
Fast approximate inference in hybrid Bayesian

networks using dynamic discretisation

Helge Langseth1, David Marquez2, and Martin Neil2

1 Department of Computer and Information Science,
The Norwegian University of Science and Technology, Norway

2 School of Electronic Engineering and Computer Science,
Queen Mary University of London, London E1 4NS, United Kingdom

Abstract. We consider inference in a Bayesian network that can consist
of a mix of discrete and continuos variables. It is well known that this is
a task that cannot be solved in general using a standard inference algo-
rithms based on the junction-tree. A common solution to this problem
is to discretise the continuous variables to obtain a fully discrete model,
in which standard inference can be performed. The most efficient dis-
cretisation procedure in terms of cost of inference is known as dynamic

discretisation, and was published by Kozlov and Koller in the late 90’s.
In this paper we discuss an already published simplification to that algo-
rithm by Neil et al. The simplification is in practise orders of magnitudes
faster than Kozlov and Koller’s technique, but potentially at the cost of
some lack of precision. We consider the mathematical properties of Neil
et al.’s algorithm, and challenge it by constructing models that are par-
ticularly difficult for that method. Some simple modifications to the core
algorithm are proposed, and the empirical results are very promising, in-
dicating that the simplified procedure is feasible also for very challenging
problems.

1 Introduction

By a hybrid Bayesian network we denote a network where some variables are dis-
crete, others are continuous. It is well known that the exact inference schemes
currently employed (e.g., [1]) only work for some particular classes of hybrid
BNs. The most common strategies for performing inference in a hybrid BN can
roughly be divided into three categories: Firstly, a subset of models (commonly
referred to conditional Gaussian models) allow exact inference.Secondly, approx-
imate inference procedures like stochastic sampling can be employed. Finally, one
can make explicit changes in the representations of the conditional distribution
functions defined for each variable in order to facilitate exact inference. The most
prominent among these alternations is discretisation, i.e., to “translate” all con-
tinuous variables into discrete ones [2]. During discretisation, each new discrete
variable has to be given an adequate number of states to capture the associated
continuous variable sufficiently well, and the tradeoff between model precision
and model complexity is therefore particularly evident during this task.

2

Consider a continuous variable with k continuous parents, and assume we dis-
cretise each variable into m states. Doing so, we create conditional probability
tables with a total size of order O(mk) to represent the discretised model. This
makes a fine-grained discretisation computationally ineffective, even for moder-
ate values of k. Thus, traditional discretisation heuristics like “equal-mass” and
“equal-width” discretisation have been replaced by techniques that use non-

uniform discretisation. Here, a finer discretisation is employed were it pays the
most, an idea pioneered by Kozlov and Koller [3], who aimed at finding a discre-
tised probability density function (pdf) as close to the original pdf as possible
in terms of the KL distance [4]. In the following we consider a pdf over a multi-
variate vector X. We assume that X is continuous, as it is trivial to extend our
discussion to hybrid domains. Let the pdf f(x) be defined on x ∈ Ω ⊆ R

d. Ω is
partitioned into hypercubes (or “subsets”) ωk, k = 1, . . . , t such that ωi∩ωj = ∅
and ∪t

k=1ωk = Ω. A discretisation f̄(x) on f(x) wrt. {ωk}tk=1 is a non-negative
function of x ∈ Ω, constant on each hypercube ωℓ (i.e., f̄(x) = f̄ℓ for constant
f̄ℓ when x ∈ ωℓ), and which integrates to unity (so

∑t

k=1 f̄k · |ωk| = 1, where
we use |ωℓ| =

∫

x∈ωℓ

dx to denote the volume of the hypercube ωℓ). The KL

distance from f to f̄ can be calculated by summing over the partitions of the
discretisation [4, 3], giving

D
(

f ‖ f̄
)

=

t
∑

k=1

∫

x∈ωk

f(x) log

(

f(x)

f̄k

)

dx. (1)

It is easy to verify that given the subsets {ωk}
t
k=1, the discretised pdf closest to

f(x) in KL distance is found by choosing f̄ℓ =
∫

x∈ωℓ

f(x) dx/ |ωℓ|, see [3]. Find-

ing a “good” discretisation of f(x) for x ∈ Ω therefore amounts to determining
the set of hypercubes ωk as defined above.

