geny

fedsiy
drisiss
dadvipd
fede494
fafddps
1 ddiq4
v i 4

'

i,

ey

et

2

2

<
—
w
L
—
®

<
o
>
Z

|

Yy

>N
YT Yy
YTV »

Outline

CFD (for turbomachinery)
A good fit for GPUs?

Implementation

Results

Turbomachinery

Thousands of blades
Arranged in rows
Each blade row has a

bespoke blade profile
designed with CFD

Blade row

CFD of a jet engine fan

Blades coloured by
pressure

Divide the volume into cells

O
L
QO
®
=
C
®
p
O
-
S
O
-
i
=

Governing equations for each cell

Governing equations for each cell

Conserve:
 Mass
* Momentum

Example: mass conservation

 Evaluate mass fluxes on each face

Example: mass conservation

* Sum fluxes on faces to find density change in cell

APy = A EF mass

Avol

Example: mass conservation
* Update density

(only 4 of 8 surrounding cells shown)

Similarity of steps

Each step uses data from surrounding nodes — “stencil” operation

Similarity of equations
* For each equation (5 in all):
— Set relevant flux (mass, momentum, energy)

— Sum fluxes
— Update nodes

— (plus smoothing — also stencil
boundary conditions — not stencil)

CPU run times (x86 machines)

Steady approximation — one blade per row
1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours

Unsteady approximation — all blades in row

1 component (1000 blades) 500 Mcells 0.1 M CPU
hours

Engine (4000 blades) PACILES 1 M CPU
hours

Peak FLOPs

300

O
"
Q
L
(.
" 4
5
v
a

O ——0

2003 2004 2005 2006 2007
Release date

Ot

The purpose of GPUs

o
Lo Al

Graphics and scientific computing

GPUs are designed to apply the
same shading function
to many pixels simultaneously

Graphics and scientific computing

GPUs are designed to apply the
same function
to many data simultaneously

Are GPUs a good fit for CFD?

* Our CFD code is:
— SIMD (same functions applied to all cells in"domain)
— Single precision
— Large datasets (c 10M nodes) fit on one 4GB Tesla card

 (bandwith on card is high ¢ 102 GB/s
much slower to/from card c 8 GB/s
and steps in CFD are “memory bound”)

CUDA

* Programming GPUs without the graphics abstraction

e Scalar variables (not graphics-type 4-vectors!)

* Extensions to C (not graphics APIs, eg OPENGL)

CUDA

Programming GPUs without the graphics abstraction
Scalar variables (not graphics-type 4-vectors!)
Extensions to C (not graphics APIs, eg OPENGL)

BUT — porting 15,000 lines of existing FORTRAN CFD code to
CUDA still a lengthy task

Overall strategy

Divide up domain
— each sub-domain to a thread block SEE=E

— update nodes in sub-domain with i
most efficient stencil operation we SEESES

can come up with!

— update sub-domain boundaries
(MPI if needed)

SBLOCK — stencil framework

SBLOCK framework for stencil operations on structured grids:
— Source-to-source compiler

* Takes in high level kernel definitions

* Produces optimised kernels in C or CUDA

Allows new stencils to be implemented quickly

Allows new stencil optimisation strategies to be deployed on
all stencils (without typos!)

SBLOCK

definiion ~

Sl CUDA tomplate -
'--‘-

Example SBLOCK definition

kind "stencil"

bpin = ["a"]

bpout = ["b"”]

lookup = ((1,0, O0), (0, O, O), (1,0, O), (O, 1,0),
(0, 1, 0), (0, O, 1), (O, O, 1))

calc = {"1lvalue": "b",

"rvalue": """sfl*a[0][0][0] +
sfdé* (a[1][0][0] + a[l][O][0] +
af[0][1][0] + a[O][1][O0] +
af[0][0][1] + a[O][O][1])"""}

C implementation

void smooth (float sf, float *a, float *b)
{
for (k=0; k < nk; k++) {
for (j=0; j < nj; J++) {
for (i=0; i < ni; i++) {

b[i000] = sf1*a[i000] +
sfd6* (a[im100] + a[ipl00] +
a[iOm10] + a[iOp10]

+ a[iOOml] + a[iOO0pl]);

CUDA strategy (after Datta et al.)

Each thread in a block reads sub-domain data from global
device memory to SM shared memory (coalesced reads for
maximum bandwidth)

Synch threads

Update nodes in sub-domain using shared memory and
output result back to global memory

CUDA strategy (after Datta et al.)

