Monte Carlo method applied in Board Game Al

Gaojie He 2009.10.27

Outline

- Introduction of Board Game AI
- Why use Monte Carlo method
- What is Monte Carlo method
- Monte Carlo Tree Search (MCTS)
- Parallelization of MCTS

Introduction of Board Game Al

Board Game Al overview

- Board Game (Chess, Go, Gomoku, kriegspiel, etc.)
 - Perfect information
 - Imperfect information
- Board Game AI can be simply seemed as game tree search
- 2 most important elements of Board Game Al
 - Evaluation function
 - Tree search algorithm (minimax algorithm, etc.)

Game tree

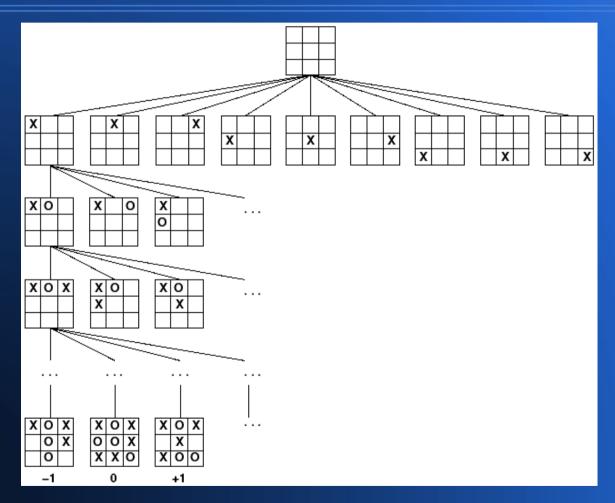


Figure 1. Game tree of Tic-Tac-Toe

Minimax game tree

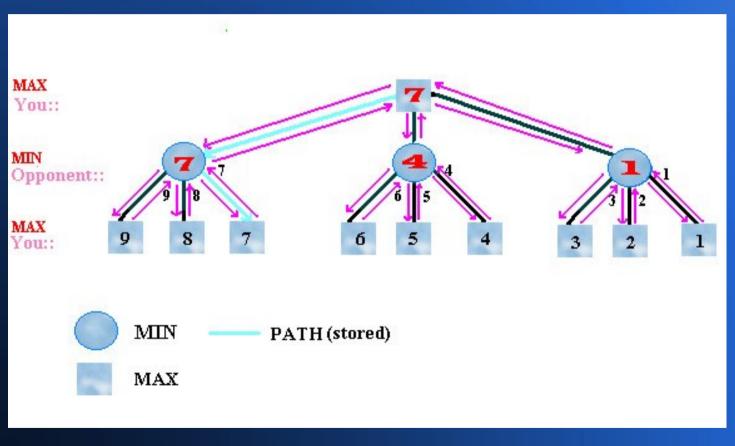


Figure 2. Minimax tree

Evaluation function

- Go (number of remained pieses & eyes, pattern)
- Chess (number of remained pieses, or pattern)
- Gomoku (pattern: connected 2, 3, 4 even 5)
- Etc.

Tree search algorithms

- Classical approaches (more game-dependent heuristic knowledge)
 - Alpha-beta pruning
 - Negascout
 - MTD(f)
 - SSS*
 - Others algorithms and enhancement techniques, e.g. Transposition table, etc.
- Monte Carlo methods
 - Monte carlo tree search

Why use Monte Carlo method

Drawbacks of classical approaches

Branching factor

- Average children number of each node
- Huge search space if branching factor is big
 - Chess, ≈ 35
 - Go, >100 (100⁵ with search depth of 5)
- High requirement of evaluation function
 - End game position evaluation
 - Non-end position evaluation (due to the limited search depth)
 - More game-dependent heuristic knowledge

Pros and cons of Monte Carlo method

• Pros

- Less requirement of game-dependent knowledge, even none (Evaluation function)
- Relatively easy to parallelized
- Cons
 - Finite length, e.g. Go, Gomoku, Chess is not suitable using Monte Carlo method
 - The random simulation still need to be improved
 - The number of simulated games

What is Monte Carlo method

Monte Carlo method introduction

- A class of computational algorithms that rely on repeated random sampling to compute their results
- Often used when simulating physical and mathematical systems
 - Simulated annealing
 - Pi estimation
 - Traveling salesman problem

Monte Carlo method used in Board Game

- From a single random game, it is quite less to be learnt, but with multitude random games, it becomes meaningful
- Essence: fast self-play game (random game simulation)

Monte Carlo method used in Board Game (cont.)

- Abramson by 1990 (ethello)
 - Evaluation function
- Bruegmann by 1993 (Go)
 - Simulated annealing
 - Just find the best move (lack of accuracy)
- Many other researchers enhanced the Monte Carlo method used in Board Game (esp. Go)
 - MCTS

Monte Carlo Tree Search (MCTS)

MCTS overview

- Best-first search method
- Not classical tree search followed by Monte Carlo evaluation
 - Classical tree search is basically depth-first
- Dynamic growing game tree
 - Classical tree is pre-generated completely
- A lot of simulated play-outs
- The state of art computer Go

MCTS principle

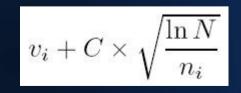
- 4-step procedure
 - Selection
 - Expansion
 - Simulation
 - Back-propagation

1st Selection

- Traverse the tree from root to leaf node (L) using some selection strategy
 - Each node is a board position, stores v, & n
 - Root is current position
 - Leaf node (L) is not end game position
 - Selection strategies

Selection strategy

- UCT algorithm (Upper Confidence bound applied to Trees)
 - Select the move that leads to the best results (exploitation)
 - The least promising moves still have to be explored due to the uncertainty of the evaluation (exploration)
 - Essence: choosing the move that maximizes formula below



2nd Expansion

- Store one child of leaf node (L) in the tree
- Expand one node per simulation (simplest rule)
- The expanded node corresponds to the first position encountered that was not stored yet
- Dynamic growing tree

3rd Simulation

- So called "play-out"
- Self-play with random sequence moves until the end of the game
- Simulation strategy
 - Plain random
 - Pseudo-random
 - Simulated annealing
 - Involve patterns, capture consideration, etc.

