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Abstract. In this paper we look at statistical models for predicting the outcome of

football matches in a league. That is, our aim is to find a statistical model which,

based on the game-history so far in a season, can predict the outcome of next

round’s matches. Many such models exist, but we are not aware of a thorough com-

parison of the models’ merits as betting models. In this paper we look at some clas-

sical models, extract their key ingredients, and use those as a basis to propose a

new model. The different models are compared by simulating bets being made on

matches in the English Premier League.
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1. Introduction

Association football (also known simply as “football”, and sometimes even “soccer”) is

one of the most popular spectator sports in the world. Everyday, millions of people watch

and discuss football, and one favorite pastime of the football fan is guessing on outcomes

of future games. The motivation can be just for fun, or for making money in a betting

market.

We can also see an increasing number of statistical models being made to perform

game predictions. In this paper we will first review some of these models briefly. Sec-

ondly, since the models have been evaluated on separate datasets (and often with respect

to different target objectives), we will compare the models on a dataset containing games

played in Barclay’s Premier League during the 2011-2012 and 2012-2013 seasons. The

models are primarily intended as a means towards beating the bookmaker and make a

profit, and we will therefore also discuss techniques to decide what amount of money

to ideally put on each available bet. Finally, we will argue that football is a numbers

game, and when traditional prediction models like [6,2,10] only use information about

the final outcome of the game, they loose out on important information that can improve

the predictive ability. As a first step towards more descriptive statistical models, we will

propose a simple model that we discuss in some detail.



2. Predicting football matches

2.1. Classical models for match betting

One of the first thoroughly analyzed models for prediction of results in football matches

in a league was made by Maher in 1982 [6]. He modeled the number of goals team

i scores against team j when playing at home, Xij , as a Poisson distributed variable.

Similarly, the number of goals conceded by team i in the same game, denoted Yij , was

also modeled as a Poisson variable, but with a different parameter. Crucially, he also

assume Xij and Yij to be independent.

Maher continued by assuming that each team i has an attack strength denoted αi and

a defense strength, βi. A high attack-strength indicates that a team scores many goals;

values are normalized so that the average value over the league equals one. On the other

hand, a low value for the defense-strength indicates a tendency to concede only a few

goals. Finally, there is a home field advantage denoted k, which is assumed to be the

same for all teams. The full model now states that the outcome of the game between

Team i and Team j follows the probability distribution

P (Xij = x, Yij = y|α,β, k) = Poisson(x|k · αiβj) · Poisson(y|αjβi).

Here we use Poisson(x|λ) to denote the Poisson probability distribution function with

parameter λ evaluated at x. Maher found maximum likelihood estimators for the param-

eters in his model.

Two fundamental objections have been raised against Maher’s model. Firstly, if

X follows the Poisson distribution, then the the two first central moments are equal,

i.e., E[X ] = Var(X). Karlis and Ntzoufras [4] found that for real game data, the

variance is larger than the expectation, thereby violating the Poisson distribution as-

sumption. We can compensate for this fact by casting Maher’s model into a Bayesian

setting. Let Λ be a random variable from a suitable distribution (e.g., the Gamma-

distribution), and let X |{Λ = λ} ∼ Poisson(λ). Then, by the law of total variance,

Var(X) = E[Λ] + Var(Λ) > E(Λ) = E(X), which therefore is in-line with Karlis and

Ntzoufras observations.1 Secondly, even if the independence assumption is crucial in the

above mentioned model, it appears to go against the layman’s understanding of foot-

ball. A team that is vastly superior to its opponent will show that by both scoring many

goals and at the same time concede very few. Still, thorough examination of results from

many of the major football leagues in Europe indicate that the assumption is not strongly

violated in real match-data [4].

