TDT24: Mining Association Rules from Multi-stream Time Series Data on Multiprocessor Systems

Magne Tøndel, magne@toendel.com
Trondheim, 27.10.2009
Abstract

• Mining association rules from multi-stream data has received a lot of attention to the data mining community.
• It is quite effective and useful to discover such rules.
Abstract

• The challenge: Discovering these rules is a very time consuming and expensive when we are mining them from enormous time ordered real valued continuous data sets.
Abstract

• This strongly motivates the need of efficient parallel processing techniques and algorithms.
• In the presented paper, they use parallel processing to discover dependencies from a large amount of time series multi-stream data.
• They also present two parallel programming techniques (OpenMP and MPI) to implement this.
Introduction

• Discovery of dependencies in multi-stream time series data is an important problem with great significance.
• Example: The stock price. Rise and fall of the price on some stocks obviously cause the price of other stocks to rise and fall.
• These dependencies can help us to decide when to buy stocks.
• And these dependencies can also be expressed as association rules.
Introduction

• The task of finding all association rules can require a lot of computational and memory resources, especially when the data sets are enormous and high dimensional.

• It is therefore crucial to leverage the aggregate computational power of multiple processors to find the association rules from the huge data sets.
Introduction

• In the presented paper, they focus on human motion data.
• For example, find association rules discovered from motion data about «walking».
• Human motion data is three dimensional in nature, but they are converting the large amount of three dimensional motion data to different symbols in one dimension.
Discovery of Association Rules

• The human motion data captured by a motion capturing system consists of various types of information of the body parts.
• The body parts can also be represented as a tree structure.
Discovery of Association Rules

• The dependency on data of various operations in motion data depends on operations performed in the past (they call them «active operations»).
• «Active operations» has a relation to affect on generating operations («passive operations») in the future.
• Such a dependency is called an association rule.
Discovery of Association Rules

• In order to find «active» and «passive» operations, they use two windows W_a («active») and W_p («passive») with the fixed interval Int.
• The Int is the interval between the windows.
Discovery of Association Rules

- The strength of association rules in motion data is defined by using the probability of occurrence for two operations.
- The probability is calculated by the following function:
 \[\delta = \frac{t(Pa \land Pp)}{t(Pa)} \]
- \(Pa \) and \(Pp \) are the occurrences of the active and passive operations respectively.
- And \(t(Pa \land Pp) \) represents the number of simultaneous occurrences of \(Pa \) and \(Pp \).
Parallel Data Mining

- The paper presents two pseudo-code examples of the algorithm (OpenMP and MPI).
- Both of them is based on the rule mining algorithm called *apriori*.
Experiments

• 64-node SGI Origin 3000 DSM-system
• Each node consists of 2 MIPS R10000 processors running at 500 MHz with a total of 8 processors in a node board.
• The database is stored on an attached 6 GB local disk.
• For the test data sets, they use 50 different kinds of performed motions such as walking, running, dancing etc.
Experimental Results (OpenMP)

- The results from the OpenMP implementation are shown in the table.
Experimental Results (MPI)

- Because of the bad scalability, they made an implementation using MPI (Message Passing Interface).
Conclusion

• The MPI implementation scaled better than the OpenMP implementation for this particular problem.