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Introduction of Board Game AI



  

Board Game AI overview

● Board Game (Chess, Go, Gomoku, kriegspiel, 
etc.)

– Perfect information 
– Imperfect information

● Board Game AI can be simply seemed as game 
tree search

● 2 most important elements of Board Game AI
– Evaluation function
– Tree search algorithm (minimax algorithm, etc.)



  

Game tree

Figure 1. Game tree of Tic-Tac-Toe



  

Minimax game tree

Figure 2. Minimax tree



  

Evaluation function

● Go (number of remained pieses & eyes, 
pattern)

● Chess (number of remained pieses, or pattern)
● Gomoku (pattern: connected 2, 3, 4 even 5)
● Etc.



  

Tree search algorithms

● Classical approaches (more game-dependent 
heuristic knowledge)

– Alpha-beta pruning
– Negascout
– MTD(f)
– SSS*
– Others algorithms and enhancement techniques, e.g. 

Transposition table, etc.

● Monte Carlo methods
– Monte carlo tree search



  

Why use Monte Carlo method



  

Drawbacks of classical 
approaches

● Branching factor
– Average children number of each node
– Huge search space if branching factor is big

● Chess, ≈ 35
● Go, >100 (1005 with search depth of 5)

● High requirement of evaluation function
– End game position evaluation
– Non-end position evaluation (due to the limited search 

depth)
– More game-dependent heuristic knowledge



  

Pros and cons of Monte Carlo 
method

● Pros
– Less requirement of game-dependent 

knowledge, even none (Evaluation function)
– Relatively easy to parallelized

● Cons
– Finite length, e.g. Go, Gomoku, Chess is not 

suitable using Monte Carlo method
– The random simulation still need to be improved
– The number of simulated games



  

What is Monte Carlo method



  

Monte Carlo method introduction

● A class of computational algorithms that rely on 
repeated random sampling to compute their 
results

● Often used when simulating physical and 
mathematical systems

– Simulated annealing
– Pi estimation
– Traveling salesman problem



  

Monte Carlo method used in 
Board Game

● From a single random game, it is quite less to 
be learnt, but with multitude random games, it 
becomes meaningful

● Essence: fast self-play game (random game 
simulation)



  

Monte Carlo method used in 
Board Game (cont.)

● Abramson by 1990 (ethello)
– Evaluation function

● Bruegmann by 1993 (Go)
– Simulated annealing
– Just find the best move (lack of accuracy)

● Many other researchers enhanced the Monte 
Carlo method used in Board Game (esp. Go)

– MCTS



  

Monte Carlo Tree Search (MCTS)



  

● Best-first search method
● Not classical tree search followed by Monte 

Carlo evaluation
– Classical tree search is basically depth-first

● Dynamic growing game tree
– Classical tree is pre-generated completely

● A lot of simulated play-outs
● The state of art computer Go

MCTS overview



  

MCTS principle

● 4-step procedure
– Selection
– Expansion
– Simulation
– Back-propagation



  

1st Selection

● Traverse the tree from root to leaf node (L) 
using some selection strategy

– Each node is a board position, stores v
i
 & n

i

– Root is current position
– Leaf node (L) is not end game position
– Selection strategies



  

Selection strategy

● UCT algorithm (Upper Confidence bound 
applied to Trees)

– Select the move that leads to the best results 
(exploitation)

– The least promising moves still have to be explored due 
to the uncertainty of the evaluation (exploration)

– Essence: choosing the move that maximizes formula 
below



  

2nd Expansion

● Store one child of leaf node (L) in the tree
● Expand one node per simulation (simplest rule)
● The expanded node corresponds to the first 

position encountered that was not stored yet
● Dynamic growing tree



  

3rd Simulation

● So called “play-out”
● Self-play with random sequence moves until the 

end of the game
● Simulation strategy

– Plain random
– Pseudo-random

● Simulated annealing
● Involve patterns, capture consideration, etc.



  

4th Back-propagation

● Compute v
i
 & n

i 
for each node that is traversed 

in the one simulation (play-out)
– N

i 
 += R (R = 1, 0, -1, according to the win/loss)

– V
i
 += average score

● Finally the move played by AI player is the child 
of root with the highest N

i
 or V

i



  

MCTS principle scheme

Figure 3. Scheme of Monte Carlo Tree Search 



  

Parallelization of MCTS



  

Overview

● Independent simulated games imply the 
parallelization

● 3 different types of parallelization depending on 
different MCTS steps

– Leaf parallelism
– Root parallelism
– Tree parallelism



  

Leaf parallelization

● Simulation step
● Multiple threads simulate 

game independently, while 
one threads perform 3 other 
steps

● 2 problems
– Waiting time for some threads
– Information is not shared

Figure 4. Leaf parallelization



  

Root parallelization

● The whole MCTS procedure
● Building multiple MCTS tree in 

parallel
● The final score should be 

collected from all MCTS trees 
to decide the best move

Figure 5. Root parallelization



  

Tree parallelization

● Global mutex
– Can't access the same MCTS 

in parallel (step 1, 2, 4)
– Multiple threads can play 

simulated games  from 
different leaf node in 
parallel (step 3)

● Local mutexes
– Access the same MCTS in 

parallel
Figure 6. Tree parallelization
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