Dixon and Coles [2] proposed two important extensions to Maher’s independence-

model. Firstly, they defined that

P (Xij = x, Yij = y|α,β, k) = τ(x, y) · Poisson(x|k · αiβj) · Poisson(y|αjβi),

where τ(x, y) is a function that makes low-scoring draws (0-0 and 1-1) slightly more

probable, and the results 1-0 and 0-1 slightly less probable than in Maher’s model. This

1Even though many football prediction models have been set in the Bayesian framework, we are unaware

of over-dispersion being used to motivate the model. In the experiments reported in Section 4 we are using

the Bayesian formulation (with inference using MCMC) instead of the likelihood-based formulation originally

suggested.



was motivated by an investigation into the results from 6629 league and cup results in

the period from 1992 to 1995. Secondly, it is argued that it seems unnatural to assume

that a team’s attacking and defensive strengths are constant throughout a season. Both an

important player becoming unavailable for a part of the season either through an injury,

a suspension, or changes made in the transfer window, as well as a fundamental changes

in the playing style, e.g., due to the manager being sacked, can lead to fluctuations in a

teams offensive and defensive abilities. Dixon and Coles [2] therefore proposed a time-

dependent model, where team i’s attacking ability at time t is modeled by a dedicated

parameter αt
i (and similar for the defensive strength). A smoothing function was used to

incorporate a set of historical games when evaluating the game at time t.
Rue and Salvesen [10] extended this idea by defining a random-walk model, with

αt
i|
{

αt′

i

}

∼ N(αt′

i ,
t−t′

τ
σ2) and similar for the defensive strength. τ determines the

“strength of memory”, and is estimated from data.

2.2. Looking behind the results

If a team does not obtain results that are quite as good as had been expected, a mantra

from managers and fans alike is that “we need to look behind the results”. The idea is

that often, a game “should” have been won, had it not been for a couple of unlucky

incidences that totally changed the run of play.2 The idea to look behind the results seems

worthwhile when it comes to building statistical models. While the classical models we

have covered so far were created in an age when information about a football game

was limited to James Alexander Gordon reading the classified football results on BBC

every Saturday evening, we are now in a situation where e.g., Opta3 and Prozone4 offer

extremely detailed statistics from each player’s kick on the ball in close to real-time.

A natural development is thus to extend the classical models for football bet-

ting by taking this vast amount of data into account. A first step along this path is

described in the following, where the ideas of the model by Maher [6] first is ex-

tended by dynamic abilities (in the spirit of Rue and Salvesen [10]), then further en-

hanced by taking FiredShots and ShotsOnTarget into account.5 The structure

of the model is as follows: Firstly, when Team i plays Team j at home at time t, they

will have a number of chances during a game. Their ability to create chances follows

a Poisson distribution with parameter λH
i , Ci,j ∼ Poisson(λH

i ). Now, each chance

may lead to a shot being fired, unless the away team is able to break up the chance.

Team j’s defensive ability at time t, βt
j is driven by a random walk over time, and is

used to model Fi,j , the number of shots fired by Team i towards Team j’s goal, as

Fi,j |{β
t
j, Ci,j} ∼ Binomial(Ci,j , probit(βt

j)). Here we use X ∼ Binomial(N, p) to de-

note that the random variable X follows the Binomial distribution with N trials and

success-probability p. Further, probit(φ) denotes the probability that a standard Gaussian

variable takes a value of φ or larger. A similar model defines Tij , the number of shots on

target. For this quantity, it is the attacking strength of Team i at time t that comes into

play, Ti,j|{α
t
i, Fi,j} ∼ Binomial(Fi,j , probit(αt

i)). Finally, Xij , the number of goals that

2Often, this is said to counter the statement “the league table doesn’t lie”, which is shouted from the roof-

tops by the fans who do not need to look behind the results to find something to cheer them up.
3http://www.optasports.com/
4http://www.prozonesports.com/
5Data has been downloaded from http://football-data.co.uk/.

http://www.optasports.com/
http://www.prozonesports.com/
http://football-data.co.uk/


Team i ends up scoring, is assumed to be determined by a quantity γt
j , which is Team

j’s goal-keeper ability at time t: Xi,j |{γ
t
j , Ti,j} ∼ Binomial(Ti,j , probit(γt

j)). The pro-

cess for modeling the number of goals scored by the away-team in the same match is an

exact mirror-image of the process described above, except that the number of chances

for the away team is determined by a parameter λA
i . Thus, the home-field advantage is

modeled separately for each team, and for team i can be characterized by the fraction

λH
i /λA

i . While the model is still extremely simple (the only addition to the parameter

set of the previous models is the goalie’s ability), we will see in Section 4 that we are

making improvements over the previous models.

