

Norwegian University of Science and Technology

TDT24: Mining Association Rules from Multi-stream Time Series Data on Multiprocessor Systems

Magne Tøndel, magne@toendel.com Trondheim, 27.10.2009

Abstract

- Mining association rules from multi-stream data has received a lot of attention to the data mining community.
- It is quite effective and useful to discover such rules.

Abstract

 The challenge: Discovering these rules is a very time consuming and expensive when we are mining them from enormous time ordered real valued continuous data sets.

Abstract

This strongly motivates the need of efficient parallel processing techniques and algorithms.

- In the presented paper, they use parallel processing to discover dependencies from a large amount of time series multi-stream data.
- They also present two parallel programming techniques (OpenMP and MPI) to implement this.

Introduction

- Discovery of dependencies in multi-stream time series data is an important problem with great significance.
- Example: The stock price.
 Rise and fall of the price on some stocks obviously cause the price of other stocks to rise and fall.
- These dependencies can help us to decide when to by stocks.
- And these dependencies can also be expressed as association rules.

Introduction

- The task of finding all association rules can require a lot of computational and memory resources, especially when the data sets are enormous and high dimensional.
- It is therefore crucial to leverage the aggregate computational power of multiple processors to find the association rules from the huge data sets.

Introduction

- In the presented paper, they focus on human motion data.
- For example, find association rules discovered from motion data about «walking».
- Human motion data is three dimensional in nature, but they are converting the large amount of three dimensional motion data to different symbols in one dimension.

- The human motion data captured by a motion capturing system consists of various types of information of the body parts.
- The body parts can also be represented as a tree structure.

0: lower torso (root)

1: upper torso

2: right hip

3: left hip

4: right knee

5: left knee

6: right ankle

7: left ankle

8: right collar bone

9: left collar bone

10: right shoulder

11: left shoulder

12: right elbow

13: left elbow

14: right wrist

15: left wrist

16: neck

17: head

- The dependency on data of various operations in motion data depends on operations performed in the past (they call them «active operations»).
- «Active operations» has a relation to affect on generating operations («passive operations») in the future.
- Such a dependency is called an association rule.

- In order to find «active» and «passive» operations, they use two windows Wa («active») and Wp («passive») with the fixed interval Int.
- The Int is the interval between the windows.

- The strength of association rules in motion data is defined by using the probability of occurrence for two operations.
- The probability is calculated by the following function: $\delta = t(Pa \land Pp) / t(Pa)$
- Pa and Pp are the occurrences of the active and passive operations respectively.
- And t(Pa ∧ Pp) represents the number of simultaneous occurrences of Pa and Pp.

Parallel Data Mining

- The paper presents two pseudo-code examples of the algorithm (OpenMP and MPI).
- Both of them is based on the rule mining algorithm called *apriori*.

Experiments

- 64-node SGI Origin 3000 DSM-system
- Each node consists of 2 MIPS R10000 processors running at 500 MHz with a total of 8 processors in a node board.
- The database is stored on an attached 6 GB local disk.
- For the test data sets, they use 50 different kinds of performed motions such as walking, running, dancing etc.

Experimental Results (OpenMP)

 The results from the OpenMP implementation are shown in the table.

Experimental Results (MPI)

 Because of the bad scalability, they made an implementation using MPI (Message Passing Interface).

Conclusion

 The MPI implementation scaled better than the OpenMP implementation for this particular problem.

