
TDT24 presentation

Holger Ludvigsen

September 29, 2009



2



Part I

Ray Tracing

3





5

Ray tracing is a technique for generating an image of three-dimensional scene.
The technique consists of tracing imaginary rays from the position of the camera
through a plane towards the objects in the scene. The rays intersect and bounce
around the scene like real light rays do. Each ray contributes to their part of
the plane which in the end will be the generated image. See figure 1.

Figure 1: The ray tracing technique

The ray tracing computational problem

There are two big tasks when ray tracing:

1. Finding what object in the scene a ray intersects first

2. Finding the exact location and shading of the point on that object

With a complex scene, the former task take up to 951 % of the time spent ray
tracing.

Acceleration structures

To speed up the task of finding intersecting objects, we put the geometry in
acceleration structures. A common acceleration structure is the bounded volume
hierarchy (BVH). This structure is a spatially organized tree with the objects
as leaf nodes. See figure 2. When the geometry of the objects change, the BVH
needs to be updated.

1Turner Whitted. An improved illumination model for shaded display. Commun. ACM,
23(6):343-349, 1980.



6

Figure 2: A scene with associated bounding volume hierarchy

Interactive and real time ray tracing

By interactive ray tracing we mean a continously updated view of a scene at
about 1-5 frames per second. This enables instant visual feedback during e.g.
design of automobiles or making a Toy Story like movie. To be referred to as
real time, we need about 20-30 or more frames per second.



Part II

Summary of

Timo Alia and Samuli Laine
NVIDIA Research

Understanding the
Efficiency on Ray Traversal

of GPUs

7





9

In this paper, the authors point out that very little is known about the perfor-
mance of ray tracing kernels and their theoretical optimal performance. With
this in mind, the made a GPU simulator that executes kernels and determine
their performance under theoretical optimal conditions. When testing kernels
implementing previously known methods for ray tracing on a real GPU, they
observed performance of only about 40-60 % of theoretical optimum in the sim-
ulator. The authors then analyze this and propose some simple techniques to
push the performance closer to the method’s theoretical limits, and they achieve
about 90 % of optimum.

SIMT and SIMD efficiency

The GT200 generation of Nvidia GPUs does SIMT, which means single in-
struction, multiple threads. SIMT is a superset of SIMD. In SIMD, the same
instruction is executed in parallel on different data. In SIMT, multiple threads
(a warp) start at the same instruction with different data, but they are allowed
to branch. Threads on the same path continue to execute with other threads
in the warp disabled. Then vice versa with the other paths until all threads are
on the same instruction.

SIMD efficiency The percentage of threads that are not disabled in a warp.

The test system

• Nvidia GTX285 for real performance

• Custom built simulator for theoretical optimal performance

• Hand-optimized CUDA 2.1 assembly code as kernels

• Bounding volume hierarchy as acceleration structure

• Three scenes at 282K, 174K and 80K triangle polygons

Details about the simulator

• Optimal dual issue rate: A streaming multiprocessor has 8 streaming pro-
cessors, but also 2 special-function units (SFU). Every instruction that
can execute in the SFU is assumed to do so.

• All memory accesses are hidden by work (simulated by returning immedi-
ately).



10

Ray tracing methods tested

The main difference between the methods is how they traverse the BVH tree.

Packet traversal

In this scheme, we group rays into warp sized packets. The rays of a packet
traverse the tree together by sharing the traversal stack. This means that some
rays will visit many nodes that they do not intersect with. The benefits are
coherent memory accesses and lesser branching in a warp becouse grouped rays
usually hit the same objects.

Per-ray traversal

In this scheme, each ray traverses the tree independently with their own traversal
stack. This is theoretically superior to packet traversal since each ray only visits
nodes they intersect. The authors use two implementations for per-ray traversal:
”while-while” and ”if-if”.

While-while

while ray not terminated do
while node does not contain primitives do

traverse to the next node
end while
while node contains untested primitives do

Perform a ray-primitive intersection test
end while

end while

If-if

while ray not terminated do
if node does not contain primitives then

traverse to the next node
end if
if node contains untested primitives then

Perform a ray-primitive intersection test
end if

end while



11

Test results and interpretation

Table 1 in the paper shows the results from simulation and real system testing.
I have compiled this into figure 3 by taking the average across all scenes and
across all ray types.

Figure 3: A compilation of table 1 in paper

Per-ray traversal has less coherent memory accesses. Since the simulator hides
memory accesses, it was expected that the difference between real and simulated
performance would be bigger for per-ray than packet traversal. However, the gap
was actually smaller for packet traversal. This indicates that memory bandwith
is actually not the major issue.

In simulations, if-if was about 20 % slower than while-while because of less
coherent memory accesses. But their real performance was about the same.
Additional testing reveiled the reason for this: if-if leads to fewer exceptionally
long-running warps than while-while. Such long-running warps lead to under-
utilization of the cores due to inconsistent execution times.

Improvement: Persistent threads

The idea is to launching just enough threads to fill the GPU. These persistent
threads are long-running and fetch work from a global pool. The implemen-
tations of packet traversal and while-while per-ray traversal using persistent
threads increased performance to about 80-90 % of theoretical optimum. Due
to ideal conditions in the simulator. This is as high as one can expect to get.
The authors claim this gives the fastest ray tracer to date2.

2paper is published August 2009



12

Further improvements

The authors also include ideas for further improvement. The first is speculative
traversal. This improves performance of ray tracing of primary rays by 5 %,
but for other ray types the performance is the same or lower. The rest of the
improvements does not pay off at the moment, but the simulations showed that
by adding some instructions to the GPU they become beneficial:

population count Returns the number of threads for which a condition is true

prefix sum Returns a unique index to threads for which a condition is true

Speculative traversal

The idea here is that if some rays in a warp are going to traversal, then all
rays can do the traversal even though they have found an object they want to
do intersection testing with. If the intersection testing fails, then the work of
further traversal is already done. If the intersection test indicated a hit, then
the overhead of unnecessary traversal is not that high. Speculative traversal
improves SIMD efficiency.