3. Money management

When it comes to football betting, the ultimate goal of the bettor is not “to be right”, but

rather to win money. Thus, he is looking for bets where the odds offered by a bookie

is better than the calculated probability for a given outcome implies it should be. It is

therefore rational to bet at an outcome with a low probability p, if the odds ω is “good

enough”. As an example, each of the described models allocated low probabilities (less

than 10%) to Blackburn beating Manchester United at Old Trafford during the 2011-12

season. However, as the odds were as long as ω = 25, a punt may still have been seen as

having value. (As we know, Blackburn ended up winning that game. It was arguably the

biggest upset of the season, and the loss eventually lead to Manchester United missing

out on the title by goal difference.) The crucial quantity is, obviously, the expected gain

per unit at stake, calculated as p · ω − 1.

During a round of games (typically ten games, played in the period from Saturday

to Monday), there may be several bets that have a positive expected profit. The punter

must then be able to balance how much money to put on each of these bets. Consider an

example where two games are available:

Game A: Probability of an away win is p = .30, with odds ω = 3.6.

Game B: Probability of a home win is p = .90, with odds ω = 1.2.

The expected gain per unit stake is p · ω − 1 = 0.08 for both games, and they can

therefore to some extent be seen as equivalent from the punter’s perspective. One may

still argue that the rational behavior is to put a larger percentage of the punter’s bankroll

C on Game B than on Game A, because the probability of winning is higher. On the

other hand, more money must be wagered to potentially win, e.g., 100 credits, thus the

downside for Game B is potentially larger. There are a number of different strategies

to this money management problem, and we will briefly outline some of these solutions

next. To fix ideas, we assume there is a set of possible bets i = 1, . . . , n to wager, each

having probability pi and odds ωi. Further, assume that the punter will allocate ci on

each bet, with
∑n

i=1
ci ≤ C. Let the profit from making bet j be denoted ∆j . This is a

random variable with E[∆j ] = cj(pjωj−1) and variance Var[∆j ] = pj(1−pj)(ωjcj)
2.

The task of the money management procedure is to find reasonable values for each ci.
Typically, one would want to find bets that give a high expected return and with low risk.

We will therefore only consider bets with positive expected profit, E[∆j ] > 0, and call

these feasible. Below we assume all bets i = 1, . . . , n have this property.



Fixed bet: Allocate the same amount to each feasible bet, ci ∝ 1.

Fixed return: Make sure the same winnings can be obtained from each bet. This will

result in lower amounts staked on the high-gain/low-probability outcomes. ci ∝
1/ωi.

Kelly ratio: Kelly [5] proposed to use a decision-theoretic approach to the money man-

agement problem. In this setup, the utility of having an amount C after a bet has

been determined is defined to be lnC, and the utility of going broke is therefore

minus infinity. The expected utility of a bet ci when the bankroll is C is thus

pi · ln(C+ωici)+ (1−pi) · ln(C− ci), which is maximized for ci ← C · pi·ωi−1

ωi−1
.

When this money management strategy is used in Section 4, it is modified so that

the total bets during one round cannot exceed a predefined value C0, which is cho-

sen to be much smaller than the bankroll at the beginning of the simulation. This

is to ensure that a system that looses heavily during the first few rounds is not

excessively punished at a later stage.

Variance-adjusted: Rue and Salvesen [10] looked at the difference between the ex-

pected profit and the variance of that profit, and wanted to minimize this number.

After betting ci, the difference is piωici − pi(1− pi)(ωici)
2, which is minimized

by choosing ci ← (2ωi(1− pi))
−1.

