
CUDA Basics

© NVIDIA Corporation 2009

CUDA
A Parallel Computing Architecture for NVIDIA GPUs

Supports standard
languages and APIs

•C
•OpenCL
•Fortran (PGI)
•DX Compute

Supported on common
operating systems:

•Windows
•Mac OS
•Linux

      DX
Compute

© NVIDIA Corporation 2009 3

Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code
Each thread has an ID that it uses to compute memory
addresses and make control decisions

0 1 2 3 4 5 6 7

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

© NVIDIA Corporation 2009 5

Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

 for (int idx = 0; idx<N; idx++)
 a[idx] = a[idx] + b;

}

void main()
{

 increment_cpu(a, b, N);
}

__global__ void increment_gpu(float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}

void main()
{
 …..
 dim3 dimBlock (blocksize);
 dim3 dimGrid(ceil(N / (float)blocksize));
 increment_gpu<<<dimGrid, dimBlock>>>(ad,bd, N);
}

© NVIDIA Corporation 2009

Outline of CUDA Basics

Basics Memory Management
Basic Kernels and Execution on GPU
Coordinating CPU and GPU Execution
Development Resources

See the Programming Guide for the full API

Basic Memory Management

© NVIDIA Corporation 2009

Memory Spaces

CPU and GPU have separate memory spaces
Data is moved across PCIe bus
Use functions to allocate/set/copy memory on GPU

Very similar to corresponding C functions

Pointers are just addresses
Can’t tell from the pointer value whether the address is on
CPU or GPU
Must exercise care when dereferencing:

Dereferencing CPU pointer on GPU will likely crash
Same for vice versa

© NVIDIA Corporation 2009

GPU Memory Allocation / Release

Host (CPU) manages device (GPU) memory:
cudaMalloc (void ** pointer, size_t nbytes)
cudaMemset (void * pointer, int value, size_t count)
cudaFree (void* pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);
int * d_a = 0;
cudaMalloc((void**)&d_a, nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);

© NVIDIA Corporation 2009

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,
 enum cudaMemcpyKind direction);

returns after the copy is complete
blocks CPU thread until all bytes have been copied
doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

Non-blocking memcopies are provided

© NVIDIA Corporation 2009

Code Walkthrough 1

Allocate CPU memory for n integers
Allocate GPU memory for n integers
Initialize GPU memory to 0s
Copy from GPU to CPU
Print the values

© NVIDIA Corporation 2009

Code Walkthrough 1
#include <stdio.h>

int main()
{
 int dimx = 16;
 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

© NVIDIA Corporation 2009

Code Walkthrough 1
#include <stdio.h>

int main()
{
 int dimx = 16;
 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a)
 {
 printf("couldn't allocate memory\n");
 return 1;
 }

© NVIDIA Corporation 2009

Code Walkthrough 1
#include <stdio.h>

int main()
{
 int dimx = 16;
 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a)
 {
 printf("couldn't allocate memory\n");
 return 1;
 }

 cudaMemset(d_a, 0, num_bytes);
 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

© NVIDIA Corporation 2009

Code Walkthrough 1
#include <stdio.h>

int main()
{
 int dimx = 16;
 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a)
 {
 printf("couldn't allocate memory\n");
 return 1;
 }

 cudaMemset(d_a, 0, num_bytes);
 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

 for(int i=0; i<dimx; i++)
 printf("%d ", h_a[i]);
 printf("\n");

 free(h_a);
 cudaFree(d_a);

 return 0;
}

Basic Kernels and Execution on GPU

© NVIDIA Corporation 2009

CUDA Programming Model

Parallel code (kernel) is launched and executed on a
device by many threads
Threads are grouped into thread blocks
Parallel code is written for a thread

Each thread is free to execute a unique code path
Built-in thread and block ID variables

© NVIDIA Corporation 2009

Thread Hierarchy

Threads launched for a parallel section are
partitioned into thread blocks

Grid = all blocks for a given launch
Thread block is a group of threads that can:

Synchronize their execution
Communicate via shared memory

© NVIDIA Corporation 2009

IDs and Dimensions

Threads:
3D IDs, unique within a block

Blocks:
2D IDs, unique within a grid

Dimensions set at launch time
Can be unique for each grid

Built-in variables:
threadIdx, blockIdx
blockDim, gridDim

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corporation 2009

Code executed on GPU

C function with some restrictions:
Can only access GPU memory
No variable number of arguments
No static variables
No recursion

