
Dominik Behr | September 15th, 2009

Introduction to OpenCL™
PPAM 2009

| Introduction to OpenCL | September 15th, 20092

What is OpenCL™

Open Computing Language

OpenCL™ is open, royalty-free standard for parallel
programming of heterogenous computing systems.

OpenCL spans range of applications starting from embedded
devices to HPC solutions.

OpenCL standard defines the host API and the programming
language.

Developed by Apple and the Khronos Group

| Introduction to OpenCL | September 15th, 20093

The Khronos Group

http://www.khronos.org/

• The Khronos Group is an industry consortium
• Creating open standards
• Authoring and acceleration of parallel computing, graphics
and dynamic media
• Variety of platforms and devices.

http://www.khronos.org/

| Introduction to OpenCL | September 15th, 20094

OpenCL™ Working Group

• Initially proposed by Apple, serving as specification editor
• Wide industry participation – hardware vendors, OEMs,
middleware vendors, application developers
• Here are some of the companies in the OpenCL working
group:

3DLABS, Activision Blizzard, AMD, Apple, ARM,
Broadcom, Codeplay, Electronic Arts, Ericsson,
Freescale, Fujitsu, GE, Graphic Remedy, HI, IBM,
Intel, Imagination Technologies, Los Alamos
National Laboratory, Motorola, Movidia, Nokia,
NVIDIA, Petapath, QNX, Qualcomm, RapidMind,
Samsung, Seaweed, S3, ST Microelectronics,
Takumi, Texas Instruments, Toshiba and Vivante

| Introduction to OpenCL | September 15th, 20095

What can you do with OpenCL™?

Write accelerated portable code across different devices
and architectures.

Make use of CPUs, GPUs and other processors like DSPs
or Cell BE to accelerate parallel computations.

Enable dramatic speedups for computationally intensive
applications.

| Introduction to OpenCL | September 15th, 20096

OpenCL™ Specification and Implementations

• Version 1.0 ratified on December 8th 2008

• Available at Khronos registry

http://www.khronos.org/registry/cl/

• Multiple implementations becoming available

• Shipped in Mac OS X 10.6 Snow Leopard

• Many software vendors working on applications and
libraries using OpenCL

http://www.khronos.org/registry/cl/

| Introduction to OpenCL | September 15th, 20097

Design of OpenCL™

Host

• personal computer,
embedded system, super
computer

• provides OpenCL API and
compiler

• C/C++

• bindings for other
languages being created

Compute Device

• CPU, GPU, DSP

• executes OpenCL kernels

• kernels written in OpenCL
language

• language based on C99

| Introduction to OpenCL | September 15th, 20098

OpenCL™ Platform Model

Compute Device

Compute
UnitCompute

UnitCompute
UnitCompute

Unit

Host

Compute Device

Compute
UnitCompute

UnitCompute
UnitCompute

Unit

Compute Device

Compute
UnitCompute

UnitCompute
UnitCompute

Unit

Compute Unit

P
ro

c
e
s
s
in

g

E
le

m
e
n
t

P
ro

c
e
s
s
in

g

E
le

m
e
n
t

…

• Host is connected to one or more
Compute Devices
• Compute Device is a collection of one
or more Compute Units
• Which consist of Processing Element
that execute code as SIMD or SPMD

| Introduction to OpenCL | September 15th, 20099

OpenCL™ Execution Model
• Kernel

• Equivalent to C function executed on Compute Device.

• Entry point, arguments, no return value

• Program

• Collection of kernels and functions

• Equivalent to a dynamically loaded library

• Command Queue

• Enqueues kernel invocations and other OpenCL
commands (like memory map/unmap/copy)

• Enqueue in order

• Execute in or out-of order (optionally)

• Event

• Synchronize execution within and between queues in a
context

| Introduction to OpenCL | September 15th, 200910

OpenCL™ Execution Model - NDRange

Data parallel execution:

• Kernels executed across 1, 2 or 3 dimensional two-level
index space called NDRange.

• Kernels are instanced as work-items (“threads”) that are
grouped in work-groups.