Define further the notation that f↑

ℓ = maxx∈ωℓ
f(x) and f↓

ℓ = minx∈ωℓ
f(x).

Now, Kozlov and Koller [3] showed that the contribution from each term in the
sum of Equation (1) can be bounded above by

∫

x∈ωℓ

f(x) log

(

f(x)

f̄ℓ

)

dx ≤

[

f↑

ℓ − f̄ℓ

f↑
ℓ − f↓

ℓ

f↓

ℓ log

(

f↓

ℓ

f̄ℓ

)

+
f̄ℓ − f↓

ℓ

f↑
ℓ − f↓

ℓ

f↑

ℓ log

(

f↑

ℓ

f̄ℓ

)]

|ωℓ| .

(2)

This motivates a greedy discretisation strategy, where the following two steps are
repeated until some termination criteria is met: i) Calculate the upper-bound of
the contribution to the total KL distance on each hypercube ωk, k = 1, . . . , t,
using Equation (2), and ii) Partition the hypercube with the highest bound into
two parts.

Kozlov and Koller [3] reported that while this strategy works well for Bayesian
networks without evidence inserted, it can become quite poor when posterior
probabilities are calculated from (low-probability) evidence. This motivates dy-
namic discretisation, where the discretisation process is conducted while taking

3

1 Function dynDiscMarginal

Input : BN B, Evidence ǫ, Query Q.
Output: Approximation of the posterior distribution f(q|ǫ) in B.

2 Ω ← Initial discretisation of X;
3 Y ←X \ ǫ;
4 repeat

5 D ← Discretised version of B using Ω ;
6 Calculate PD(Y |ǫ);
7 foreach variable in Y do

8 Ωi ← sort(Ωi, bestSplit(Ωi, PD(Yi|ǫ));
9 end

10 until converged;
11 return PD(Q|ǫ);

Algorithm 1: Skeleton for the dynamic discretisation-algorithm.

evidence into account. The discretisation is an integral part of the inference al-
gorithm, and the discretisation is done at the level of the cliques, thus ensuring a
close-to-optimal discretisation of the domain as a whole. Unfortunately, though,
this algorithm has computational issues, which have prevented it from being com-
monly used in practice.1 For instance, the algorithm requires re-implementation
of the message passing algorithm for inference (communicating objects called
“weights”, which are used to re-adjust the discretisation when evidence is found
in low-probability regions of the density together with the standard messages), it
uses specialised data structures called binary split partition trees for which the
standard inference operations must be defined, and it must find or approximate
the minimum and maximum values of potentially high-dimensional functions on
each hypercube to utilise the bound in Equation (2).

Neil et al. [5] proposed a refinement of Kozlov and Koller’s work, defining an
algorithm which operates using only the standard inference engine for discrete

variables. The key idea of the algorithm is to discretise each variable separately by
utilising Equation (2) to discretise each variable based on that variable’ approx-
imated posterior marginal distribution. This results in an inference procedure,
which is extremely fast, also for BN models of considerable size.2 The main steps
are given in Algorithm 1: The algorithm takes a BN B over variablesX, evidence
ǫ and a query Q as input, and starts by roughly discretising all variables X. Evi-
dence variables are discretised by defining split-points just below and just above
their observed values; these discretisations will not be refined later. Unobserved
variables, called Y for ease of reference, are initially discretised by dividing their
support into a predefined number of intervals. The discretised version of the

1 To the best of our knowledge, there is no implementation of Kozlov and Koller’s
algorithm publicly available.

2 The dynamic discretisation algorithm [5] is implemented in the AgenaRisk soft-
ware package. A free version of AgenaRisk can be downloaded from http://www.

agenarisk.com/.

