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Motivation for the article

The author complains over the fact that students learn discrete Fourier trans-
form (hereby referred to as DFT) without learning about continuous-time
Fourier analysis.

The article follows three students who discover the DFT, having only knowl-
edge about analog methods.

Non-rigorous definitions

Fourier transform The Fourier transform (FT) is an operation that trans-
forms a function f(t) from the time (or spatial) domain into a function F (f)
in the frequency domain.

Inverse Fourier transform The inverse Fourier transform is the reverse of
the above; a transformation of a function F (f) from the frequency domain
to f(t) in the time (or spatial) domain.

Fourier series A Fourier series (FS) of a periodic function f is the decom-
position of f into a sum of sine/cosine functions or complex exponentials.

Homework

Tom, Dick and Mary are working on an assignment for a course in signal
and linear system analysis. The assignment involves, among other things,
plotting of magnitude and phase spectra based on the Fourier transform.

The first signal they encountered was x1(t) and its Fourier integral:

X1(f) =
∫ ∞

−∞
x1(t)e−j2πft dt. (1)

(Please note the usage of j for
√
−1. Also note that the author uses a different

definition of Fourier transform that what we learned in Matematikk 4, by
omitting the scalar 1√

2π
.) Their idea was to take closely spaced samples,

and draw the line between them to achieve something that looked like a
continuous plot. However, they didn’t know how to sample from X1 using
discrete computation. They couldn’t see how to compute the integral.

However, they soon realise that the Fourier series (FS) resulted in a sort of
sampled frequency domain. Even though x1(t) is not a periodic signal, only
one period is needed in constructing a FS.
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They made x1(t) periodic by choosing a general period Ty such that Ty is
not smaller than the width of x1(t) (to avoid overlapping), and the resulting
periodic signal y(t).

Then,

y(t) =
∞∑

k=−∞
x1(t− kTy). (2)

Then they proceeded by writing the Fourier series for y(t), given by

y(t) =
∞∑

m=−∞
αmej2πmfyt, fy =

1
Ty

(3)

αm =
∫ Ty/2

−Ty/2
y(t)e−j2πmfyt dt m ∈ Z. (4)

(This is, again, a different form than the definition from Matematikk 4.)
They noticed that the evaluation of αm only used one period, so they could
just replace y(t) by x1(t), the original signal.

Then, they saw that the coefficients αm could be written in terms of the
Fourier transform of x1(t) (with a scale factor):

αm =
1
Ty

X1(mfy) m ∈ Z. (5)

(For details of the calculations, see the original article.)

They had FS coefficients for a periodic version of x1(t) whose copies doesn’t
overlap.

What happens if they choose fy = 1/Ty where Ty < T1 (where T1 is the
width of x1(t)), that is, y(t) has overlapping?

They concluded that what they had the overlapping case. But then, they
were uncertain whether this manufactured signal was y(t) (they called it
y′(t)), and went on to take the FT of the FS they have constructed. They
did some strange calculations involving the dirac delta function, and manage
to conclude that y′(t) = y(t).

To get one period of y(t) to be exactly x1(t), they had to make sure that fre-
quencies of the samples of X1(f) at mfy = m/Ty are close enough together:
Ty > T1. Still, they had to get rid of the continuous signals in both time and
frequency domains in order to be able to do plots.

They didn’t know what X1(f) looked like.
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They thought that it should be possible to reverse the process they had just
used in order to get samples in the time domain: It should be possible to
compute x1(t) if they knew samples of X1(f).

