Heuristics for two extensions of basic troubleshooting

Helge Langseth Finn Verner Jensen
Department of Computer Science
Aalborg University
email: {hl, fvj}@cs.auc.dk

Abstract. This paper describes efficient probabilistic troubleshooting
of electro-mechanical devices. We relax two of the standard requirements
made to ensure tractability of this task, by allowing cost structures to
depend on the sequence of actions performed so far (conditional cost)
as well as troubleshooting actions to remedy intersecting sets of faults
(dependent actions). Heuristics for these two extensions of basic trou-
bleshooting are proposed and evaluated through empirical studies.

1 Introduction

Assume you are confronted with a malfunctioning device, and you have a set of trou-
bleshooting steps to perform. Some steps are actions which may or may not fix the
problem. We say that these steps have a repair aspect. Other steps are questions which
cannot fix the problem, but may give indications of the causes of the problem; these
have an observation aspect. Some operations have both a repair aspect and an observa-
tion aspect, but these are not considered in this paper. All steps have a cost in terms
of e.g. money or time. The task is to find the cheapest strategy for sequencing the
troubleshooting steps, such that the device is eventually repaired.

To formalize, the system is in some fault state F. The troubleshooter (TS) system
has a list of N possible actions to choose from to remedy the fault, denoted by Aj,
i=1, ..., N. When an action is performed, the system will get to know whether the
action solved the problem (A; = y) or failed (A; = n). There are also M predefined
questions Qj, j =1, ..., M that may be posed. A TS-step is a step in a TS-sequence,
either an action or a question. To each TS-step B; the associated cost is denoted by C;.

Decision-theoretic troubleshooting was studied in [4]. It was extended to the context
of Bayesian networks in [1], where a framework for suggesting sequences of questions,
actions, and configuration changes is provided. By calculating a local efficiency of the
possible repair actions and continuously choosing the one of highest efficiency, a repair
sequence is established. A number of assumptions have to be made to ensure optimality
of the found sequence:

Single fault: Exactly one fault is present in the system. If the fault is identified the
TS-session is ended.

Perfect repair: Actions solve their associated faults with certainty.
No questions: Each TS-step has a repair aspect, but no observation aspect.

Independent actions: If there exists a pair of actions (A, A;j) such that A; can rem-
edy at least one of the faults that A; handles we say that the model has dependent
actions. If no such pair exists the domain has independent actions.

Figure 1: A simple example of a Bayesian troubleshooter. The values of p; = P(A; =y) and
q; = P(Fj = y) are indicated in the figure.

Fixed cost: If the costs of the TS-steps do not depend on the previous TS-steps the
domain has fixed costs. Otherwise, we say the domain has conditional cost.

Given these assumptions the method in [1] finds the optimal sequence of actions. With
respect to questions, a myopic one-step lookahead is suggested, but optimality is then
no longer assured.

In our work we have created a troubleshooter system for a printer domain. A printing
system consists of several components: the application where the printing command is
sent from, the printer driver, the network connection, the server controlling the printer,
the printer itself, etc. In this domain the single fault assumption seems reasonable, so
our work has focused on relaxing the other assumptions. The next section will briefly
give some results from basic troubleshooting. We will then consider heuristic methods
for troubleshooting domains with conditional cost and dependent actions. Methods for
handling questions and non-perfect repairs are presented in [3].

2 Basic troubleshooting

This section will give some basic definitions and results from the theory of troubleshoot-
ing systems. Proofs and further discussion can be found in e.g. [3]. We use the frame-
work of Bayesian networks [2] to model the troubleshooter domain; a simple example
taken from [3] is given in Figure 1. In the example there are 4 possible fault states
named fy, ..., f4. These coincides with the state-space of the random variable F. The
children of F, F;, 1=1, ..., 4, are deterministic indicator variables that take the value
Fi =y if F =f; and F; = n otherwise. The action A; is a child of exactly those faults
that it can remedy, e.g., A, can remedy faults f, and f3. An action A; can only be
successful (A; = y) if one of its parents is in the y-state. The prior distribution over the
states of F reflects the relative frequencies of each of the four faults. The probabilities
for action A; to solve the problem given fault F = f; indicates a combination of the
probability that the action is performed correctly, and how well suited it is to solve the
problem at hand. In this simple example all repairs are perfect, and the probability
P(A; =y) can therefore be calculated by simple summation.