4

hybrid BN B is denoted D, and we can use a standard inference engine for dis-
crete Bayesian networks to calculate any posterior distribution in D; PD(Y |ǫ) is
used to explicitly denote that P (Y |ǫ) is calculated in D. The discretisation for
variable Yi (denoted by Ωi) is refined by repeating the following steps: Firstly,
the posterior distribution over Y is calculated in D (variables defined using the
current discretisation). Secondly, in line 8, the discretisation Ωi for Yi is refined
by adding a new split-point at the mid-point of the current interval with the
highest KL bound (calculated using Equation (2)) if this is deemed beneficial;
the actual split-point is found by the external function bestSplit. The iteration
is terminated as soon as a convergence measure is met. In the following we will
examine Algorithm 1 in more detail, and discuss the major differences between
that algorithm and Kozlov and Koller’s work [3].

2 Discretising a single variable

The first important difference between [5] and [3] is that Algorithm 1 uses the

marginal discretised pdf when calculating f↓

ℓ , f
↑

ℓ and f̄ℓ which later are used to
find the best interval to split (Line 8). Kozlov and Koller, on the other hand,
use the (potentially multivariate) continuous functions. Algorithm 1 thus con-
siders the discretised pdf as a step-function (see Fig. 1), where the minimum and

maximum values are easily established: f↓

ℓ for an interval ωℓ is simply defined
as the minimum value obtained by the discretised pdf on ωℓ and its two neigh-
bouring intervals, and f↑

ℓ is found similarly. f̄ℓ is defined as the pdf value at ωℓ,
although special rules are employed if ωℓ holds a mode of the discretised pdf, in
which case f̄ℓ is defined as the average value over the three intervals. We note
that this approach typically will over-estimate the KL bound in Equation (2),
and in particular when the derivative of the true pdf is large in absolute value,
thus leading to slightly higher discretisation effort than optimal in those areas.
Indications of this effect can be seen in Fig. 2, where Part (a) shows the results
of discretising the standard Normal. The optimal discretisation found by sim-
ulated annealing is shown with a solid line, and the results of Algorithm 1 are
shown with a dashed line. The results are not that different in Part (a), which
is based on 10 split-points. However, Part (b) shows the discontinuity points for
a discretisation using 24 split-points; the points chosen by Algorithm 1 are in
the upper row (drawn as circles) and the approximate optimal solution found
by simulated annealing is shown in the lower row (crosses). It is evident that
Algorithm 1 puts less effort than optimal at the tales and close to the mode
of the pdf, and makes the discretisation around ±1 (where f is changing the
fastest) finer than required.

Finally, Fig. 3 shows the KL divergence from a standard Normal distribution
to the discretised version found by Algorithm 1 (solid line) and [3] (dashed line).
The number of intervals used during discretisation is given on the x-axis. For
comparison, we also report the results found by simulated annealing (dotted
line).

5

0 0.4 0.8 1.2 1.6 2
0

0.2

0.4

Fig. 1. Each interval is characterised by its discretised pdf.

−3 −2 −1 0 1 2 3
0

0.2

0.4

−3 −2 −1 0 1 2 3

(a) Discretisation w/ 10 intervals (b) Discontinuity points, 24 splits

Fig. 2. Part (a): The discretised pdf after (approximately) optimal discretisation (solid
line) and the results of Algorithm 1 (dashed line). Part (b): The discontinuity-points
chosen by Algorithm 1 (upper row, circles) and the approximately optimal solution
found by simulated annealing (lower row, crosses).

3 Multivariate distributions

Define the conditional KL divergence from one conditional distribution f(y|x)
to another f̃(y|x) to be

D
(

f(y|x) ‖ f̃(y|x)
)

=

∫

x
f(x)

∫

y
f(y|x) log

f(y|x)

f̃(y|x)
dy dx,

so that we can calculate the KL distance between two joint distributions as

D
(

f(x,y) ‖ f̃(x,y)
)

= D
(

f(x) ‖ f̃(x)
)

+D
(

f(y|x) ‖ f̃(y|x)
)

.