Each thread in a block reads sub-domain data from global
device memory to SM shared memory (coalesced reads for
maximum bandwidth)

Synch threads

Update nodes in sub-domain using shared memory and
output result back to global memory

But shared memory and max threads per block are limited, so
best plan is to march through sub-domain plane-by-plane...

CUDA strategy

Global memory

Shared memory

o
o
O
@

® © ©

CUDA strategy

Global memory

Shared memory

o
o
O
O

® © ©

Fill shared memory array

CUDA strategy

Global memory

Shared memory

o
o
O
O

® © ©

Evaluate stencil and store result in global memory

CUDA strategy

Global memory

Shared memory

o
o
O
O

® 0 ©

Evaluate stencil and store result in global memory

CUDA strategy

Global memory

Shared memory

o
o
O
O

® 0 ©

Evaluate stencil and store result in global memory

CUDA strategy

Global memory

Shared memory

o
o
O
O

® 0 ©

Evaluate stencil and store result in global memory

CUDA strategy

Global memory

Shared memory

o
o
O
O

® 0 ©

Evaluate stencil and store result in global memory

CUDA strategy

Global memory

Shared memory

o
o
O
O

® 0 ©

Load next row into shared memory

CUDA strategy

Global memory

Shared memory

o
o
O
O

® 0 ©

Load next row into shared memory

CUDA strategy

Global memory

Shared memory

o
o
O
O

® 0 ©

Load next row into shared memory

CUDA strategy

Global memory

o

Shared memory

o
o
O
O
o
5]
o

Evaluate stencil and store result in global memory

CUDA strategy

Global memory

Shared memory

o
o
O
O
o
5]
o

CUDA strategy

Global memory

Shared memory

o
o
O
o
o
5]
o

CUDA strategy

Global memory

Shared memory

o
o
O
o
o
5]
o

CUDA strategy

Global memory

Shared memory

o
Q
o
o
o
5]
o

CUDA strategy

Global memory

Shared memory

o
Q
o
o
o
5]
o

CUDA strategy

Global memory

Shared memory

o
o
o
o
o
o
O

CUDA example

__global void smooth kernel (float sf, float *a d, float *b d)
{

shared float a[l16][5][3];

CUDA example

void smooth kernel (float sf;, float *a d, float *b d)

__global

{
__shared float a[l1l6][5]1[3];

a[i][31[0] = a_d[i0Om10];
a[il[31[1] = a_d[i000];

a[il[31[2] = a_d[i0p10];
__syncthreads ()

CUDA example

void smooth kernel (float sf;, float *a d, float *b d)

__global

{
__shared float a[l1l6][5]1[3];

a[i][31[0] = a_d[i0Om10];
a[il[31[1] = a_d[i000];

a[il[31[2] = a_d[i0p10];
__syncthreads ()

b d[i000] = sfl*a[i][3j][1] +
+ sfdé* (a[i-1][J]1[1] + a[i+1]1[]][1]
+ a[i][3]1[0] + a[i][j][2]
+ a[i][J-1]1[1] + a[i][j+1][1])

Turbostream

CUDA port of existing FORTRAN code (TBLOCK)
15,000 lines FORTRAN

5,000 lines kernel definitions -> 30,000 lines of CUDA
Runs on CPU or multiple GPUs

20x speedup on Tesla C1060 as compared to all cores of a
modern Intel core2 quad.

Turbostream

Turbine geometry Flow solution

Turbostream

9 minutes on a Tesla S870 (4 GPUs)
12 hours on one 2.5GHz CPU core

FORTRAN & CUDA comparison

Impact of GPU accelerated CFD

* Tesla Personal Supercomputer enables
— Full turbine in 10 minutes (not 12 hours)

— One blade (for design) in 2 minutes

* Tesla cluster enables
— Interactive design of blades for first time

— Use of higher accuracy methods at early stage in design
process

Summary

Many science applications fit the SIMD model used in GPUs

CUDA enables science developers to access to NVIDIA GPUs
without cumbersome graphics APIs

Existing codes have to be analysed and re-coded to best fit
the many-core architecture

The speedups are such that this can be worth doing

For our application, the step-change in capability is
revolutionary

More information

WWW.many-core.group.cam.ac.uk

CAMBABRIIN

MbTy-Core. group