So they considered the periodic function

Y (f) =
∞∑

n=−∞
X1(f − nfs). (6)

They speculated that this function could be represented by a "Fourier series"
were related to samples of time. So they proceed by computing the "Fourier
transform" of X1(f), calling it x′1(t):

x′1(t) =
∫ ∞

−∞
X1(f)e−j2πtf df (7)

which was very close to the time signal

x1(t) =
∫ ∞

−∞
X1(f)ej2πtf df = x′1(−t). (8)

(Actually, an actual inverse Fourier transform will be the "mirror function"
of x′1(t).) Since Y (f) was periodic, they constructed the "FS", letting Ts =
1/fs:

Y (f) =
∞∑

n=−∞
βnej2πnTsf , Ts = 1/fs (9)

βn =
1
fs

∫ fs/2

−fs/2
Y (f)e−j2πnTsf df =

1
fs

x′1(nTs) =
1
fs

x′1(−nTs). (10)

The "FS" coefficients are scaled samples of the reversed time waveform
x′1(t) = x1(−t). Rewriting Y (f) in terms of x1(t) yields

Y (f) =
∞∑

n=−∞

1
fs

x1(−nTs)ej2πnTsf (11)

They didn’t like the idea of using samples in reversed time, so they replaced
−n by n:

Y (f) =
1
fs

∞∑
n=−∞

x1(nTs)e−j2πnTsf (12)

They discovered that as long as they chose fs = 1/Ts > 2fb
1, then the first

period of Y (f) would be exactly X1(f). Thus they could calculate Y (f) =
1With this, they have actually rediscovered Shannon’s sampling theorem, which says

that a complete continuous-time signal x1(t) is recoverable from the time samples x1(nTs)
as long as the chosen sample rate is high enough, ie. fs = 1/Ts > 2fb where fb is the
bandwidth of the signal.
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X1(f) at any frequency they wanted using equation 12, by using discrete
samples of x1(t) for t = . . . ,−2Ts, Ts, 0, Ts, 2Ts, . . .. For any frequency f0 of
which they wanted to calculate Y (f0), they had to ensure that −fb ≤ f0 ≤ fb

(the range over which Y (f) = X1(f)) and fs ≥ 2fb. The bandwidth fb was
unknown, so they had to guess the sample period Ts to use in each case,
this sometimes gave bad results (see next paragraph for more about this).
(The article doesn’t mention how they evaluated the infinite sum, but as
|n| grows, one will eventually sample "outside" of x1(t), hence it suffices to
evaluate a finite number of terms.)

Some notes about sampling from a signal (which the professor told the stu-
dents). As long as x1(t) is sampled fast enough, the "FS" Y (f) is an excellent
candidate for spectral analysis of the original signal, since it represents an
exactly periodic version of X1(f). But when samples are not taken fast
enough, Y (f) will represent a periodic, but aliased version of X1(f). The
term aliasing refers to the overlap in the frequency spectrum which causes
frequencies above fs/2 in the signal to be confused with those in the band
0 ≤ f < fs/2. This explains why the students got some unsatisfactory plots.
They had chosen an arbitrary sample rate, which, in the case of signal x2(t),
wasn’t high enough to encompass its bandwidth. See the article, page 42 for
more detailed information.

The professor also told the students that their result, the FS of Y (f) that
they discovered, was actually very close to the discrete-time Fourier trans-
form (DTFT):

YDTFT(f) =
∞∑

n=−∞
x1(nTs)e−j2πfnTs . (13)

Furthermore, the professor told them that the DTFT allows people to com-
pute a periodic replica of the continuous FT using just time samples. This
enables people to perform meaningful spectral analysis using a computer.

Onward to the DFT

The professor gave the students a new challenge (which, by the way, they
weren’t very happy about): To find a transform to convert back and forth
between discrete sets of samples, between the time and frequency domains.
They could assume that their next signal, x3(t), is finite in time, and that
they could take N samples, x3(0), x3(Ts), x3(2Ts), . . . , x3((N − 1)Ts).

After some pondering and the realisation that they have only N time sam-
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ples, equation 12 could be simplified to

Y (f) =
1
fs

N−1∑
n=0

x3(nTs)e−j2πTsf (14)

where Y (f) is the periodic version of X3(f). The expression for y(t), using
samples at spacing fs = 1/NTs = fs/N now becomes

y(t) =
∞∑

k=−∞
x3(t− kNTs), (15)

and taking samples at times nTs for n = 0, 1, . . . , N − 1:

y(nTs) =
∞∑

k=−∞
x3(nTs − kNTs). (16)

They had a hunch that taking samples from Y (f) with the correct spacing
would give back a function that matched y(t) at the points where y(t) was
originally sampled.

