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About FVM

 The Finite Volume Method is a CFD 

method developed to simulate fluid (or 

air) flow around an object

 Solves the same problems as FEM, but 

in quite a different way

 Used in FLUENT, one of the most 

popular comercial CFD applications for 

general purpose simulations.

About FVM (2)

 Based on dividing the domain into cells 

or control volumes (CV)

 This presentation focuses on grid 

generation

 The calculations done on the CV’s are 

done in the centroids of the volumes.

FVM – Theoretical background

 Based on the following laws:

 Conservation of fluid mass

 Newton’s 2nd law (Rate of change in 

momentum equals the sum of forces on a 

fluid particle)

 1st law of thermo dynamics (Rate of change 

in energy is equal to the sum of the rate of 

heat addition to and the rate of work done 

on a fluid particle)

FVM – Advantages 

 Can be used on complex geometries if 

the gridding is done well (compared to 

i.e. FD)

 Due to its nature, with cell averaging, it 

has an automatic damping, and as such 

avoid simulation instability.

 Versatile

 Relatively easy to implement (vs FEM)

FVM – Drawbacks 

 The damping also leads to loss of 

certain Physical phenomena
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FVM – Governing equations

 As other CFD methods, FVM makes use 

of the Navier Stokes equations, here 

given for incompressible flow:
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FVM – Euler equations

 In most situations, these equations must be 
further simplified to reduce computational 
cost.

 Ignoring viscosity in NS yields the Euler 
equations:

 This often yields good results for 
simulations of gases, since the viscous 
forces are quite weak, and the CFD 
methods themselves induce viscous effects
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FVM – Grid Generation

 Structured Grids

 Cartesian Grids

 Curvilinear Grids

 Block-Structured Grids

 Unstructured Grids

FVM – Structured Grids

 Structured grids are the most simple 

grids in CFD.

 Characteristics:

 Grid points at intersecting coordinate lines

 Fixed number of neighbours

 Can be mapped into a matrix

FVM – Structured Grids (2)

 Boundaries in Cartesian SG are straight 

lines going through the center of the cell 

and center on the edges

FVM – Structured Grids (3)

 Boundaries in Curvilinear SG are 

located on the edges of elements.
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FVM – Block-Structured Grids

 Cartesian grids map very poorly to 

complex geometries. This can be 

improved by using Block-Structured grids

 Basically a structured grid which is further 

subdivided on critical areas of the 

modelled mesh.

 Easier to implement than curvilinear, so 

this is a way to get the accuracy of a 

curvilinear with the simplicity of cartesian.

FVM – Block-Structured Grids (2)

 Example:

FVM – Unstructured Grids

 For complex geometries the structured 

approach is inadequate.

 Unstructured Grids:

 CV’s can have any shape

 No restriction on number of neighbors

FVM – Delaunay Triangulation (1)

 Delaunay Triangulation:

 A triangulation of a set of nodes

 Follows the circum-circle property

○ Leads to retriangulation when inserting new 

points

FVM – Delaunay Triangulation (2)

 Example of point inside one circumcircle

FVM – Delaunay Triangulation (3)

 Area and Aspect Ratio
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FVM – Delaunay Triangulation (4)

 Strategic point insertion

 Insert point at triangle circumcentres

○ Largest area

○ Largest circumcircle radius

○ Target obtuse-angled and skinny triangles 

(use AR)

 Using Voronoi segments

FVM – Delaunay Triangulation (5)

 Delaunay approach for generation:

 Create initial Delaunay triangulation from 

boundary points

○ Remove faulty triangles (i.e. inside boundaries)

 Insert points at strategical spots and 

retriangulate until aspect ratio and area of all 

triangles are under the max limit

○ Important to verify that boundaries are 

preserved

FVM – Delaunay Triangulation (6)

 Example

FVM – Advancing Front Technique (1)

 Different approach, makes the final 

triangulations intitially.

 Uses parameters δ and s from user to 

determine the grid

 Important functions (use is explained later):
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FVM – Advancing Front Technique (2)

 Algorithm

 Initial grid front

 Use shortest side in front

 Compute position of ideal point Kideal

 Construct a circle with Kideal as centre

 Find active nodes within the circle

 Check validity of triangle

 If not valid, use the next-shortest side

 If valid, re-order front

 Reiterate

FVM – Advancing Front Technique (3)
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FVM – Advancing Front Technique (4) FVM – Parallelization

 I will not go into the solving of FVM, but

it can be run in parallel by running the 

computations for each control volume in 

separate threads.

FVM – References [books]

 An introduction to CFD: The Finite 

Volume Method (Versteeg, 

Malalasekera)

 Basic Structured Grid Generation, with 

an intro to unstructured grid generation 

(Farashkhaluat, Miles)

 Computational Grids (Carey)