4th Back-propagation

 Compute v, & n, for each node that is traversed in the one simulation (play-out)

 $-N_{i}$ += R (R = 1, 0, -1, according to the win/loss)

 $-V_{i}$ += average score

 Finally the move played by AI player is the child of root with the highest N, or V,

MCTS principle scheme

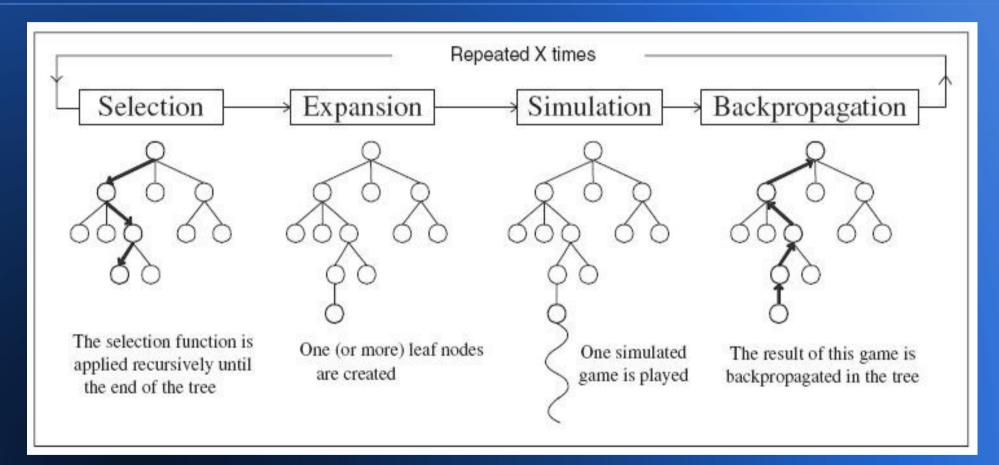


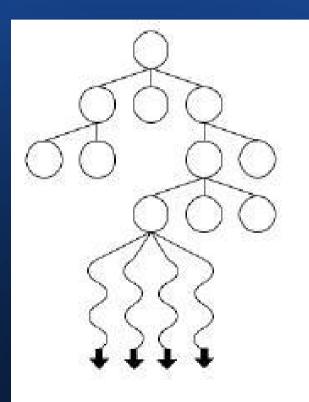
Figure 3. Scheme of Monte Carlo Tree Search

Parallelization of MCTS

Overview

- Independent simulated games imply the parallelization
- 3 different types of parallelization depending on different MCTS steps
 - Leaf parallelism
 - Root parallelism
 - Tree parallelism

Leaf parallelization

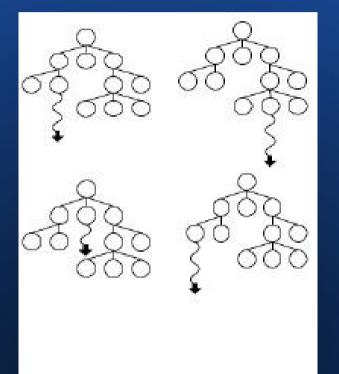


Leaf parallelization

Figure 4. Leaf parallelization

- Simulation step
- Multiple threads simulate game independently, while one threads perform 3 other steps
- 2 problems
 - Waiting time for some threads
 - Information is not shared

Root parallelization

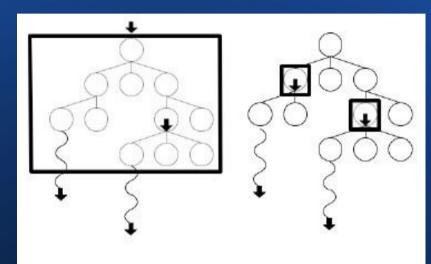


Root parallelization

Figure 5. Root parallelization

- The whole MCTS procedure
- Building multiple MCTS tree in parallel
- The final score should be collected from all MCTS trees to decide the best move

Tree parallelization



Tree parallelization Tree parallelization with global mutex with local mutexes

Figure 6. Tree parallelization

Global mutex

- Can't access the same MCTS in parallel (step 1, 2, 4)
- Multiple threads can play simulated games from different leaf node in parallel (step 3)

Local mutexes

 Access the same MCTS in parallel

Reference

- Chaslot, G.M.J.-B., Saito, J.-T., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik, H.J.: Monte-Carlo Strategies for Computer Go. In: Schobbens, P.-Y., Vanhoof, W., Schwanen, G. (eds.) Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, pp. 83–90 (2006)
- Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J., Bouzy, B.: Progressive strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation 4(3), 343–357 (2008)
- Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)
- Bernd Br ugmann. Monte Carlo Go. White paper, 1993.