Markowitz portfolio management: The variance-adjusted approach can be seen as a

simplification of Markowitz portfolio management [7]. In this more general frame-

work, one wants to find the allocation of bets ci that in combination maximizes
∑n

i=1
(E[∆i]− νVar[∆i]) under the constraint that the total bets during one round

sums to a predefined value, C0. Here, ν represents the level of risk acceptance

by the punter. The dual representation of the optimization problem is to minimize
∑n

i=1
Var[∆i] under the constraints

∑n

i=1
ci = C0 and

∑n

i=1
E[∆i] = µ, where

now µ takes the role of the risk acceptance parameter. In the experiments reported

in Section 4 we vary µ from µ↓ = (
∑n

i=1
piωi) /n − 1 to µ↑ = maxi piωi − 1.

The low value, µ = µ↓, models the risk-aversive approach, were we only require

the expected return per unit stake of the combined bet to attain the average value

of each bet. µ = µ↑ is the risk-seeking approach, which in practice will force all

stakes to be placed on the single bet with the highest expected return.

4. Empirical results

In this section we compare three basic models for predicting football games, using data

from the English Premier League 2011/2012 and 2012/2013. The prediction system

is based on JAGS: Just another Gibbs sampler [9], which is a program for analyzing

Bayesian hierarchical models using Markov chain Monte Carlo [3]. The probability dis-

tributions over the result of a game (home-win, draw or away-win) is found by sampling

the number of goals scored by both the home-team and the away-team (using the models

described above), then comparing the two to get a sample of the outcome of the match.

This was repeated until we had generated 10.000 samples for each game.

The models are used to simulate betting over the last half of each season (i.e., starting

from round 20), and the odds used are those given by William Hill, which is the biggest

betting company in the UK. Each round (i.e., those during the same weekend or the same

mid-week period) typically consists of ten games, and the betting system predicts the



outcomes of each of them. Next, the money management system is used to choose how

much to wager on each of the bets in that round, and collects the simulated winnings.

Only data from the games that are prior to a round r is made available to the system when

making predictions for round r. This repeats until the season is over, i.e., by letting r run

from 20 until r = 38.

We compare three models: Firstly, we have implemented the Maher model [6],

which is denoted STATIC below. Secondly, the Maher model is extended to incorporate

the dynamic assessment of attack and defense [2,10]. Our implementation uses a Gaus-

sian motion model [10], and is called DYNAMIC. Finally, the model described in Sec-

tion 2.2 is denoted DATAINTENSIVE.

4.1. Results from the 2011/2012 Premier League

The results from the three models using different betting strategies are given in Table 1

and Table 2. The numbers give the bettor’s gain over the full simulation as a percentage

of the total amount betted. Positive numbers thus indicate that the system has made a

profit over the season, and negative values means there has been a loss overall.

Betting strategy

Model Fixed bet Fixed return Kelly Variance Adjusted

STATIC 17.4% 17.4% 23.2% 15.6%

DYNAMIC 22.7% 14.3% 21.3% 12.0%

DATAINTENSIVE 20.3% 24.2% 23.0% 14.3%

Table 1. Results for the Premier League, 2011-2012 using standard betting strategies. The reported values give

the total gains divided by the total bets made over the simulation.

Markowitz strategy

Model Conservative Intermediate Aggressive

STATIC 19.9% 20.2% -10.0%

DYNAMIC 17.9% 30.5% 61.8%

DATAINTENSIVE 17.4% 37.5% 10.5%

Table 2. Results for the Premier League 2011-2012 using Markowitz betting strategies. The Conservative

strategy is to use µ = µ↓ , the Intermediate strategy uses µ = (µ↓ + µ↑)/2, and the Aggressive is defined by

setting µ = µ↑ .

