,
care must be taken so that this process does not take an inordinate amount of
extra run-time and memory space. This is as true today as it was in the early
1990’s.

In distributed systems, communication overhead is typically modeled as de-
scribed by Hockney and Jessup [12]: teomm = alpha + N x beta, where t.omm 1s
the communication time for an N-vector. Here alpha is the start-up time and
beta a parameter describing the bandwidth on the system.

In my dissertation, [9] this model was extended for hierarchical memory sys-
tems and systems with local as well as global memory so that one can better
understand the impact of the layered memory and thereby take advantage of the
combined speed and memory size offered by these systems.

For instance, on hierarchical memory systems, t.omm will be a function of
which levels of the memory hierarchy are accessed for the requested data. Con-
sider a model with only two hierarchical parameters, t;mem, which denotes time
associated with local memory accesses and tgmem, time associated with global
memory, then:

teomm = timem (N) + tgmem (M)

Note that ¢, here covers both items within a cache-line and items within
local memory. For a vector of N local data elements, t,em (V) is hence not a
simple constant, but rather a function of whether the individual data elements
are 1) within a cache-line, 2) within cache-lines in cache and 3) in local memory.
Similarly, tgmem is a function of whether a vector of M data elements accessed are
all within 1) a communication packet, 2) in some distant local memory, and/or
3) on some external storage device such as disk.

We then used this model to determine the performance complexity of three
2-D Particle-in-Cell (PIC) algorithms:

1. a serial algorithm with cache,

2. a parallel implementation using particle partitioning with replicated grids
and global sums, and

3. a parallel implementation using grids partition with automatic partial par-
ticle sorting.

Finally, we verified these theoretical results by comparing them to timing results
obtained on a distributed shared memory machine.

Our results showed that given that one is limited in how much fast local cache
memory one can have per processor, the serial code not only suffers from having
only one processor, but also suffers when the data sets get large and no longer fit
in cache. We also showed that the replicated grid approach would suffer from the
grid-sum computation and communication overhead for requiring large grids on
a large number of processors. We also showed that the grid partitioning approach
would clearly be hampered for load-imbalanced systems when max(local no. of
particles) >> No. of particles/No. of processors for a good portion of the time-
steps.

Ways to compensate for this imbalance by re-partitioning the grid as well as
how to apply this model to other large scientific codes were also discussed.

7 Cluster Computing, MPI and Numerical Libraries

This recent trend in HPC to use a network of workstations and/or PCs rather
than traditional supercomputers is gaining momentum. Although the network
speed is still slow compared to available processing speed, and implementing
distributed memory programs is generally harder than shared-memory programs,
the price and flexibility of such systems should not be underestimated. Standards
like MPT and others also make these systems worth a serious look in the coming
years.

This view was also recently echoed by Bell and Gray [1] in their Feb. 2002
article entitled ”What’s Next in High-Performance Computing”.

7.1 Distributed Memory versus Shared Memory

The primary problem facing distributed memory systems is maintaining data
locality and the overhead associated with it. This problem with parallel overhead
also extends to the shared memory setting where data locality with respect to
cache, is important. In my dissertation, I proposed that one view the KSR as
a shared memory system where all memory is treated as a cache (or hierarchy
thereof).

Shaw [13] pointed out that his experience with the SPARC-10s showed they
had an interesting property which seemed highly relevant. In order to achieve
their peak speed (17-19 MFLOPs), the data had to be be in what Sun called
the SuperCache which was about 0.5 MBytes per processor. This implies that
if you are going to partition a problem across a group of SPARC-10s, or one of
today’s PC clusters, you have many levels of memory access to worry about:

machine access on a network

virtual memory access on one machine on a network

real memory access on one machine on a network

cache access on one processor on one machine on a network

Ll

Hence, there is a great deal to worry about in getting a problem to work “right”
on clusters.

A network of workstations consequently raises a lot of issues similar to that
of the KSR in that they both possess several levels of cache/memory. To achieve
optimum performance on any given parallel system, no doubt, a lot of fine-tuning
is necessary.