They decided that the periodicity of Y (f) was throwing them off, so they
defined Y3(f) which was equal to Y (f) for −fs

2 ≤ f ≤ fs

2 and 0 elsewhere,
forcing y3(t) to be a continuous-time signal which would be equal to the
original x3(t) if x3(t) had been bandlimited and sampled fast enough. How-
ever, because of potential aliasing, some uncertainty ensued about whether
samples from y3(t) would be equal to samples of x3(t). They decided to
proceed anyway.

They created a periodic extension of y3(t):

w(t) =
∞∑

i=−∞
y3(t− iTw) (17)

where fw = 1/Tw was the sample interval of Y3(f) they would use, where
Tw = MTs for some positive integer M .

They proceeded to take the FS:

w(t) =
∞∑

k=−∞
γke

j2πkfwt (18)

γk =
1

Tw

∫ Tw/2

−Tw/2
w(t)e−j2πkfwt (19)

From past experience, they knew that the FS coefficients could be written
in terms of the FT of the nonperiodic version of the function:

γk =
1

Tw
Y3(kfw), (20)
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and hence

w(t) =
1

Tw

∞∑
k=−∞

Y3(kfw)ej2πkfwt. (21)

They noticed that they could replace Y3(f) by Y (f):

w(t) =
1

Tw

∑
k

Y (kfw)ej2πkfwt (22)

by summing over all k satisfying −fs

2 ≤ kfw ≤ fs

2 .

In order to not be too confused, we recall that:

• x3(t) is the original function, and y(t) is the periodic version of x3(t).

• Y (f) is the FT of y(f), and Y3(f) is the version of Y (f) which is 0
when f < −fs

2 or f > fs

2 .

• y3(t) is the inverse FT of Y3(f), and w(t) is the periodic version of
y3(t). The students’ hope is that w(t) = x3(t) for all the sampled
points t = nTs for integers n.

They evaluated w(t) as the discrete times which were multiples of Ts:

w(nTs) =
1

Tw

∞∑
k=−∞

Y (kfw)ej2πfwnTs . (23)

They discovered that y3(nTs) can be related to βn, the FS coefficients of
Y (f):

βn =
1
fs

∫ fs/2

−fs/2
Y (f)e−j2πnTsf df =

1
fs

x3(nTs) =
1
fs

x3(nTs). (24)

So

y3(nTs) =
∫ fs/2

−fs/2
Y3(f)ej2πfnTs df (25)

=
∫ fs/2

−fs/2
Y (f)ej2πfnTs df (26)

= fsβ−n = x3(nTs). (27)

Equation 26 follows from 25 because Y3(f) = Y (f) for all f in the integral
interval. As we recall, w(t) was a periodic version of y3(t) with spacing
Tw = MTs. y3(t) = x3(t) when t is a multiple of Ts, so

w(nTs) =
∞∑

i=−∞
x3(nTs − iMTs). (28)
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Hence, w(nTs) was a periodic, possibly aliased version of x3(nTs). So, as
long as M ≥ N , the samples w(0), w(Ts), . . . , w((N − 1)Ts) would be the
ones they were looking for and could be calculated from samples of Y (f),
which in turn could be calculated from x3(t) which is equal to w(t). It means
they found their discrete transform!

Setting M = N , and recalling that Tw = MTs and fw = 1
MTs

and equation 22

x3(nTs) = w(NTs) =
1

NTs

∑
k

Y

(
kfs

N

)
ej2πkfsnTs/N (29)

=
1

NTs

∑
k

Y

(
kfs

N

)
ej2πkn/N (30)

for n = 0, 1, . . . , N − 1 and k such that −fs

2 ≤ kfs

N ≤ fs

2 .