Must be declared with a qualifier:
__global__ : launched by CPU,

 cannot be called from GPU must return void
__device__ : called from other GPU functions,

 cannot be launched by the CPU
__host__ : can be executed by CPU
__host__ and __device__ qualifiers can be combined

sample use: overloading operators

© NVIDIA Corporation 2009

Code Walkthrough 2

Build on Walkthrough 1
Write a kernel to initialize integers
Copy the result back to CPU
Print the values

© NVIDIA Corporation 2009

__global__ void kernel(int *a)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 a[idx] = 7;
}

Kernel Code (executed on GPU)

© NVIDIA Corporation 2009

Launching kernels on GPU

Launch parameters:
grid dimensions (up to 2D), dim3 type
thread-block dimensions (up to 3D), dim3 type
shared memory: number of bytes per block

for extern smem variables declared without size
Optional, 0 by default

stream ID
Optional, 0 by default

dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);

© NVIDIA Corporation 2009

#include <stdio.h>

__global__ void kernel(int *a)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 a[idx] = 7;
}

int main()
{
 int dimx = 16;
 int num_bytes = dimx*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a)
 {
 printf("couldn't allocate memory\n");
 return 1;
 }

 cudaMemset(d_a, 0, num_bytes);

 dim3 grid, block;
 block.x = 4;
 grid.x = dimx / block.x;

 kernel<<<grid, block>>>(d_a);

 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

 for(int i=0; i<dimx; i++)
 printf("%d ", h_a[i]);
 printf("\n");

 free(h_a);
 cudaFree(d_a);

 return 0;
}

© NVIDIA Corporation 2009

__global__ void kernel(int *a)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 a[idx] = 7;
}

__global__ void kernel(int *a)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 a[idx] = blockIdx.x;
}

__global__ void kernel(int *a)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 a[idx] = threadIdx.x;
}

Kernel Variations and Output

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

© NVIDIA Corporation 2009

Code Walkthrough 3

Build on Walkthruogh 2
Write a kernel to increment n×m integers
Copy the result back to CPU
Print the values

© NVIDIA Corporation 2009

__global__ void kernel(int *a, int dimx, int dimy)
{
 int ix = blockIdx.x*blockDim.x + threadIdx.x;
 int iy = blockIdx.y*blockDim.y + threadIdx.y;
 int idx = iy*dimx + ix;

 a[idx] = a[idx]+1;
}

Kernel with 2D Indexing

© NVIDIA Corporation 2009

int main()
{
 int dimx = 16;
 int dimy = 16;
 int num_bytes = dimx*dimy*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 if(0==h_a || 0==d_a)
 {
 printf("couldn't allocate memory\n");
 return 1;
 }

 cudaMemset(d_a, 0, num_bytes);

 dim3 grid, block;
 block.x = 4;
 block.y = 4;
 grid.x = dimx / block.x;
 grid.y = dimy / block.y;

 kernel<<<grid, block>>>(d_a, dimx, dimy);

 cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

 for(int row=0; row<dimy; row++)
 {
 for(int col=0; col<dimx; col++)
 printf("%d ", h_a[row*dimx+col]);
 printf("\n");
 }

 free(h_a);
 cudaFree(d_a);

 return 0;
}

__global__ void kernel(int *a, int dimx, int dimy)
{
 int ix = blockIdx.x*blockDim.x + threadIdx.x;
 int iy = blockIdx.y*blockDim.y + threadIdx.y;
 int idx = iy*dimx + ix;

 a[idx] = a[idx]+1;
}

© NVIDIA Corporation 2009

Blocks must be independent

Any possible interleaving of blocks should be valid
presumed to run to completion without pre-emption
can run in any order
can run concurrently OR sequentially

Blocks may coordinate but not synchronize
shared queue pointer: OK
shared lock: BAD … can easily deadlock

Independence requirement gives scalability

© NVIDIA Corporation 2009

Blocks must be independent

Thread blocks can run in any order
Concurrently or sequentially
Facilitates scaling of the same code across many devices

Scalability

Coordinating CPU and GPU Execution

© NVIDIA Corporation 2009

Synchronizing GPU and CPU

All kernel launches are asynchronous
control returns to CPU immediately
kernel starts executing once all previous CUDA calls have
completed

Memcopies are synchronous
control returns to CPU once the copy is complete
copy starts once all previous CUDA calls have completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete

Asynchronous CUDA calls provide:
non-blocking memcopies
ability to overlap memcopies and kernel execution