We will assume that the TS-model contains no questions when we state the results
both in this section, and in the remaining of the paper. Troubleshooting with questions
has been studied in e.g. [1, 3].

The goal of a TS-system is to provide a “good” troubleshooting sequence (TSS).
Formally, a sequence S = (A4,...,AN) of actions is called a troubleshooting sequence
if it describes the process of repeatedly performing the next action in the sequence
until an action succeeds (Ayx = y) or until the last action has been performed. How
“good” a TSS is, is judged by the expected cost of repair, ECR. The ECR of a TSS is
expected cost of performing the TSS. A TSS is said to be optimal if it achieves the
minimum ECR of all TSSs. Let e denote arbitrary evidence collected so far during
troubleshooting. If a more specific definition of the collected evidence is needed, e;
denotes the evidence that the first j actions in the sequence (Aj, ..., Ay) have all
failed, e; ={Ai=n|i=1, ..., j}. pi = P(Ai=y/e) is the probability that action A;
solves the problem given the evidence €. € is kept implicit in this definition of p; as
the evidence will be clear from the context. The efficiency of an action A;, ef(A;|€),

is defined as P(A o)
i= y €
VMR 1
- 0

It is easy to verify that if S = (A;, ..., A,) is an optimal TSS of repair actions
with fixed cost, then it must hold that ef(A;|ei_1) > ef(Ai;1/ei_1). As shown by

Theorem 1 below a greedy search based on the efficiency of the actions results in an
optimal TSS given the assumptions in Proposition 1.

ef(Aife) =

Proposition 1 If the following holds
1. The device has N faults f1, ..., fn and N actions Ay, ..., AN.
2. Ezactly one of the faults is present.

3. Each action has a specific probability of repair, P(A; = y|F = f;), and P(A; =
yIF=£) =0 fori#j.

4. The cost Ci of an action does not depend on previous actions.

If ef(A;) < ef(A;) then ef(Ajle) < ef(Aile), where € is any evidence of the type
“Actions Ax, ..., Ay have failed” (excluding A; and A;).

Note that we do not assume perfect repair in this proposition.

Theorem 1 Let S = (A4, ..., AN) be a repair sequence for a troubleshooting problem
fulfilling the conditions in Proposition 1. Assume that S is ordered according to decreas-
ing initial efficiencies ef(Ai|eg). Then S is an optimal repair sequence, and the ECR

can be calculated as N

ECR(S) =) _ (1 — ip]) C; (2)

i=1

Thus, the conditions in Proposition 1 are sufficient to ensure the existence of a polyno-
mial algorithm to find the optimal TSS. If relaxed, however, the problem is intractable,
[6]:

Proposition 2 If we relax any of the following requirements
e No question

e Fized costs

e Independent actions
the problem of finding an optimal TSS becomes NP-hard.

The focus of the remainder of this paper is to generate reasonable approximations
to the optimal TSS in a system with conditional costs or dependent actions. A similar
study of troubleshooting with questions is to be found in [3].

3 Conditional cost

This section examines a TS-model fulfilling all conditions in Proposition 1 except for Re-
quirement 4. Let T = (n(”, TT2)y e W(N)) be a permutation of the numbers 1, ..., N,
and assume that the TSS to be evaluated is given by S = (Ayq), ..., Agny). By con-
ditional cost we mean that the cost of an action depends on the sequence of actions
performed so far, that is, the user can change the cost C,, by performing actions
in a given sequence before doing A). Thus, the cost is a function of the history of

performed actions, Cr,, = fr (Ttm, cee 71(-1,1)) for some known function fr, (-). We
simplify this general problem by enforcing a Markovian property on the cost function,
so that fr (7, ..., 1)) = iy (i 1)), We will think of this as a situation where

a lower cost on a set of actions can be obtained by performing some kind of initial
action first. A simple example from the printer domain is a man sitting in his office
at the 13th floor printing to a printer located in the basement. If the printer is faulty,
he will go to the basement and try to fix the problem. Once there, it seems reasonable
to perform as many operations at the printer’s site as possible to make sure that the
printer is repaired before he leaves; otherwise he would have to take the long journey
once more. Hence, it is cheaper to do an action that must be performed at the printer’s
site if he is already there, i.e., if the previous action also was to be performed in the
basement.

