
02.11.2009

1

hiCUDA: A High-level Directive-based

Language for GPU Programming
TDT24 Summary – Jørgen Nystad

Motivation

• Eliminate or simplify mechanical steps in the 
process of converting single-threaded programs 
to CUDA programs

• Introduce OpenMP-like methods for 
parallelizing programs (compiler directives)

• Reduce development time and errors by 
providing high level commands

Usual CUDA development process

• Identify and create kernels
• Determine partitioning scheme
• Setup data communication (host to device, 

device to host)
• Repeat for each kernel until happy (or out of 

time):
▫ Optimize memory usage in kernels (use shared 

memory, coalescing, etc.)
▫ Balance single-thread performance and level of 

parallelism

Issues with the traditional approach

• Involve significant code changes

• Tedious and error-prone

• Repeated tests to determine best combination of 
optimizations

• Increased development time

• Makes programs non-intuitive (hard to imagine 
result as a whole)

• Management and optimization of data in GPU 
involve “heavy manipulation of array indices”

The Cure

• High-level directives that perform the steps 
required in the conversion process

• Involves a source to source-compiler for 
translating hiCUDA programs to CUDA 
programs

The hiCUDA directives

• #pragma hicuda some directive with params
• Possible control directives:

▫ kernel
▫ loop_partition
▫ singular 
▫ barrier 

• Possible data directives:
▫ global
▫ constant
▫ shared
▫ shape (not covered)



02.11.2009

2

The kernel directive

• kernel – defines a code region to be executed on 
GPU
▫ kernel kernel_name thread_block_clause

thread_clause [nowait]
 tblock(dim-sz {, dim-sz}*) – specifies block grid
 thread(dim-sz {, dim-sz}*) – specifies thread grid
 nowait – host does not wait for kernel to complete

▫ kernel_end
• Converted to a CUDA kernel…
• Local variables inside the kernel scope are 

automatically allocated in registers
• Other variables uses data directives

The loop_partition directive

• Declared before a for-loop
• Defines how the for-loop is partitioned

▫ loop_partition [over_tblock [BLOCK|CYCLIC]] 
[over_thread]
 over_tblock – defines distribution across thread blocks
 over_thread – defines thread distribution within thread 

blocks

• Allows nesting, nested operators control consecutive 
dimensions

• Dimensions of grid and blocks must be pre-defined
• hiCUDA compiler generates guard code for 

imperfect partitions
• See fig. 6 in article for a visual example

The singular and barrier directives

• Let the enclosed code run on one thread per 
thread block only

▫ singular – opens singular context

▫ singular_end

• Synchronize threads

▫ barrier – translates directly to a __syncthreads();

The Data Directives

• Two notations for variables

▫ variable

 var-sym {[start-idx : end-idx]}*

 Variable symbol with associated index range (if 
array, can be multi-dimensional)

▫ var-sym

 Variable symbol only

The global directive

• Used outside of kernel
• Three forms:

▫ global alloc variablea [{copyin [variableb]} | clear]
 Host to device
 Allocate variablea and copy contents from variableb if copyin is 

present, or initialize to zero if clear is present
▫ global copyout variablea [to variableb]
 Device to host
 Copy contents from variablea to variableb (or variablea if not 

present)
▫ global free var-sym
 Free allocated variable

• Never exposes global memory variables to programmer
• See fig. 7 in article for example (without kernels…)

The constant directive

• Two forms:

▫ constant copyin variable

 Copy contents of variable to constant memory

▫ constant remove var-sym

 Undeclare constant memory variable var-sym



02.11.2009

3

The shared directive

• Three forms:
▫ shared alloc variablea [copyin[(nobndcheck)] [variableb]]
 Global mem to shared mem
 Allocate variablea and copy contents from variableb if copyin is 

present. If not, uninitialized kernel local shared memory is 
created.

▫ shared copyout[(nobndcheck)] variablea [to variableb]
 Shared mem to global mem
 Copy contents from variablea to variableb (or variablea if not 

present). Must not be performed on a kernel local shared 
memory variable

▫ shared remove var-sym
 Free allocated variable

• Compiler handles merging of consecutive data requests

Experimental Results

• Authors built a prototype hiCUDA compiler around Open64 
(v4.1)

• Compares execution of bench-mark programs on a GeForce
8800GT
▫ Matrix multiplication – own sequential to hiCUDA vs. NVIDIA 

CUDA SDK version
▫ Three benchmarks from Parboil suite, which provides base, 

cuda_base and cuda versions, which represent sequential, basic 
CUDA and optimized CUDA, respectively

“ For each benchmark, we start from a sequential version and 
insert hiCUDA directives to achieve the transformations that 
result in the corresponding CUDA version.

• hiCUDA is applied to base versions to achieve 
transformations done in the cuda version (!)

Performance A Note

“The reader should note that, although we are 
able to achieve all CUDA optimizations in 
hiCUDA for these benchmarks, we are 
sometimes required to make structural changes 
to the sequential code before applying hiCUDA
directives.

Such changes include array privatization, loop interchange and 

unrolling, and the use of fast math libraries. We believe that these 
standard transformations could be easily automated and 
incorporated into our language in the future.

Real World Case

• Medical Research group at University of Toronto

• Monte-Carlo simulation of multi-media tissue

• Manual CUDA version written in 3 months 
achieved 27x speedup on a 8800GTX vs single-
threaded on Intel Xeon (3.0 GHz)

• hiCUDA version of the same code with the same 
optimizations written in 4 weeks achieving the 
same speedup

• Impressed?

Conclusion

• Authors concludes that high performance can be 
achieved using hiCUDA compared to manually 
optimized versions

• The real world case confirms that development time 
can be significantly reduced

• Authors admit that significant loop alterations may 
be necessary before using hiCUDA and would like to 
automate this in the future

• Would also like to simplify the current directives or 
make compiler insert them automatically, ultimately 
resulting in automatic parallelization for GPUs…