The first observation is that each of the three betting models produce a profit, and

the only combination that looses money is the simplest model (STATIC) combined with

the Aggressive Markowitz strategy for money management. The best result is obtained

by the DYNAMIC model combined with the Aggressive Markowitz strategy, with a gain

of 61.8%. Looking at the details we find that most of the profit was won from two freak

results (Liverpool loosing at home to both WBA and Wigan), and without these games

a considerable loss would have had to be endured. Markowitz’ intermediate strategy

is more robust, and the DATAINTENSIVE model obtains a profit of 37.5% using this

strategy. Again, Liverpool loosing to Wigan is the biggest contributor to the profit, but

now it is accompanied by a total of 36 other winning bets (and 95 loosing bets). Figure 1

shows the robustness of the results on a round-by-round basis. We can see that the best

round gave a profit of approximately 450%, and that all bets are lost during five rounds.
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Figure 1. The histogram shows the spread of gain per round. A gain of −100% means all stakes that round

are lost (this happens 5 times). The system lost money during 11 rounds of the 19 rounds, won money in 7

rounds, and preferred not to bet in one round.
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Figure 2. The odds of each game vs the calculated probability of winning. Only games that lead to betts being

made are shown. Winning bets are shown as green squares, loosing bets are red circles.

Figure 2 shows how each game is evaluated by DATAINTENSIVE. The calculated

probability of a particular outcome is given on the horizontal axis, and the corresponding

odds offered by the book-maker is given on the vertical axis. Note the log-scale. Only

the feasible bets are included in the figure, thus each datapoint is above the diagonal.

Winning bets are given as green squares, loosing bets are shown as red circles. We can see

that the system is able to pick out winning bets also amongst the low-probability results,

but apparently is prone to over-estimating the probability of the events of low-to-medium

probability.

Figure 3 shows how the money management affects the results. All bets being made

by the DATAINTENSIVE model using the intermediate Markowitz strategy are shown in

the plot; calculated probability of a particular outcome is given on the horizontal axis and

the gained credits are given on the vertical axis. All bets above the x-axis thus correspond

to winning bets, and those below the x-axis are loosing bets.

Finally, Figure 4 shows the accumulated winnings by the DATAINTENSIVE model

using the intermediate Markowitz strategy as a function of the game-round. The system

has a loosing behavior until Round 26, then accumulates a profit over the last 12 rounds

of the season.
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Figure 3. The gain of each bet vs the calculated probability of winning. Only games that lead to betts be-

ing made are shown. Winning bets are shown as green squares (positive values), loosing bets are red circles

(negative gains).

20 22 24 26 28 30 32 34 36 38

-30%

0%

30%

60%

Figure 4. The accumulated gain per round of the Premier League 2011-2012 for the DATAINTENSIVE

equipped with the Intermediate Markowitz betting strategy. The values on the y-axis give accumulated win-

nings divided by the accumulated bets being made. Values above zero indicates a winning strategy. At the end

of the season, the system has a profit of 37.5%.

4.2. Results from the 2012/2013 Premier League

Results for the betting season 2012/2013 are given in Table 3.6 These results are unfortu-

nately far less impressive than those of the previous season, and only DATAINTENSIVE

is able to generate a profit (and that is only in combination with the Variance Adjusted

money management strategy). Note that William Hill had an average profit margin of

6.1% during this season, thus loosing less than 6.1% is “decent”. Most of the results

obtained by DATAINTENSIVE in Table 3 are at this level, albeit without making a profit.

Betting strategy

Model Fixed bet Fixed return Kelly Variance Adjusted

STATIC -23.7% -24.9% -27.8% -21.2%

DYNAMIC -17.1% -20.0% -22.9 % -15.9%

DATAINTENSIVE -6.3% -0.7% -3.4% 0.4%

Table 3. Results for the Premier League, 2012-2013

A bookmaker’s goal is to make sure that he will have a profit whatever the outcome

of a game. This is obtained by ensuring that sufficient amounts of bets are put on all

results, thereby “balancing the books”. If one result is over-sold, the bookie will react

by reducing the odds of that outcome and increasing the odds of the under-sold ones.

6Results using the Markowitz strategies, which are similar but even poorer, were left out due to lack of space.