It is assumed that an action can be broken into three distinct parts, the initial
work, the problem-solving work and the finalization work. First, some initial work is
conducted. This makes the user able to perform the “real” action, which is the second
part. The third part amounts to finalizing the action, i.e., reverting the initial work.
The sum of the costs of these parts is the total cost of the action. The cost of the initial
work is C}, the cost of the finalization work is C._ and the cost of the “real work” is
Vi =qef Ci — Cb — Ci,. For simplicity, the initial and finalization costs are denoted Co
and C, if it is not ambiguous. We assume that initial and finalization work can never
solve the problem at hand. The sum C} + C!_ is named the enabling cost of action
A; since taking on that cost enables us to perform the action’s problem-solving work.
In the example above, the initial work of the action “Cycle power on printer” is to go
to the printer. The problem-solving part is to push the cycle power button, and the
finalization work is to go back to the office.

Actions that have the same enabling work will be grouped together, and we will call
such a group of actions a cluster. Cy+ Cq is the enabling cost of all the actions in the
cluster. As soon as this cost is taken, access to all actions in the cluster is gained. We
assume that an action is a member of at most one cluster, and we refer to the cluster of
action A; as cluster(A;). We also impose a “flat” internal structure upon the clusters,
meaning that a cluster is not allowed to contain other clusters. An action that is not
clustered with any other actions is called an atomic action.

The “cluster-framework” essentially means that the cost Cﬁm of action Aﬂm can
be expressed as

(3)

This type of conditional cost problems comes in two flavors. The most delicate
situation is when the user does not have any information about the system’s state
while performing actions located “inside a cluster”, that is, we are not able to check
whether the problem is solved without performing the cluster’s finalization work first.
This is called TS without inside information. If the system’s state can be checked at no
cost at any time during the TS session it is called TS with inside information. In the
example, it is not known if the problem is solved while the person is in the basement
(i.e. “inside the cluster”) since the printing system’s condition should be tested by re-
sending the print-job from the computer at the operator’s office. If, however, he is
connected by mobile phone to a colleague sitting by his computer, print-jobs can be
sent regularly, and we have a situation with inside information.

To implement conditional cost calculations one must consider how to find the ac-
tions that can be grouped together. Then it must be determined when to take the
initialization cost to access the actions within a cluster, and decided when to leave the
cluster. This last step is important since it may be non-optimal to perform very ex-
pensive low-probability actions inside a cluster even though the enabling cost has been
taken. The first part is the simplest one, as all actions with the same enabling work
are considered to make up one cluster. (All operations performed at the printer site are
clustered in the example.) The two other tasks will be considered in the remainder of
this section.

c. — Yo, if cluster(Ar_,) = cluster(Ax,)
O T Gt H Vg, + Cat otherwise

3.1 Calculating the cluster’s efficiency

To allow for the simple greedy approach based on Theorem 1 to be applied, formulas
for the efficiency of a cluster must be established in the same way as (1) defines the
efficiency of an atomic action. When the efficiency is found, we assume we can treat
the cluster of actions as every other action, and decide to enter the cluster whenever
that efficiency is the best one not yet performed. If, e.g.,

ef(Aile) > ef(Cluster|e) > ef(A;le€) (4)

we enter the cluster after performing action A;. As soon as we decide to leave the
cluster, the plan is to continue with action Aj;.

For simplicity of notation we will assume that we have labeled the r actions sharing
the same initial and finalization work as Ay, ..., A;, and that we have ordered them
so that % > %’; for i < j. To give the cluster its correct position in the TSS defined by

(4), we assume we should maximize the cluster’s potential efficiency, i.e. define

def Z}L] P(Ai=yle) 1 Z;;l P(Ai=1y)
ef(Cluster| €) = max k = - max k
K Co+ Y 1v+C T1-Ple) k¥ Co+Y 175+ Cx

(5)

The set of actions {Ay, ..., Ay} that defines the cluster’s efficiency is independent of
the evidence €. Let J denote this set of actions. Not all the actions in a cluster will be
in Jo; the cluster will be partitioned into sets Jo, J1, J2, ... Jo is the set maximizing
(5), J1 consists of the “best” actions that remain in the cluster when the actions in
Jo have been performed, and so on. ef(Cluster | €) as calculated by (5) is thus actually

the efficiency of the “best” set, ef(Jo|€); the efficiencies of the other partitions are
calculated similarly. At any given time the system only needs to keep track of the next
time to enter a cluster. Hence, in practice, only ef(Jo|€) will be calculated initially.
When the actions in Jo have been performed, the efficiency of the cluster with the
remaining actions must be calculated.