• No synchronization between work-groups, they are
independent

• Barriers for synchronizing work-items within work-group

• Choose NDRange appropriate for your problem
dimensions

| Introduction to OpenCL | September 15th, 200911

OpenCL™ Execution Model - NDRange

global size {256,256}

Process 256x256
image, 1 pixel per
work-item

| Introduction to OpenCL | September 15th, 200912

OpenCL™ Execution Model - NDRange

0,0 …

…
31,
31

work-
group

global size {256,256}

Process 256x256
image, 1 pixel per
work-item

| Introduction to OpenCL | September 15th, 200913

OpenCL™ Execution Model - NDRange

0,0 …

…
31,
31

work-
group

0,0 …

… …

… 7,7

work-group

work-
item

global size {256,256}

local
size
{8,8}

Process 256x256
image, 1 pixel per
work-item

| Introduction to OpenCL | September 15th, 200914

OpenCL™ Execution Model - NDRange

• Each work-item is given the same arguments but has
unique local ID within group, and unique global ID.

• Each work-group has unique group ID.

• IDs and sizes are available via get_() functions.

• Global size is multiple of local size.

num_groups * local_size = global_size

local_id + group_id * local_size = global_id

global_size % local_size = 0

| Introduction to OpenCL | September 15th, 200915

OpenCL™ Memory Model

Compute Device

Compute Unit 0 (work-group)

Local Memory

Work-
item0

Private
Memory

Work-
itemN

Private
Memory

Compute Unit N (work-group)

Local Memory

Work-
item0

Private
Memory

Work-
itemN

Private
Memory

Global (and constant) memory

• Private Memory
– accesible only
by work-item on
Processing
Element
• Local Memory –
accesible by
every work-item
in a work-group
• Global Memory
– accessible by
every work-
group, persistent

Runtime copies between
host and global memory Host memory

| Introduction to OpenCL | September 15th, 200916

OpenCL™ Language

OpenCL language is based on C99 with limitations and
extensions.

• Limitations: no recursion, no C99 headers, no bit fields,
no function pointers, no variable length arrays, no byte
addressable stores

• Extensions: vector types, work-items and work-groups,
synchronization, address space qualifiers, image access
functions, conversion and other built in functions

| Introduction to OpenCL | September 15th, 200917

OpenCL™ Language: memory and synchronization

Private memory is like stack or TLS.

Local memory can be accessed and is shared by all work-
items in a work-group.

Synchronization via barrier(CLK_LOCAL_MEM_FENCE|
CLK_GLOBAL_MEM_FENCE);

Will ensure all stores are commited to local | global
memory and program counter of all work-items in the
work-group reached the barrier.

| Introduction to OpenCL | September 15th, 200918

Simple example – Vector add

C function

void

vector_add(float *a,

float *b, float *c,

size_t n)

{

size_t i;

for(i = 0; i < n;i++)

c[i] = a[i] + b[i];

}

| Introduction to OpenCL | September 15th, 200919

Simple example – Vector add

C function

void

vector_add(float *a,

float *b, float *c,

size_t n)

{

size_t i;

for(i = 0; i < n;i++)

c[i] = a[i] + b[i];

}

The loop becomes NDRange

The contents become the

kernel

| Introduction to OpenCL | September 15th, 200920

Simple example – Vector add

C function

void

vector_add(float *a,

float *b, float *c,

size_t n)

{

size_t i;

for(i = 0; i < n;i++)

c[i] = a[i] + b[i];

}

OpenCL™ kernel

__kernel void

vector_add(

__global float *a,

__global float *b,

__global float *c)

{

size_t i;

i = get_global_id(0);

c[i] = a[i] + b[i];

}

| Introduction to OpenCL | September 15th, 200921

API: Platforms, Devices and Contexts

• Installed OpenCL™ runtime library may provide more
than one platform, possibly from multiple vendors.

• Devices queried from the platform.

• Contexts are created using one or more devices.

• Other OpenCL objects created in the context.

| Introduction to OpenCL | September 15th, 200922

API: Memory and Programs

• Memories (buffers, images) are created and replicated
on all devices in context.

• Initialize and access using host pointer, map/unmap,
read/write/copy.

• Programs created from sources or binaries. Compiled for
devices.

| Introduction to OpenCL | September 15th, 200923

API: Queues, Commands, Events and
Synchronization

• OpenCL™ commands are sent to devices via command
queues. More than one queue per device is possible.

• Almost every enqueued command can wait on list of
events and produce an event too.