Therefore, bookmakers sometimes value a game differently, and by shopping around for

the best odds (instead of only using a single bookie) will improve the results.7 Utiliz-

ing the odds differences, DATAINTENSIVE with the Variance Adjusted money manage-

ment strategy obtains a profit of 9.1% (which should be compared to the average “profit

margin” of the combined bookmaker at 0.3%).

5. Conclusions and further work

In this paper we have considered the use of different money management techniques

to evaluate and compare some classical methods for predicting the results of football

games. Additionally, we argued that one should try to make models that incorporate

more of the available information describing the games to improve predictions. We have

made a first step in this direction. The effect of using information beyond match results

to characterize a team’s performance is indicated in Figure 5, which shows how the two

models DYNAMIC (solid line) and DATAINTENSIVE (dashed line) assess Aston Villa’s

attacking quality over the season 2011-2012.8 The curves indicate that DYNAMIC is a

“smoothed” version of the estimates by DATAINTENSIVE, and that the latter model is

therefore better at quickly reacting to, e.g., a team’s loss of form.

1 5 10 15 20 25 30 35 38

Figure 5. The attach strength for Aston Villa over the season 2011-2012. The results of DYNAMIC is shown

with a solid black line, whereas the results of DATAINTENSIVE is shown with a dashed grey line.

Although the picture is somewhat unclear, the DATAINTENSIVE model seems to find

better bets than the simpler ones do (Table 1, Table 2, and Table 3). The results are even

more debatable when the models are evaluated using standard statistical techniques, see

Table 4. There is also a discrepancy between the results in Table 4, where DATAINTEN-

SIVE is not clearly superior to the others for the the 2012-2013 season and Table 3 where

it is. Similarly, Table 4, picks DATAINTENSIVE as the best statistical model for the 2011-

2012 season, but this is not as clearly visible from the simulated bets reported in Table 1

and Table 2. Further investigation is therefore needed to better gauge the effect of using

data-intensive models.

There are also several other directions for future research that we will consider. We

plan to start harvesting more match-data to build even richer models. An excellent source

for information is whoscored.com, but a careful analysis of which data dimensions

7Information about which bookmaker offers the best odds for each game outcome is available from a number

of internet-sites. The reported results uses odds captured by betbrain.com on the evening prior to the start

of a round of games.
8As the attack strengths have slightly different interpretations in the two models, we have transformed the

results from DATAINTENSIVE linearly to ensure that both curves have same average and variation.

whoscored.com
betbrain.com


2011/12 season 2012/13 season

Model 0/1-loss Log-loss Brier 0/1-loss Log-loss Brier

STATIC 0.5105 -0.9815 0.5846 0.5211 -0.9883 0.5874

DYNAMIC 0.5053 -0.9804 0.5849 0.5263 -0.9872 0.5862

DATAINTENSIVE 0.5368 -0.9685 0.5791 0.5316 -1.0041 0.5983

Table 4. Model selection criteria for the Premier League 2011-2012 and 2012-2013. The numbers are 0/1-loss

averaged over all games (i.e., accuracy), average log-probability of outcome, and the Brier score.

that are informative must be performed, see for instance [8]. A reasonable next step is

to incorporate other less quantifiable effects. What is, e.g., the psychological effect of

being in a relegation-battle towards the end-of-season? Our analysis will be in the spirit

of [1], but completely data-driven. Similarly, one may consider to quantify the effect of

an injury or suspension of a particular player. A more fundamental problem is to use

historical data to understand and recognize mismatches that can be utilized tactically by

one of the teams, and thereby improve the predictions further. We would also like to look

into how the models can be bootstrapped to be useful also at the beginning of a new

season. The relevance of the historical data is questionable at that time, e.g., due to ins

and out during the transfer window, and other information must be used to enhance the

predictions. Finally, season-bets is an interesting topic: While the result of a single game

is somewhat unpredictable, the results of a full season is potentially easier to foresee.

Placing a bet on, for instance, who will win the league a couple of months before it is

decided may therefore be more beneficial than putting money a single game.
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