3.2 Pruning the selected set

The method outlined above is based on the assumption that the members of the cluster
should be chosen to maximize the cluster’s potential efficiency. This is in general only
an approximation, and this section will consider how to adapt the method to better
handle the special case of TS without inside information.

When the TS system is inside a cluster, it is necessary to be able to compare the
problem-solving actions available within the cluster to the cluster’s finalization work.
The problem may have been solved without the TS-system knowing it, and continuing
troubleshooting is non-optimal in this case. To gain information about the system’s
state, the finalization work of the cluster must be performed. Hence, lacking inside
information gives a motivation for leaving the cluster earlier than what would have
been assumed to be optimal with inside information. As soon as the TS is “outside
the cluster”, the system’s state is acquired at no extra cost, and the TS-session may be
ended. If the problem has not been solved, the efficiency of the remaining actions in the
cluster is to be calculated so that the cluster can be entered again at the appropriate
time. Leaving a cluster prematurely will give the return to the cluster a high efficiency,
and it may therefore force the TS back into the cluster again. The result is that if the
TS is too eager to leave the cluster, it may have to take on additional enabling costs.

In this paper we simplify these considerations by assuming that we can treat the
lacking inside information in the same way as questions are handled in standard trou-
bleshooting (see [3] for a description). Assume the cluster is left after performing the
set of actions {A4, ..., Aq} C Jo. The TS should in principle recalculate the cluster’s
efficiency by (5) and, according to (4), continue with the cluster or atomic action ranked
the highest. In our simplification, we assume that the TS will always return to the clus-
ter if the problem has not been remedied. Furthermore, it is assumed that the set of
actions representing the cluster is not recalculated. As the TS continues, the cluster
will therefore consist of the same actions Jo \ {A1, ..., Aq} as before the cluster was
left. Hence, the gain of leaving the cluster is just the information about the system’s
state. If the TS session is to continue, this will be from the same position as before this
information was acquired. To summarize, we consider the following options:

1. Go outside the cluster to check if the problem is solved. Then continue trou-
bleshooting inside the same cluster.

2. Do the best step inside the cluster, then check the system’s state. Continue by
entering the cluster again.

3. Do not leave the cluster before all actions in 7 are performed.

By plain algebraic manipulation of the definition of ECR it is easy to show that one
should leave the cluster whenever

P Solved > Pe
— 6
Cot+ . ve+Cx ~ Ve (6)

where £ is the next best action to do in 7, and the sum over k is taken over the actions
in Jo that are not yet performed, excluding {. pggjyeq is given by the probability of
having solved the problem without knowing it,

PSolved = Z Pi
Since last check

When there is only one action left inside the cluster, equation (6) is no longer valid.
In this case we compare alternatives 1 and 3 above, and we now leave the cluster
whenever

PSolved -, '~ PSolved (7)
Co+ Cwx Ye
where { is the last action inside the set [Jo that is not yet performed.

If we leave the cluster some time before all the actions in 7, are performed, the
observed cluster efficiency will be lower than the calculated one, since the members of
the cluster were chosen to maximize this ratio. This means that we may have been
too eager to enter the cluster, hence performing troubleshooting in a less than optimal
way. To avoid this, we should consider the problem faced due to lack of information
before deciding to enter the cluster. Therefore, we must find a set which is chosen to
maximize the ratio according to (5), but with the additional requirement that neither
(6) nor (7) should force us to leave the cluster before all actions in the set have been
performed. We approximate this by a simple two-pass algorithm, which first finds the
optimal set without considering lack of information by (5), then prunes this set. The
result of this pruning is then used to approximate the cluster’s efficiency.

3.8 Empirical results

The formulas are implemented and tested on a small troubleshooter with N = 10 causes.
Each cause has one dedicated action that remedies the cause with certainty. There is
only one cluster with more than one action in the troubleshooter model; this cluster
consists of from 5 to ¢ of the actions, while the remaining actions are atomic. All actions
have a total cost selected randomly with expected value 1. We varied the enabling cost
so that it was from 0% to 100% of the total cost, leaving a reduced value for the cost
of the problem-solving part of the action, ;.