Let us look at the behaviour of Algorithm 1 when we, for simplicity of expo-
sition, consider the case where ǫ = ∅ (extending the results to the general case is
straight forward), and define pa (z) to denote the parents of Z in the Bayesian
network. Now it is easy to verify that the optimal discretisation f̄ minimises

D
(

f(y) ‖ f̄(y)
)

=
∑

i

D
(

f(yi|pa (yi)) ‖ f̄(yi|pa (yi))
)

,

Kozlov and Koller [3] obtains this by looking at the posterior joints at the clique
level during their discretisation process. On the other hand, Algorithm 1 is look-
ing at

∑

iD
(

f(yi) ‖ f̄(yi)
)

, i.e., minimises KL-distances between marginal dis-

tributions, and thereby partly disregards the effect of the correlations between
the random variables during discretisation, which can potentially result in an

6

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

Fig. 3. The KL distance from the true pdf to the discretised pdf as a function of the
number of intervals. The results of the “optimal” discretisation (found by simulated
annealing) is given with a thin dotted line, and shown together with the results obtained
using the true (dashed line) and approximated pdf (solid line) to find f↓and f

↑
ℓ in the

bound (Equation (2)). Note the log-scale on the y-axis.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Fig. 4. Conditional distribution for X|{Y = .1}.

inferior discretisation. To investigate this further, we will now stress-test Algo-
rithm 1 using a simple network consisting of only two nodes, X → Y , but where
the distributions are designed to make the models difficult for Algorithm 1.

3.1 Conditioning on a uniformly distributed variable

Consider a Bayesian network as described above, let X follow a uniform distri-
bution on [0, 1] and let Y |{X = x} ∼ N(µ = x, σ2 = .12). Equation (2) will
determine that there is no benefit from discretising X beyond the initial dis-
cretisation performed in Line 2 of Algorithm 1 (the pdf will remain at f̄(x) = 1
independently of how many intervals the domain ofX is discretised into). We can
easily solve this by simply insisting on always refining the discretisation of every
variable as the algorithm moves along, and use a heuristic like “split the interval

with the highest probability mass through its centre” to guide our discretisation
of X . The results in Fig. 4 have been obtained following this simple heuristic,
and we present the conditional distribution of X |{Y = .1}. The correct result
is a truncated Gaussian with its mode at 0.1, which is in good correspondence
with the obtained results. The vanilla version of the algorithm fails to represent
the correlation between X and Y .

7

f(y|xi) f(y|xi+1)

E[Y |xi] E[Y |xi+1]E[Y |x1] E[Y |xτ]y0

O(st.dev(Y |xi)) O(st.dev(Y |xi+1))

Fig. 5. The original conditional distributions f(y|x) is evaluated for the two points xi

and xi+1; shown with a solid line. Tempered versions of the conditional pdfs are shown
with a dashed line, and the uniform fill-in approximation with dash-dots.

3.2 The resolution problem

We now move to models that are “almost deterministic”, meaning that the
conditional variance Y |{X = x} is small compared to the variance of X . We say
that these models suffer from the resolution problem3, and the difficulties occur
as one tries to populate the conditional probability tables of the discretised
model, i.e., while defining PD(Y |X) in the discretised model D.

Let us start by looking at why this problem arrises, before discussing how it
can be solved. Consider a variable Z with mean µZ and standard deviation σZ ,
where we by Chebyshev’s inequality have for any κ > 0 that

P (|Z − µZ | ≥ κ · σZ) ≤
1

κ2
. (3)

Assume now that we are looking to calculate the conditional probabilities
that are required to define the discretised model. For the intervals ωX = [α, β]
and ωY (defined for X and Y , respectively), we thus need to calculate P (Y ∈
ωY |x ∈ ωX). By simple manipulation we get

P (Y ∈ ωY |x ∈ ωX) ∝

∫

y∈ωY

∫

x∈[α,β]

f(y|x) dy f(x) dx,

which means that we for each y0 ∈ ωY should calculate
∫

x∈[α,β] f(y0|x) f(x) dx.

