
PARTICLE SIMULATIONS ON THE GPU

Summary by Øystein Krog based on presented articles for TDT 24 Fall 2009

Instructor: Anne C. Elster

"Particle-Based Fluid Simulation for Interactive
Applications", Matthias Muller, David Charypar and Markus Gross,
 Eurogrpahics/Siggraph 2003, D. Breeen, M. Lin Editors

"Smoothed Particle Hydrodynamics on GPU", Takahiro Harada
et. al,

PARTICLE SIMULATIONS ON THE GPU

 Why are particle simulations so interesting for the GPU?

o Relatively easy to parallelize

o BUT, not trivial because (for our needs) we need to handle particle interactions

Some interesting implementations that use particle simulations:

o HOOMD

o Highly Optimized Object-oriented Molecular Dynamics

o Uses CUDA

o Open Source

o Fast, one GPU can compete with small clusters (~36 cores)

 PhysX

o NVidia

o Real-time physics engine

o Particles used in particular in the fluid simulation

o Uses SPH – Smoothed Particle Hydrodynamics

o Why SPH?

 Need to handle collisions/interaction with rigid objects

 Conserves volume

 Support for large volumes (i.e. sparse fluid in large environment)

 Support multiple independent fluids per scene

 Fast and efficient

SMOOTHED PARTICLE HYDRODYNAMICS

SOURCES:

 Particle-based fluid simulation for interactive applications - Matthias Müller

 Smoothed Particle Hydrodynamics on GPUs - Takahiro Harada

 Particle based Fluid Simulation - Simon Green/NVidia (slides from NVidia presentation at GDC08)

WHAT IS SPH?

 Particle system with inter-particle forces/interactions

o Interactions gives O(n^2) computational complexity…

o Define interaction cutoff distance

 Less complexity

 Easier to parallelize

 First developed for use in astrophysics

o Simulation of stars / galaxies

 Different from a lot of other fluid simulation methods (CFD methods)

o Mesh-free (does not consider any "surfaces")

o Interpolation method for particle systems

 Each particle is affected only by the particles in a specific radius around it (cutoff distance)

o Uses a "radial symmetrical smoothing kernel" to define the cutoff

WHY USE SPH?

 Advantages:

o Very fast/efficient compared to other fluid simulation methods.

o Guarantees conservation of mass (particles themselves are the mass) (if weighted functions

are normalized)

o Computes pressure from weighted contributions of neighboring particles (instead of solving

linear systems of equations)

 Disadvantages

o Still have to reconstruct a surface to render (marching cubes, splatting etc)

o Need a lot of particles for realistic simulation

HOW DO WE EFFICIENTLY PARALLELIZE THIS?

 Use a spatial subdivision data structure

o A uniform grid

o Fill particles into grid with spacing h

o Only search potential neighbors in adjacent cells.

o More on this later…

HOW DO THE PARTICLES INTERACT?

 We have local smoothing fields that sum together into a global field

 Kernel function

o Specifies how we smooth “between” particles

o Very important for behavior and stability

THE EQUATIONS OF SPH

 Equations from Mueller unless otherwise noted.

 The particle at location r is calculated as a weighted sum of neighboring particles

 (, are mass, position, density and field quantity of particle j)

 In the discretized functions, W(r, h) is the smoothing kernel.

 If the kernel is

o Even

 W(r, h) = W(-r,h))

o and Normalized

o the kernel is of second order accuracy

 The governing equations (mass and momentum conservation) are simplified Navier-Stokes

(conservation of mass)

(conservation of momentum)

 - density

 v - velocity

 P - pressure

 - dynamic viscosity coefficient

 g - external force density field / gravitational acceleration

 Can simplify even more

o Constant number of particles w/constant mass per particle

 mass conservation

 so can omit (6) completely

o Can simplify (7) because "since the particles move with the fluid the substantial

derivative of the velocity field is simply the time derivate of the velocity of the particles

meaning that the convective term is not needed for particle systems

 We have three force density fields on the right hand side of (7)

o

o Pressure, density, viscosity

o f is the "change of momentum on the left hand side"

 End up with an expression for the acceleration of particle i:

o

 are velocity, force density field and the density field at the location of particle i

DISCRETIZATION

 The density of fluid

 The pressure of fluid (modified version for symmetry)

 The viscosity of fluid (modified version for symmetry)

o (possible interpretation; "look at the neighbors of particle i from i’s own moving frame of

reference. Then particle i is accelerated in the direction of the relative speed of its

environment.")