The efficiency of the proposed heuristics was examined by comparing it to the results
of normal troubleshooting and the optimal sequence found by an exhaustive search, see
Figure 2. The average relative error (given as the difference of the heuristic ECR and
the exhaustive search result divided by the result of the exhaustive search averaged over
all data-points) is about 1.6% in the reported examples. Empirical results indicate that
the error in the simulations scale fairly well, but the high computational complexity of
the exhaustive search has prevented a thorough investigation at this point.

4 Dependent actions

By dependent actions we mean that the intersection of the parent sets of two actions
is non-empty, i.e. they can both remedy one or more of the same faults. A simple
example is given in Figure 1, where, e.g., both A; and A, can remedy the fault f,. In
this section we consider TS systems with dependent actions, but without conditional
costs.

4.5 : \ 4.5 ‘ ‘
No utilization of CC —— No utilization of CC ——
4 r CC, exhaustive search - — 4+ CC, exhaustive search]

CC, heuristic method ----- CC, heuristic method -----

Total cost
Total cost

2.5 2.5 5
~\
2r . 2r
15 N\ 15
1 : : : : 1 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Part of total cost due to enabling work Part of total cost due to enabling work
a) Average cluster size 5 b) Average cluster size equal to 1.7.

Figure 2: Average cost for the heuristic strategy (dash-dot) compared with the results of
exhaustive search (dashed). The results of not utilizing conditional costs are also included
(solid). Average cluster size are 5 and 1.7 respectively. The sample size is 1.000 samples per
data point. The variance in the simulated estimates can be read of the graph by acknowledging
the fact that the exhaustive search should always supply the superior results.

The standard approach would be to allocate to each action the total probability
of it solving the problem at hand as indicated at the right hand side of Figure 1, and
then to perform the actions one at a time always selecting the next action as the one
with the highest efficiency given the updated knowledge. It is easy to see that this is
not optimal in the case presented in Figure 1 if we assume all costs to be equal to 1.
This greedy approach gives the sequence {A,, A, A3} which has ECR = 1.5, whereas
the optimal sequence is {A3, A} with ECR = 1.45. In this section we will propose a
simple method for handling dependent actions. The idea is to utilize the observation
aspect of the failed actions, and not only use the action’s repair aspect to evaluate it.

Let the scaled efficiency p; of action A; be given by the action’s efficiency divided
by the sum of efficiencies, p; = ef(A-l)/Z}\l:1 ef(A;). S; denotes the partial sequence

after performing the first 1 actions, i.e. S; = (Ai11, ..., An). S = So denotes the
complete TSS. ECR(S; | e;) is the ECR of a partial TSS (A, ..., AN) with evidence
that the actions Ay, ..., A; have failed. The value of information (VOI) captured in

the event {A; = n} will be calculated as the decrease in ECR(S;|e;_7) when {A; = n}
is appended to the knowledge base:

VOI(A;=n|ei1) = ECR(S;|ei_1) — ECR(S;|ey)

This number is the gain in ECR obtained by knowing that A; failed. The price
reduction will be obtained if A; = n, i.e. with a probability T — p;. Hence, we calculate
the “observation-biased cost” of the action as C; —P(A; =n|e;_;) VOI(A;=n]ei_1).
(If C;—P(Ai=mn]e; 1)-VOI(A;=n]e; 1) < 0,asmall value § > 0isused.) Employing
this cost and not C; rewards the observation aspect of the action. To include the repair
aspect as well, we define the observation-biased efficiency as

P(Ai=vlei)

obef(Aileir) = Ci —P(A;=nlei4) - VOI(A;=nlei) 8)

The idea is now to use a greedy approach based on obef(-|€) instead of ef(-|e). This
will change the efficiency allocated to the actions when we have dependent actions. If
the requirements of Proposition 1 hold, however, the two efficiencies are identical.

Calculating obef(A;|e; 1) requires the calculation of ECR(S;|€), which is time
consuming. The rest of this section is devoted to approximating obef(A;|e; 1). An
approximation of the optimal TSS is then found by a greedy search based on the
observation-biased efficiency.