© NVIDIA Corporation 2009

CUDA Error Reporting to CPU

All CUDA calls return error code:
except kernel launches
cudaError_t type

cudaError_t cudaGetLastError(void)
returns the code for the last error (“no error” has a code)

char* cudaGetErrorString(cudaError_t code)
returns a null-terminated character string describing the
error

printf(“%s\n”, cudaGetErrorString(cudaGetLastError()));

© NVIDIA Corporation 2009

CUDA Event API

Events are inserted (recorded) into CUDA call streams
Usage scenarios:

measure elapsed time for CUDA calls (clock cycle precision)
query the status of an asynchronous CUDA call
block CPU until CUDA calls prior to the event are completed
asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);

© NVIDIA Corporation 2009

Device Management

CPU can query and select GPU devices
cudaGetDeviceCount(int* count)
cudaSetDevice(int device)
cudaGetDevice(int *current_device)
cudaGetDeviceProperties(cudaDeviceProp* prop,

 int device)
cudaChooseDevice(int *device, cudaDeviceProp* prop)

Multi-GPU setup:
device 0 is used by default
one CPU thread can control one GPU

multiple CPU threads can control the same GPU
– calls are serialized by the driver

Shared Memory

© NVIDIA Corporation 2009

Shared Memory

On-chip memory
2 orders of magnitude lower latency than global memory
Order of magnitude higher bandwidth than gmem
16KB per multiprocessor

NVIDIA GPUs contain up to 30 multiprocessors

Allocated per threadblock
Accessible by any thread in the threadblock

Not accessible to other threadblocks
Several uses:

Sharing data among threads in a threadblock
User-managed cache (reducing gmem accesses)

© NVIDIA Corporation 2009 38

Using shared memory

Size known at compile time

__global__ void kernel(…)
{
 …
 __shared__ float sData[256];
 …
}

int main(void)
{
 …
 kernel<<<nBlocks,blockSize>>>(…);
 …
}

Size known at kernel launch

__global__ void kernel(…)
{
 …
 extern __shared__ float sData[];
 …
}

int main(void)
{
 …
 smBytes = blockSize*sizeof(float);
 kernel<<<nBlocks, blockSize,

smBytes>>>(…);
 …
}

© NVIDIA Corporation 2009

Example of Using Shared Memory

Applying a 1D stencil:
1D data
For each output element, sum all elements within a radius

For example, radius = 3
Add 7 input elements

radius radius

© NVIDIA Corporation 2009

Implementation with Shared Memory

1D threadblocks (partition the output)
Each threadblock outputs BLOCK_DIMX elements

Read input from gmem to smem
Needs BLOCK_DIMX + 2*RADIUS input elements

Compute
Write output to gmem

“halo” “halo”Input elements corresponding to output

as many as there are threads in a threadblock

© NVIDIA Corporation 2009

Kernel code

__global__ void stencil(int *output, int *input, int dimx, int dimy)
{
 __shared__ int s_a[BLOCK_DIMX+2*RADIUS];

 int global_ix = blockIdx.x*blockDim.x + threadIdx.x;
 int local_ix = threadIdx.x + RADIUS;

 s_a[local_ix] = input[global_ix];

 if (threadIdx.x < RADIUS)
 {
 s_a[local_ix – RADIUS] = input[global_ix – RADIUS];
 s_a[local_ix + BLOCK_DIMX + RADIUS] =

input[global_ix + BLOCK_DIMX + RADIUS];
 }
 __syncthreads();

 int value = 0;
 for(offset = -RADIUS; offset<=RADIUS; offset++)
 value += s_a[local_ix + offset];

 output[global_ix] = value;
}

© NVIDIA Corporation 2009

Thread Synchronization Function

void __syncthreads();
Synchronizes all threads in a thread-block

Since threads are scheduled at run-time
Once all threads have reached this point, execution
resumes normally
Used to avoid RAW / WAR / WAW hazards when
accessing shared memory

Should be used in conditional code only if the
conditional is uniform across the entire thread
block

© NVIDIA Corporation 2009

Memory Model Review

Local storage
Each thread has own local storage
Mostly registers (managed by the compiler)
Data lifetime = thread lifetime

Shared memory
Each thread block has own shared memory

Accessible only by threads within that block
Data lifetime = block lifetime

Global (device) memory
Accessible by all threads as well as host (CPU)
Data lifetime = from allocation to deallocation

© NVIDIA Corporation 2009

Memory Model Review

Thread

Per-thread
Local Storage

Block

Per-block
Shared
Memory

© NVIDIA Corporation 2009

Memory Model Review

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels

© NVIDIA Corporation 2009

Memory Model Review

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

