

Monte Carlo method applied in
Board Game AI

Gaojie He
2009.10.27

Outline

● Introduction of Board Game AI
● Why use Monte Carlo method
● What is Monte Carlo method
● Monte Carlo Tree Search (MCTS)
● Parallelization of MCTS

Introduction of Board Game AI

Board Game AI overview

● Board Game (Chess, Go, Gomoku, kriegspiel,
etc.)

– Perfect information
– Imperfect information

● Board Game AI can be simply seemed as game
tree search

● 2 most important elements of Board Game AI
– Evaluation function
– Tree search algorithm (minimax algorithm, etc.)

Game tree

Figure 1. Game tree of Tic-Tac-Toe

Minimax game tree

Figure 2. Minimax tree

Evaluation function

● Go (number of remained pieses & eyes,
pattern)

● Chess (number of remained pieses, or pattern)
● Gomoku (pattern: connected 2, 3, 4 even 5)
● Etc.

Tree search algorithms

● Classical approaches (more game-dependent
heuristic knowledge)

– Alpha-beta pruning
– Negascout
– MTD(f)
– SSS*
– Others algorithms and enhancement techniques, e.g.

Transposition table, etc.

● Monte Carlo methods
– Monte carlo tree search

Why use Monte Carlo method

Drawbacks of classical
approaches

● Branching factor
– Average children number of each node
– Huge search space if branching factor is big

● Chess, ≈ 35
● Go, >100 (1005 with search depth of 5)

● High requirement of evaluation function
– End game position evaluation
– Non-end position evaluation (due to the limited search

depth)
– More game-dependent heuristic knowledge

Pros and cons of Monte Carlo
method

● Pros
– Less requirement of game-dependent

knowledge, even none (Evaluation function)
– Relatively easy to parallelized

● Cons
– Finite length, e.g. Go, Gomoku, Chess is not

suitable using Monte Carlo method
– The random simulation still need to be improved
– The number of simulated games

What is Monte Carlo method

Monte Carlo method introduction

● A class of computational algorithms that rely on
repeated random sampling to compute their
results

● Often used when simulating physical and
mathematical systems

– Simulated annealing
– Pi estimation
– Traveling salesman problem

Monte Carlo method used in
Board Game

● From a single random game, it is quite less to
be learnt, but with multitude random games, it
becomes meaningful

● Essence: fast self-play game (random game
simulation)

Monte Carlo method used in
Board Game (cont.)

● Abramson by 1990 (ethello)
– Evaluation function

● Bruegmann by 1993 (Go)
– Simulated annealing
– Just find the best move (lack of accuracy)

● Many other researchers enhanced the Monte
Carlo method used in Board Game (esp. Go)

– MCTS

Monte Carlo Tree Search (MCTS)

● Best-first search method
● Not classical tree search followed by Monte

Carlo evaluation
– Classical tree search is basically depth-first

● Dynamic growing game tree
– Classical tree is pre-generated completely

● A lot of simulated play-outs
● The state of art computer Go

MCTS overview

MCTS principle

● 4-step procedure
– Selection
– Expansion
– Simulation
– Back-propagation

1st Selection

● Traverse the tree from root to leaf node (L)
using some selection strategy

– Each node is a board position, stores v
i
 & n

i

– Root is current position
– Leaf node (L) is not end game position
– Selection strategies

Selection strategy

● UCT algorithm (Upper Confidence bound
applied to Trees)

– Select the move that leads to the best results
(exploitation)

– The least promising moves still have to be explored due
to the uncertainty of the evaluation (exploration)

– Essence: choosing the move that maximizes formula
below

2nd Expansion

● Store one child of leaf node (L) in the tree
● Expand one node per simulation (simplest rule)
● The expanded node corresponds to the first

position encountered that was not stored yet
● Dynamic growing tree

3rd Simulation

● So called “play-out”
● Self-play with random sequence moves until the

end of the game
● Simulation strategy

– Plain random
– Pseudo-random

● Simulated annealing
● Involve patterns, capture consideration, etc.

4th Back-propagation

● Compute v
i
 & n

i
for each node that is traversed

in the one simulation (play-out)
– N

i
 += R (R = 1, 0, -1, according to the win/loss)

– V
i
 += average score

● Finally the move played by AI player is the child
of root with the highest N

i
 or V

i

MCTS principle scheme

Figure 3. Scheme of Monte Carlo Tree Search

Parallelization of MCTS

Overview

● Independent simulated games imply the
parallelization

● 3 different types of parallelization depending on
different MCTS steps

– Leaf parallelism
– Root parallelism
– Tree parallelism

Leaf parallelization

● Simulation step
● Multiple threads simulate

game independently, while
one threads perform 3 other
steps

● 2 problems
– Waiting time for some threads
– Information is not shared

Figure 4. Leaf parallelization

Root parallelization

● The whole MCTS procedure
● Building multiple MCTS tree in

parallel
● The final score should be

collected from all MCTS trees
to decide the best move

Figure 5. Root parallelization

Tree parallelization

● Global mutex
– Can't access the same MCTS

in parallel (step 1, 2, 4)
– Multiple threads can play

simulated games from
different leaf node in
parallel (step 3)

● Local mutexes
– Access the same MCTS in

parallel
Figure 6. Tree parallelization

Reference

● Chaslot, G.M.J.-B., Saito, J.-T., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik, H.J.: Monte-Carlo
Strategies for Computer Go. In: Schobbens, P.-Y., Vanhoof, W., Schwanen, G. (eds.)
Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, pp. 83–90 (2006)

● Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J., Bouzy, B.:
Progressive strategies for Monte-Carlo Tree Search. New Mathematics and Natural
Computation 4(3), 343–357 (2008)

● Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den
Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83.
Springer, Heidelberg (2007)

● Bernd Br ugmann. � Monte Carlo Go. White paper, 1993.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