The integration will in general have to be done numerically, meaning that we
will define a level of granularity, τ , an evaluation set containing τ ordered points

3 The problem was raised in the context of Algorithm 1 by Roger F. Sewell at Cam-
bridge Consultants.

8

{x1, . . . , xτ} for which α = x1 < x2 < x3 < . . . < xτ = β, and a set of constants
(or “weights”) {w1, . . . , wτ}. We then use the approximation

∫

x∈[α,β]

f(y0|x) f(x) dx ≈
τ
∑

i=1

wi · f(y0|xi) f(xi). (4)

Here the values for wi are chosen depending on which numerical integration
scheme is employed (giving rise to composite versions of, e.g., the rectangle rule,
the trapezoid rule, or Milne’s rule for numerical integration). Consider Fig. 5,
where the conditional pds f(y|x) are shown for x = xi and x = xi+1 (solid line).
The length of the area around f(y|xj) which contributes to the integral is of
the order of the standard deviation of Y |{X = xj} (see Equation (3)). Notice
that neither f(y|xi) nor f(y|xi+1) contribute to the evaluation of the integral in
Equation (4) for the choice of y0 in this example. To evaluate Equation (4) with
desired precision, a rule-of-thumb is therefore to choose τ such that

τ ≫
|E[Y |X = α]− E[Y |X = β]|

min {st.dev(Y |X = α), st.dev(Y |X = β)}
. (5)

On the other hand, large values for τ can make the numerical integration ex-
tremely slow, and render the approach unsuitable for practical applications. This
will be the case for models, which are affected by the resolution problem.

Our solution to performing the numerical integration in Equation (4) with
sufficient precision using a limited calculation effort is inspired by tempering [6],
which was developed to enable Markov chain Monte Carlo samplers to operate
efficiently when confronted with multi-modal distributions. Let f̃(y|x, T) be the
tempered version of the conditional pdf f(y|x) at “temperature” T . Formally we
define f̃(y|x, T) = 1

ZT
exp (log [f(y|x)] /T) , where ZT is a function of T chosen

to ensure that f̃(y|x, T) is a density. The tempered distribution is identical to
f(y|x) for T = 1, it approaches a uniform as T grows towards infinity, and
can be seen as a smoothed version of f(y|x) for T -values in-between. As an
example we mention that the tempered version of a Gaussian with variance σ2

at temperature T is a Gaussian with variance T · σ2. Fig. 5 includes tempered
versions of f(y|xi) and f(y|xi+1) drawn with a dashed line. As the tempered
pdfs are “smeared out” versions of the true pdfs, they are easier to integrate
(require a smaller granularity) than the originals. We note that it is not crucial
to have an exact representation of the true pdfs during the first iterations of the
discretisation procedure, when the goal is to roughly find which parts of a domain
that contains probability mass. It is later, as the discretisation gets more refined,
an accurate description of the true pdfs is required. However, at that time the
problems with the numerical integration are also less prominent, because the
discretisation has already reached an acceptable quality. Our plan is therefore
to start the discretisation using a rather high temperature, and gradually cool
the temperature towards unity as the discretisation gets more fine-grained.

Unfortunately, tempering can be time-demanding in situations where the
tempering distribution is not available in analytical form. We therefore approx-
imate the tempering process by what we call a “uniform fill-in”. The uniform

9

fill-in of the conditional distribution f(y|x) for x ∈ [α, β] is simply a mixture
between the original distribution f(y|x) and a uniform distribution on the inter-
val

[

E[Y |X = α],E[Y |X = β]
]

. The result of using a uniform fill-in is shown in
Fig. 5 (dash-dotted line). It resembles tempering in that it “widens” the support
of the integrand in Equation (4), thus initially allows the numerical integration
procedure to operate with a lower granularity. As the discretisation is refined,
less weight is put on the uniform, thereby enabling a faithful representation of
the true distribution as the discretisation process approaches its end. This is
summarised in Algorithm 2, which takes the integration problem and the mix-
ture probability as inputs. The filled-in distribution is defined as f̃(y|x) in Line
2, where U(y; a, b) is used to denote the pdf of the uniform distribution for Y
on [a, b]. τ is then calculated according to the heuristic in Equation (5), but
bounded above by a constant τmax; note that it is Ỹ with pdf f̃(y|x), which is
used to find τ . The evaluation set and the weights are defined in Line 4; here giv-
ing a uniform spread and the trapezoidal rule, but other definitions are possible.
Finally, the results are calculated in Line 5 using Equation (4).