For the other way around, they recalled equation 12. Using x3(t) instead
and remembering that x3(nTs) = 0 except for n = 0, 1, . . . , N − 1, they got

Y

(
kfs

N

) N−1∑
n=0

x3(nTs)e−j2πnk/N (31)

for k satisfying −fs

2 ≤ kfs

N ≤ fs

2 . They proceeded to produce some more plots
and presented their results to the professor.

Their result was close to the DTFT and the professor suggested they compute
samples from the DTFT instead, which only differ from equation 31 by a
scale factor:

YDTFT

(
kfs

N

)
=

N−1∑
n=0

x3(nTs)e−j2πnk/N . (32)

For the inverse DTFT:

x3(nTs) =
1
N

∑
k

YDTFT

(
kfs

N

)
ej2πk/N (33)

for n = 0, 1, . . . , N − 1 and k such that −fs

2 ≤ kfs

N ≤ fs

2 .

There is an inconvenience with the condition for k above. It can be slightly
simplified to k = −N−1

2 , . . . , 0, . . . , N−1
2 if N is odd and k = −N

2 , . . . , 0, . . . , N
2

if N is even. To avoid two separate formulas, use the fact that the numbers
YDTFT

(
kfs

N

)
ej2πkn/N are periodic with period N . It means we can compute

for k = 0, 1, . . . , N − 1, no matter if n is odd or even.

We can then use the following inverse DTFT:

x3(nTs) =
1
N

N−1∑
k=0

YDTFT

(
kfs

N

)
ej2πkn/N (34)
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for n = 0, 1, . . . , N − 1.

Equations 32 and 34 are the essence of the discrete Fourier transform.

It is customary to normalize the problem by reindexing the time and fre-
quency axes so that fs = Ts = 1 is used. We then get the most common
form of the DFT:

X(k) =
N−1∑
n=0

x(n)e−j2πk/N , k = 0, 1, 2, . . . , N − 1 (35)

and its inverse transform,

x(n) =
1
N

N−1∑
k=0

X(k)ej2πkn/N , n = 0, 1, 2, . . . , N − 1. (36)

In the end, the students have learned the hard way to derive the DFT from
the starting point of having to plot the frequency spectra of continuous
functions, armed with knowledge of the continuous Fourier transform. The
professor thought this was a good thing, and that they had gained a deeper
understanding of the DFT and will allow them to interpret their results
better.

The end

I will point out that there also exists a presentation of the same article from
last year’s version of this course.

Errata

As last year’s presenter so kindly pointed out: There are several typos in the
equations in the article. Those errors are corrected when I have used the same
formulas in this presentation, but they are repeated here for convenience. (I
cannot guarantee that I haven’t introduced new errors in my presentation,
though.)

• Equation 4, page 38: There should be a 1
Ty

in front of the integral.

• Equation 8, page 39: There shold be an = between Y ′(f) and 1
Ty

.

• Equation 21, page 44: The equation doesn’t match its supposed graph
(Figure 6, page 43). Something along the lines of 0.9 · 1.1−1000t[u(t)−
u(t− 0.0151)] seems to match reasonably well.
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• Top right of page 44: The sequence x3(0), x3(Ts), x3(2Ts), . . . should
end in x3((N − 1)Ts) (the parantheses were missing).

• Top left of page 45: "then Eq. 7 would produce, according to Eq. 3:"
- I (where "I" is last year’s presenter) think he refers to 2 or 9, not 3.
"And, if we used Eq. 7 at times nTs" - probably 2, 9, or 23.

• Equation 41, page 47: The argument to YDTFT should be kfs

N .

Bibliography

J.R.Deller, Jr.: Tom, Dick, and Mary Discover the DFT, IEEE signal pro-
cessing magazine, April 1994.

Åsmund Eldhuset: Article review: Tom, Dick, and Mary Discover the DFT,
TDT24 presentation, 2008.

9