• Events can be only used in context in which they were
created. Can be used in other queues.

• Flush, Finish, WaitForEvents

• Marker, WaitForEvents , Barrier

Barrier,

| Introduction to OpenCL | September 15th, 200924

OpenCL™ Example

• Enumerate platforms

• Enumerate devices

• Create context

• Create command queue

• Create program

• Allocate and initialize memory

• Set arguments and enqueue kernel

• Sync

• Read results

• Clean up

| Introduction to OpenCL | September 15th, 200925

Anatomy of a simple OpenCL™ program

Enumerate platforms:

clGetPlatformIDs(uPlatforms, &Platform,

&uPlatforms);

Enumerate devices:

clGetDeviceIDs(Platform, CL_DEVICE_TYPE_CPU,

uDevices, &Device, &uDevices);

Create context:

Context = clCreateContext(0, uDevices, &Device,

NULL, NULL, &iErr);

Create command queue

Queue = clCreateCommandQueue(Context, Device, 0,

&iErr);

| Introduction to OpenCL | September 15th, 200926

Anatomy of a simple OpenCL™ program

Create program and kernel

Program = clCreateProgramWithSource(Context, 1,

&pszProgram, &uProgramSize, &iErr);

iErr = clBuildProgram(Program, 0, NULL, "",

NULL, NULL);

Kernel = clCreateKernel(Program,

"vector_add", &iErr);

| Introduction to OpenCL | September 15th, 200927

Anatomy of a simple OpenCL™ program

Allocate and initialize memory

BufA = clCreateBuffer(Context,

CL_MEM_READ_ONLY|CL_MEM_ALLOC_HOST_PTR, uNumbers

* sizeof(cl_int), NULL, &iErr);

pA = (cl_int *)clEnqueueMapBuffer(Queue, BufA,

CL_TRUE, CL_MAP_WRITE, 0, uNumbers *

sizeof(cl_int), 0, NULL, NULL, &iErr);

... initialize contents of BufA

iErr = clEnqueueUnmapMemObject(Queue, BufA,

(void *)pA, 0, NULL, NULL);

… other ways to initialize memory

| Introduction to OpenCL | September 15th, 200928

Anatomy of a simple OpenCL™ program

Set arguments

clSetKernelArg(Kernel, 0, sizeof(BufA), (void
*)&BufA);

clSetKernelArg(Kernel, 1, sizeof(BufB), (void
*)&BufB);

clSetKernelArg(Kernel, 2, sizeof(BufC), (void
*)&BufC);

Invoke kernel

size_t uLocalSize = (uNumbers >
uMaxWorkGroupSize)?uMaxWorkGroupSize:uNumbers;

size_t uGlobalSize = uNumbers;

clEnqueueNDRangeKernel(Queue, Kernel, 1, NULL,
&uGlobalSize, &uLocalSize, 0, NULL, NULL);

| Introduction to OpenCL | September 15th, 200929

Anatomy of a simple OpenCL™ program

Wait and read results

pC = (cl_int *)clEnqueueMapBuffer(Queue, BufC,

CL_TRUE, CL_MAP_READ, 0, uNumbers *

sizeof(cl_int), 0, NULL, NULL, &iErr);

... access results at *pC

clEnqueueUnmapMemObject(Queue, BufC, (void *)pC,

0, NULL, NULL);

and clean up

clReleaseMemObject(BufA); clReleaseMemObject(BufB);

clReleaseMemObject(BufC); clReleaseCommandQueue(Queue);

clReleaseProgram(Program); clReleaseKernel(Kernel);

clReleaseContext(Context);

| Introduction to OpenCL | September 15th, 200930

Multi-Core x86 CPU implementation available NOW!

http://developer.amd.com/streambeta

Submitted for conformance during SIGGRAPH for
Microsoft® Windows® 32-bit, Linux® 32-bit, and Linux®

64-bit

http://developer.amd.com/streambeta
http://developer.amd.com/streambeta

| Introduction to OpenCL | September 15th, 200931

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation in the United State and/or
other jurisdictions. OpenCL is trademark of Apple Inc. used under license to the Khronos Group Inc. Other
names used in this presentation are for identification purposes only and may be trademarks of their
respective owners.

©2009 Advanced Micro Devices, Inc. All rights reserved.