4.1 ECR and Shannon entropy

Recall the definition of Shannon entropy, h(xi, ..., xn) = —ZiN:] x; logxi, where
(x1, ..., xn) defines a probability distribution (see e.g. [7]). The entropy defines
the level of “uniformness” within the probability distribution, as h(-) reaches its max-
imal value of log(N) for x; = 1/N, i =1, ..., N, and the minimal value of 0 when
x; = 1 for one i. It seems intuitive that the ECR of a TS-sequence is in part a function
of the entropy of the scaled efficiencies. If the entropy is 0, we know what action solves
the problem, and the ECR will be given by the cost of the only possible action. If
the entropy is large, we do not have information to separate between the actions. The
following proposition, proven in [5], formalizes this relationship.

Proposition 3 For a troubleshooting model with an optimal sequence S, and where the
entropy of the actions’ scaled efficiencies equals h(-), there exists a sharp lower bound
for the optimal ECR that is a function of h(-) only. This bound is strictly increasing in
h(-).
Similar results have been used for independent actions without the single-fault assump-
tion, see e.g. [8].

We use the lower-bound of Proposition 3 to make an approximation of the value of
the information we can get from a failed action. This approximation is

VOI(A; =n|e; 1) = ECRyyy (Silh(plei 1)) — ECRpoy (Silh(pled)) (9)

were h(p| €) denotes the Shannon entropy of the scaled efficiencies given a knowledge
base € and ECRy . (Si[h(+)) is the lower-bound of the ECR of S; given the Shannon
entropy h(:). A computational scheme for this approximation, where the lower bound
is approximated by a linear function, is given in [5].

4.2 The myopic approach

A computationally simpler approach to the estimation of VOI(-) is to use the myopic
approach. To approximate ECR(S; | €) we order the actions in S; by decreasing efficiency
given €. The ECR is then approximated by

N
ECR(Sile)=) Cj-Plejile) (10)

j=it1
VOI(-) is approximated by using (10) to approximate ECR(S;|e; 1) and ECR(S;|e;).

4.8 Empirical results

In [5] a numerical example using a fairly large model (approximately 80 actions) shows
that a greedy search based on the Shannon-approximation of the obef(-) score reduces
the ECR by more than 25% compared to that of a greedy search based on ef(-). The
myopic approximation of obef(-) reduces the ECR by approximately 15%. Moreover,
the greedy search based on Shannon-entropy was able to find the optimal TSS in Figure
1.

5 Conclusion

In this paper we have proposed heuristics to enable approximative algorithms to trou-
bleshooting problems with conditional cost or dependent actions. The proposed meth-
ods are not exact, so the quality of the approximations are tested through some small
numerical simulation studies. The conditional cost heuristic offers results that do not
degrade the performance considerably as compared to the optimal solution found by
exhaustive search. There are two heuristics for dependent actions; a myopic approach
and one based one Shannon entropy. Both methods outperform the greedy search in
an empirical study.

Acknowledgments

This work was supported by the Danish National Centre for IT Research through grant
#87.2. We would like to thank our project coworkers, in particular Olav Bangsg and
Marta Vomlelova-Sochorova, for interesting discussions.

References

[1] David Heckerman, John S. Breese, and Koos Rommelse. Decision-theoretic troubleshoot-
ing. Communications of the ACM, 38(3):49-56, March 1995. Special issue on real-world
applications on Bayesian networks.

[2] Finn V. Jensen. An introduction to Bayesian Networks. Taylor and Francis, London,
United Kingdom, 1996.

[3] Finn V. Jensen, Claus Skaanning, and Uffe Kjeerulff. The SACSO system for troubleshoot-
ing of printing systems. In these proceedings.

[4] Jayant Kalagnanam and Max Henrion. A comparison of decision analysis and expert rules
for sequential analysis. In P. Besnard and S. Hanks, editors, Uncertainty in Artificial
Intelligence 4, pages 271-281. North-Holland, New York, 1990.

[5] Helge Langseth. Dependent actions: An approximation based on Shannon entropy, 2000.
SACSO internal note.

[6] Marta Sochorova and Jifi Vomlel. Troubleshooting: NP-hardness and solution methods.
In The Proceedings of the Fifth Workshop on Uncertainty Processing, WUPES’2000, 2000.

[7] Joe Whittaker. Graphical models in applied multivariate statistics. Wiley, Chichester,
1990.

[8] Wang Xiaozhong and Roger M. Cooke. Optimal inspection sequence in fault diagnosis.
Reliability Engineering and System Safety, 37:207-210, 1992.