 Also applies tech. for surface tension

 External forces are simply applied directly to the particles without any use of SPH

SMOOTHING KERNELS

 Stability, accuracy and speed is highly dependent on the choice of smoothing kernels

 Several considerations, specific smoothing kernels for difference force fields etc.

 Example kernel from Mueller:

BOUNDARY CONDITIONS (COLLISIONS, E.G. WALLS)

 Mueller do not use specific boundary conditions,

o Simply affects the velocity/position of the particles directly.

o Particle about to touch wall ==> deflect velocity

 Harada use more advanced techniques:

o Pressure - Apply "pressure force" from the boundary:

 We have constant pressure

 d is the distance between particles

 If we collide it will be with a distance less than d,

 "Push" the particle back to the distance d in the normal direction of the "wall"

o Density

 If particles are within a given range of a boundary, the boundary affects density

INTEGRATION

 Harada

o "simple“ Euler

o Saw no instability..

 Mueller

o "Leap-Frog", a second order scheme.

SPH ON THE GPU

GPU CONSIDERATIONS

o Each particle can be given its own thread

o No need for synchronization or communication between threads

o A particle has many neighbors – high arithmetic intensity

o Particles have variable number of neighbors – however overall there is a coherence in the workload

o

PARALLELIZATION / THE NEIGHBORING PARTICLE PROBLEM

 We need to know how to efficiently and quickly find the neighboring particles in a given radius.

 A naïve exhaustive search requires n^2 comparisons.

 Solution:

o Use a spatial subdivision (data) structure

 Considerations:

o The data structure should enable sparse fluids in large environments

 Can’t simply do a 64x64x64 volume because that’s too small

 Can’t just use a huge volume because that requires too much memory…

 Options

o KD-tree / Octree – NOT good because requires recursion (bad for GPU)

o Uniform grid (used by Mueller)

 Simplest possible subdivision

 Since the SPH smoothing kernels have finite support h (cutoff "range") a common

way to reduce computational complexity is to use grid cells of size h.

 Reduces from O(n^2) to O(nm), where n is cells and m is average number of particles

per grid cell.

 A particle is only compared against particles in neighboring cells

 Large volumes require a lot of memory

o Hashed uniform grid (used by PhysX SPH)

 Concrete grid (64x64x64)

 Abstract grid maps to the concrete grid (x,y,z) (x%64,y%64,z%64)

 Fast neighbor finding (if we assume no collisions..)

 Problem; false neighbors (a “neighbor” will actually be far away)

 For SPH we ignore this because the SPH smoothing function means that

“far” away particles will be ignored

o Buckets (used by Harada)

 Conceptually the same as a uniform grid

 Implemented as a 3D texture where each voxel can have 4 particles (RGBA)

 If more than 4 particles in a voxel ==> ignore... (unlikely to happen though)

 Neighboring particles are found by looking at adjacent voxels

o Sliced grid (used by Harada in later paper)

 Modification that enables even more sparse fluids

 Dynamically build a grid that only covers where the fluid exists

 Ignore all the empty space in the volume

o

THE ALGORITHM

 Build spatial data structure on particles

 For each particle

1. Find neighbors

2. Compute density

3. Compute force and update velocity

4. (For collisions with solids) Find neighboring triangles, check collision and update position

 On GPU – do everything in parallel

VISUALIZATION

o SPH gives us a particle field, but no surfaces

o How do we visualize this?

o Possiblities:

o Extract a surface from the particle set

 3D isosurface extraction (marching cubes etc)

o Ray-Marching

 "Ray tracing" of the particle set

o Point splatting

o Image-space tricks (“billboarding”, blur etc)

 Can use information we have in the particles to get a better effect

 Example; use density in particles, can apply blur etc

PERFORMANCE/ RESULTS

Müeller - Particle-Based Fluid Simulation for Interactive Applications (2003):

 On the CPU

 1.8 GHz P4 w/ Geforce4

 2200 particles

 20 fps for a and b, 5 fps for c (marching cubes)

Harada:

 On the GPU, but not CUDA, uses textures and shaders.

 Core2 2.93GHz

 2GB RAM

 8800GTX

 C++ / opengl with Cg for shaders

 60 000 particles @ 17fps

 28x times faster on GPU