Improvements requiring new instructions (to be effective)

Replacing terminated rays: Replace persistent threads that have terminated
with new ones that start from the root. The computational overhead is
halved by the two new instructions.

Work queues: Utilize a work queue to obtain almost perfect SIMD efficiency.
In simulation, almost 100 % efficiency was obtained.

Wide trees: Use wide tree acceleration structures with many branches to en-
hance memory access coherence.



Part III

Summary of

James Bigler, Abe Stephens
and Steven G. Parker

University of Utah

Design for Parallel
Interactive Ray Tracing

Systems

13





15

In this paper, the authors present an architecture for an interactive ray tracer
running on a parallel computer, and explain the considerations that needs to be
taken into account for such a system. It is not directed They have implemented
their ideas as the freely available open-source Manta ray tracer, and briefly
present some applications where it was used.

Hardware trends

• Early interactive ray tracers were implemented on supercomputers

– clusters

– shared memory

– high-performance network.

• Today, processors are becoming parallel and has high enough performance
to do ray tracing

– SIMD

– single chip systems

Software design philosophy

• Scalable, flexible and configurable

• Do not enforce specific acceleration structure or other ray tracing tech-
niques

• Develop components that follow design pattern, implement acceleration
structures, primitives, material shaders and rendering techniques in this
framework

• Flexibility imposes overhead and parallelism challenges, but overcome this
by using wide ray packets and pipeline models

Manta architecture

Manta consists of two groups of modular components: the pipeline and the
rendering stack. Each component has an API. The primary structure for ray
tracing data is the wide ray packet.



16

Wide ray packets

The wide ray packets contain individual rays plus all of the data needed for
intersection routines, shaders and other components. Ray packets are wider
than SIMD vectors and are processed in smaller pieces in tight loops. Expensive
values are lazily evaluated. A flag is set in ray packet that other components
can check if they need the same value. The authors found that the ray packet
size should be 64 rays to fit in L1 cache. During tracing, a subset of rays in a
packet probably will hit other objects than the rest. Manta manages this by
continuously splitting packets into coherent sections. This is done by finding a
sequential run of rays with common characteristics in the packet and make this
a new smaller packet. Splitting ensures coherence, but impose a challenge in
keeping the data alignement in the packets right.

Parallel pipeline

Figure 4: Two stages of the parallel pipeline

Figure 4 shows the parallel pipeline. For each stage, frame i is displayed and
frame i+1 is rendered. To achieve high performance, threads are synchronized
only at certain points in the pipeline. This is done before the transactions
phase. Tasks that are easy to load balance, like parallel animation, are then
executed. Then imbalanced tasks such as image display is executed. In the
typical configuration, image display is done by one thread. Lastly done are
tasks that are dynamically load balanced, like rendering.

The transaction phase handles updates from the user interface, changes in ac-
celeration structures and other events that can lead to race conditions. The
transactions are callbacks to execute code that modifies the state at a ”safe”
time. The transactions are managed as a queue. Having a transaction phase
ensures that events that are not synchronized with the pipeline is handled safely
without excessive synchronizations.



17

Figure 5: Rendering stack during rendering stage in pipeline

Rendering stack

Figure 5 shows the renderings stack that is executed in the rendering stage of
the pipeline. The process is as follows:

1. The image traverser divides frame into regions and assigning regions to
threads. A load balancer in the image traverser ensures that the work is
distributed as evenly as possible.

2. The pixel sampler map rays to samples in the regions an organizes these
in ray packets.

3. The renderer traces the rays through the scene and invokes material
shaders upon intersection. The renderer is also responsible for splitting
packet into coherent subpackets.

Manta applications

The author’s implemented Manta ray tracing system has been used for several
applications. Some worth mentioning is massive model visualization, direct iso-
surface rendering and multi-modal visualization.

Massive model visualization

Massive models have 100s of millions of triangles. Ray tracing scales sub-linearly
in number of objects due to acceleration structures. Thus, ray tracing is espe-



18

Figure 6: Massive model
visualization

Figure 7: Direct iso-
surface rendering

Figure 8: Multi-
modal visualization

cially suitable for massive model visualization. Figure 6 shows a model of a
Boeing 777 engine that consists of 350 million triangle polygons.

Direct iso-surface rendering

An iso-surface is a surface in space where a 3D function has a specific value. This
is suitable for ray tracing since the surface function can be used directly in in-
tersection calculation. Figure 7 shows an iso-surface representing the boundary
between a fast flowing and stationary fluid.

Multi-modal visualization

Multi-modal visualization means that there are different representations of prim-
itives, such as voxels (volumetric pixels), spheres or polygons. Ray tracing
enables visualization of different types at the same type. Figure 8 shows a visu-
alization of a gas container rupturing because of heat. Both spheric gas particles
and volumetric fire is shown in the same visualization.



Appendix A

800 TFLOP GPU ray tracing super computer

(From http://techon.nikkeibp.co.jp/article/HONSHI/20090629/172373/)

Figure A.1: 800 TFLOPS Multicore IC for Realtime Ray Tracing

Japanese company Tops Systems Corp has announced a 800 TFLOP GPU chip
specialized for real time ray tracing in a desktop system. The chip is intended
for the automobile design industry. The design is being developed by Toyota
and Unisys and consists of nine identical interconnected integrated circuits, each
with nine clusters of eight cores. The total 73 cores are expected to run at 750
MHz. Figure A.1 shows the design of each of the nine ICs.

19