7.2 MPI

My HPC experiences also include representing Cornell and Schlumberger on the
MPI standards committee in the 1990’s [11] [14]. Although not initially intended
for threads, great efforts were made by the Committee to make the standard both
thread safe and useful as a building block for library builders.

Unlike High-Performance Fortran (HPF), MPI has since evolved to become
a favored standard for both cluster computing and shared memory machines
(through OpenMPI). Although initially intended as a standard for message pass-
ing calls on commercial supercomputer systems, it now is often used on clusters
of workstations. Indeed, my own work is currently focusing on cluster computing
using MPI. One such effort is my work with Sack on speeding up MPI broad-
cast operations through multicasting which is described in another paper in this
volume [17]. I've also used MPI on clusters successfully in several class settings
when teaching students parallel programming.

7.3 PETSc

This section describes how PETSc, a versatile MPI-based software package from
Argonne National Laboratory, is being effectively used to develop, implement
and test several new iterative solvers. PETSc (Portable, Extensible Toolkit for
Scientific Computation) [15] provides several modules for solving partial differ-
ential equations (PDEs) and related problems on high-performance computers.

PETSc is a large and complex package that is known to scare off several users
for its apparent complexity and steep learning curve. However, it comes with an
extensive User Manual [15] that is very well written once one “digs” into it. The
support scripts for both the serial and parallel installations are fairly easy to
modify and work well.

PETSc consists of a suite of data structures and routines that provide the
building blocks for the implementation of large-scale application codes on both
serial and parallel computers. PETSc is still under development and currently
includes several parallel and non-linear equation solvers, unconstrained mini-
mization modules, and lots of support routines. It provides many of the mech-
anisms needed within parallel application codes including parallel matrix and

vector assembly routines. Although PETSc also support Fortran, the designer
as well as this author recommends that one codes ones routines in C or C++
for maximum flexibility and portability on high-end parallel systems.

By developing and testing new iterative methods using PETSc one can lever-
age the work put into these packages as well as easily compare ones routines
to the Krylov subspace methods already provided by PETSc such as GM-
RES, Conjugate Gradient, CGS, Bi-CG-Stab, TFQMR, Richardson and Cheby-
shev. PETSc also provides several popular preconditoners including Additive
Schwartz, Block-Jacobi, ILU, ICC, and LU (sequential only).

One of the new solvers we developed that was not previously available in
PETSc was the Complex Chebyshev Acceleration method. This method is used
when solving large linear system where the corresponding system matrices are
non-symmetric and the eigenvalues can be found within an ellipse in the complex
plane. The Chebyshev Acceleration procedure is a special case of polynomial
extrapolation.

A non-optimized complex Chebyshev code using PETSc was developed with
my help by one of my students in a graduate class in 1-2 weekend! Our codes are
still under development, so more refined results will be presented in subsequent
publications. Our related presentation at SIAM PP’01 [16] also highlights some
of this work.

I hope that the reader gets inspired by this subsection to use PETSc as a
tool to get started when developing their own implementations of research and
production code for parallel PDEs, or other codes related to PETSc.

For a list of several current projects, products, applications and tools for
scientific computing, check out the Webpage maintained by the PES (Problem
Solving Environment) group at Purdue:

http://www.cs.purdue.edu/research/cse/pses/research.html

8 Heterogeneous Clusters and Grid Computing

As clusters become heterogeneous networks of a variety of PCs, high-end work-
stations and more traditional supercomputer systems, as well as special-purpose
systems such as graphics and visualization caves, our challenges for interoper-
ability continue to increase.

There is no doubt in my mind that the computational grid where several
of such local area networks extends across the high-end backbones of the In-
ternet will provide a lot of challenges and opportunities for HPC students and
researchers. Some are already mentioned by Bell and Gray [1], others will be
discussed throughout this volume and at other related conferences.

9 Future Challenges and Processor Technologies

As can be seen from the previous sections HPC has come a long way from its
roots where monolithic computer systems sitting in a huge room and/or building

10

were used for physical simulations. The Grid and related technologies, including
wireless networks, are changing the way we think about computing.

9.1 Some ”Grander” Challenges

No doubt, we will continue to refine our physical simulations of weather sys-
tems and other "Grad Challenge problems”, however I predict we will also see
emerging problems we have yet not fully defined.