1 Function numericalIntegration

Input : Interval [α, β], pdfs f(x) and f(y|x), y0 ∈ ωY , mixture p.
Output: Numerical approximation of

∫

x∈[α,β]
f(x)f(y0|x) dx.

2 f̃(y|x)← p · U(y;E[Y |X = α],E[Y |X = β]) + (1− p) · f(y|x);

3 τ ← max

{

τmax,
|E[Ỹ |X=α]−E[Ỹ |X=β]|

min{st.dev(Ỹ |X=α),st.dev(Ỹ |X=β)}

}

;

4 x←
[

α, α+ β−α

τ−1
, α+ 2 β−α

τ−1
, . . . , β

]

, w ← β−α

τ

[

1
2
, 1 . . . , 1, 1

2

]

;

5 return
∑τ

i=1 wi · f(xi) · f̃(y0|xi);

Algorithm 2: Skeleton for the uniform fill-in algorithm.

We will end this part by a small simulation study. Consider again the model
X → Y , and let X follow a Normal distribution with mean zero and variance σ2

X .
Further, let Y |{X = x} ∼ N(x, σ2

Y). It follows that the marginal distribution for
Y is N(0, σ2

X + σ2
Y). In Fig. 6 (a) we show the calculated marginal distribution

of Y using Algorithm 1 with σ2
X = 1010 and σ2

Y = 10−6. We chose τ = 8 in
the numerical integration scheme, and conclude that the results are far from
the sought solution. The results using adaptive selection of integration points
(bounded above by τmax = 16) and uniform fill-in are shown in Fig. 6 (b). The
marginal density plot is quite close to the true model, and it is evident that the
adaptions to the algorithm have removed the numerical problems the vanilla-
version of the algorithm were suffering from.

4 Conclusions

In this paper we have discussed an approximative scheme for dynamic discreti-
sation. The method was published in [5], and although it has been well received

10

−3 −2 −1 0 1 2 3
x 10

5

0

1

2

3

4

x 10
−6

−3 −2 −1 0 1 2 3
x 10

5

0

1

2

3

4

x 10
−6

(a)Vanilla version (b) Uniform fill-in and adaptive level selection

Fig. 6. The plots show the marginal distribution for Y after discretisation. Part (a)
gives the results of Algorithm 1, whereas Part (b) shows the results when utilising
uniform fill-in and the adaptive technique for choosing the level of the numerical inte-
gration.

it has not been given a formal evaluation before now. Its distinguishing feature
is that each variable is discretised based only on its marginal posterior distribu-
tion, which is in contrast to the original dynamic discretisation algorithm by [3],
where the all variables in a clique are analysed together.

The simplification can potentially lead to remarkable speed-ups during infer-
ence (Kozlov and Koller’s algorithm is about ten times slower than Algorithm 1
on an example network consisting of only two variables). On the other hand, we
have explained why the results of the simplified approach may sometimes give
inferior results. Sub-optimal discretisation is particularly evident for a variable
having a large marginal variance compared to its conditional variance. We anal-
ysed this problem in detail and proposed a solution which significantly improves
the quality of the results. In conclusion, our results suggest that the approximate
procedure with simple extensions is feasible also for very challenging problems.

References

1. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation. In:
Proceedings of the Sixth Workshop on Uncertainty in Artificial Intelligence. (1990)
169–198

2. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Proceedings of the Twelfth International Conference on
Machine Learning. (1995) 194–202

3. Kozlov, A.V., Koller, D.: Nonuniform dynamic discretization in hybrid networks. In:
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence.
(1997) 314–325

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
New York (1991)

5. Neil, M., Tailor, M., Marquez, D.: Inference in Bayesian networks using dynamic
discretisation. Statistics and Computing 17(3) (2007) 219–233

6. Neal, R.: Sampling from multimodal distributions using tempered transitions.
Statistics and Computing 6 (1996) 353–366