Like railway systems linked with GPS, future HPC system may be involved
in controlling cars without input from drivers after input of desired destination.
The challenges here are enormous as are the potential benefits considering how
many accidents could be avoided.

Other areas that are already receiving increased attention are the use of the
ultimate distributed processors: the Smart Cards and wireless network nodes.
One idea that has been proposed is to store biometric information such as fin-
gerprints on the cards which can then be used as a password to a wireless net, or
for other real-world identification purposes.. This case is a great example were
instead of accessing and comparing information from a huge database, one can
instead provide the clients with enough processing power and storage to retrieve
the data needed.

Security in itself also provides lots of challenges related to HPC and the
Grid, since the more we protect things, the harder it will become to make them
inter-operate.

9.2 The Wal-Mart Effect on COTS

Commercial forces such as Wal-Mart — a U.S. retailer that is bigger than Sears,
Kmart and J.C. Penney combined, according to the ”Fortune 500” — posess a
control of the IT industry that should not be underestimated. Their $4 billion
IT expenditure is predicted to influence $40 billion IT investments of suppliers
[22] and has therefore impacted the IT market more than Microsoft and Cisco
could ever hope to at this point. Wal-mart is, however, not driven by the latest
and greatest technology, but rather by an improved business model. This is,
unfortunately, not good news for HPC.

On the other hand we may see an interesting trend in high-end COTS pro-
cessors. Assuming the Wal-marts of the world continue to embrace high-end
gaming and entertainment systems, we may very well see that the processor
market going from PCs to Video-game stations where Playstation chips may
actually out-power Pentiums. In this scenario, I envision the Grid no longer as
wired high-end PC’s, but rather mostly networked video Playstation processors,
possibly wirelessly connected.

9.3 Processing Break-Throughs

I also predict that we will continue to out-shine Moore’s Law. Going from to-
day’s Pentium 4 chips with 42 million transistors using 130nm technology to

11

using emerging technologies such as nanotubes [20] made from strands of single
atoms, each a few nanometers, to make chips crammed with billions of transis-
tors, will no doubt continue to impact HPC.

Even further out we may see applications of Bose-Einstein condensates in
quantum computing and nanotechnology. Bose-Einstein condensation involves
cooling atoms to near absolute zero (0 Kelvin). The first success in this area was
done by 2001 physics Nobel laurates Weiman and Cornell who in 1995 cooled
rubidium atoms to about 50 nanokelvin (50 billionth of a degree above zero
Kelvin). A few months later 3rd winner Ketterle succeeded similarly with a
larger condensate of sodium atoms. [21]

10 The Ant Theory

Physicists thought at the turn of the 20th century that they had ”solved physics”,
but then came quantum theory. Today’s physicists no longer dare to make such
finite sounding claims, however, many scientists are starting to think that solid
state will be reaching its physical limits in the near future and hence bar further
advances in computing.

However, to those who think that getting down to the quantum level will stop
us from making any further progress in computing, I offer my ” Ant Theory”:

It stems from when I as a little girl, no more than 5 or 6 years old, used to
sit in the grass and study the little critters making their way through the world
of grass blades and debris. I was perpetually amazed at how well such tiny little
creatures could navigate so well through a terrain that seems incredibly rough
and large for their size.

Recently, I had the same exact thoughts studying some sugar ants on my
bathroom floor navigating between water drops and other obstacles sometimes
pulling object larger than themselves back to their hills: How can such a tiny
little creature see and navigate so well processing all that information in a system
so minute?

The answer to that question probably lies somewhere in biology and chem-
istry, and until we understand the connection between those fields and physics
that enables such tiny organic creatures to perform so well, we have not come
very far. However, I believe we are still a long way off from understanding what
really makes organic life tick.

Moore’s and other laws will continue to get broken.

References

1. Bell, G., Gray, J.: ”What’s Next in High-Performance Computing?” in Communi-
cations of the ACM, 45, No. 2 (2002) 91-95.

2. Elster, A.C. and Reeves, A. P.: ”Block-Matrix Operations Using Orthogonal Trees”,
Proc. of the Third Conf. on Hypercube Systems and Applications, January 19-20,
1988 in Pasadena, CA, Ed. G. Fox, ACM, pp 1554-1561.

12

3. Elster, A.C. and Li, Hungwen: ”Hypercube Algorithms on the Polymorphic Torus”,
Proc. of the Fourth Conference on Hypercube, Concurrent Computers, and Appli-
cations, March 6-8, 1989 in Monterey, CA, Vol. I, Golden Gate Enterprises, pp
309-316.

This paper was based on Cornell Computer Science TR 89-1003 and IBM Research
Report, RJ 6775, 1989 (same title and authors).

4. Elster, A.C., Uyar, M.U., and Reeves, A.P.: "Fault Tolerant Matrix Operations on
Hypercube Computers”, Proc. of the 1989 International Conf. on Parallel Process-
ing, St. Charles, IL, August 8-12, 1989, Ed. F. Ris and P. M. Kogge, Penn State,
Vol. III, pp 169-176.

5. Elster, A.C:, ”"Basic Matrix Subprograms for Distributed Memory Systems”, Proc.
of the Fifth Distributed Memory Computing Conf. (DMCCS5), in Charleston, SC,
April 9-12, 1990, Ed. D. W. Walker and Q. Stout, IEEE Computer Society Press,
pp 311-316. Received Student Paper Competition Award.

6. Elster, A.C. and Ramesh, P.S.: ”Simulation of Charge Transport Using Parallel
BLAS on the Intel Hypercube”, Xerox Internal Report X9200084, Webster Research
Center, NY, April 1992.

7. Elster, A. C.: "Porting of the Parallel Pascal Translator from VAX 11/780 to IBM-
PC/AT”. Master of Engineering Project Report, School of Electrical Engineering,
Cornell University, Fall 1986.

8. Elster, A.C.: ”Efficient Parallel Algorithms for Matrix Operations”, Master of Sci-
ence Thesis, Cornell University, Aug. 1988.

9. Elster, A.C.: ”Parallelization Issues and Particle-in-Cell Codes”, Ph.D. dissertation,
Cornell University, August 1994. Abstract at:
<http://www.englib.cornell.edu/thesesabstracts/ August94/elster.html>

10. Birdsall, C.K. and Langdon, A.B.: Plasma Physics via Computer Simulations,
Adam Hilger, Philadelphia, 1991.

11. Elster, A.C. and Presberg, David L.: ”Setting Standards For Parallel Computing:
The High Performance Fortran and Message Passing Interface Efforts”, Theory
Center SMART NODE Newsletter, May, 1993, Vol.5, No. 3, Cornell University.

12. Hockney, R.W. and Jesshope, C.R.: Parallel Computers, Adam Hilger Ltd., Bristol,
1981.

13. Shaw, J.G.: Personal communications.

14. The Message Passing Interface Standard (MPI):
<http://www-unix.mcs.anl.gov/mpi/index.html>

15. PETSc (Portable, Extensible Toolkit for Scientific Computation):
<http://www-fp.mcs.anl.gov/petsc/>

16. Elster, A.C. and Liang, C.: ”Developing and Testing Linear Solvers Using PETSc”,
First STAM Conference on Computational Science and Engineering, Washington,
D.C., Sep 21-24, 2000. <http://www.siam.org/meetings/cse00/cp25.htm>

17. Sack, P. and Elster, A.C: "Fast MPI Broadcasts with Reliable Multicasting”,
PARA’02, in this volume of Springer Verlag’s Lecture Notes on Computer Sciences,
Fagerholm J. et al. (Eds), 2002.

18. "Top 500 Supercomputers” — Website maintained by Univ. of Mannheim, Ger-
many and Univ. of Tennessee at Knoxville, U.S.A.. Yearly updates presented at the
Supercomputing conferences. <http://www.top500.org>

19. Slides summarizing trend of Top 500 Supercomputers 1993-2001:
<http://www.top500.org/slides/2001/11/>

20. Rotman, D: ”The Nanotube Computer”, Technology Review, 105, No. 2, 36-45

21. 72001 Nobel Prizes”, Technology Review, 105, No. 2 (March 2002) 14-16

22. Technology Review, 105, No. 2. <www.technologyreview.com>

