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Motivation

Previous work on learning a HNBs focused on scientific modeling, i.e.:

• Find an interesting latent structure (based on the BIC score).

We focus on learning a HNB for classification, i.e., taking the technological modeling
approach:

• Build an accurate classifier.

• Provide a semantic interpretation to the latent variables.

– A latent variable aggregates the information from its children which is relevant for
classification.
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Bayesian classifiers

In a probabilistic framework, classification is the calculation of P (C|A). A new instance is
classified as c∗, where:

c∗ = arg min
c∈sp(C)

c′∈sp(C)

L(c, c′)P (C = c′|ā),

and L(c, c′) is the loss function.

The two loss functions which are commonly used:

• The 0/1-loss: L(c, c′) = 1 if c 6= c′ and 0 otherwise.

• The log-loss: L(c, c′) = log P (c′|ā) independently of c.

Both loss functions have the property that the Bayes classifier should classify an instance ā
to c∗ s.t.:

c∗ = arg max
c∈sp(C)

P (C = c|ā)

Learning a classifier therefore reduces to estimating P (C|A) from training examples.
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The score

One approach is to learn a classifier is to use a standard BN learning algorithm, e.g. MDL:

MDL(D|DN ) =
log N
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the last term will dominate as |A| grows large.

Instead we could use predictive MDL:

MDLp(D|DN ) =
log N
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but, in general, this score cannot be calculated efficiently.
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Predictive MDL and the wrapper approach

The argument for using predictive MDL is that it is guaranteed to find the best classifier as
N →∞.

However, as J. H. Friedman (1997) noted:

Good probability estimates are not necessary for good classification; similarly,
low classification error does not imply that the corresponding class probabilities
are being estimated (even remotely) accurately.

As predictive MDL may not be successful for finite datasets, we use the wrapper approach
instead:

• Calculate an approximate accuracy of a given classifier by cross-validation, and use
this as the scoring function (unfortunately, it has a higher computational complexity).
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The basic algorithm I

The algorithm performs a greedy search over the space of HNBs:

• Initiate model search with H0 (the NB model).

• For k = 0, 1, . . .

a. Select H′ ∈ arg maxH∈B(Hk) Score(Hk|DN ).

b. If Score(H ′|DN ) > Score(Hk|DN ), then
Hk+1 ← H′ and k ← k + 1

else
Return Hk.

The search boundary B(Hk) defines the models that are reachable from Hk :

• Each model in B(Hk) has exactly one more hidden variable, say L, than Hk , and

• L is a child of C and L has exactly two children.

When moving from Hk we choose the model in B(Hk) with the highest score.
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The basic algorithm II

Note that:

• The final HNB model has a binary tree structure.

• There is a model in B(Hk) for each possible way to define the cardinalities of each
possible new latent variable!

Pinpoint a few promising models without examining all models in B(Hk):

1. Find a candidate hidden variable.

2. Find the cardinality of the new hidden variable.
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Find a candidate hidden variable

Recall that hidden variables are introduced to relax the independence assumptions of the NB
structure.

For all pairs {X, Y } ⊆ ch(C) we could therefore calculate I(X, Y |C):

I(X, Y |C) =
c,x,y

P (x, y, c) log

�

P (x, y|c)

P (x|c)P (y|c)

�

and choose the pair with highest conditional mutual information given C .

However, I(X, Y |C) is increasing in both |sp(X)| and |sp(Y )| so this strategy would favor
pairs of variables with larger state spaces.

Instead we utilize:

2N · I(X, Y |C)
L
→ χ2

|sp(C)|(|sp(Y )|−1)(|sp(X)|−1)

and pick the pair with highest probability P (Z ≤ 2N · I(X, Y |C)).

HNB workshop – p.8/18



Find the cardinality

We use an algorithm similar to the one by Elidan and Friedman (2001):

1. Initially |sp(L)| =

�

X∈ch(L) |sp(X)|, and each state corresponds to exactly one

combination of the states of the children.

2. Iteratively collapse two states as long as it is “beneficial”.

Here it is important to note that:

• We can now easily infer the data for the hidden variables.

• We can perform a “deterministic propagation” in the hidden part of the model⇒ we
end up with an NB model!

But how do we find the states that should be collapsed?
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Which states to collapse?

Unfortunately, it is computationally hard to measure the benefit of collapsing two states by
using the wrapper approach.

Instead we approximate the benefit using predictive MDLp:

• Two states li and lj should be collapsed into l′ if MDLp(H′) < MDLp(H).

This allows us to exploit that the states are locally decomposable.
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Locally decomposable I

Two states li and lj should be collapsed if:

∆L(li, lj) = MDLp(H,DN )−MDLp(H′,DN ) > 0

Thus,

∆L(li, lj) =
log(N)

2
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and the first term therefore reduces to:
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Locally decomposable II

∆L(li, lj) =
log(N)

2
|sp(C)|+

N
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(log(PB(c(i)|a(i)))− log(PB′(c(i)|a(i)))).

For the second term we note that:

N
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,

where f(D, li, lj) is true if case D includes either state li or lj
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Locally decomposable III

To avoid having to consider all possible combinations of attributes we approximate the
second term:

D∈D:f(D,s′,s′′)

log
PB(cD|aD)

PB′(cD|aD)
≈

log

c∈sp(C)

�

�

N(c, li)

N(li)

� N(c,li)

·

�

N(c, lj)

N(lj)

� N(c,lj)

/

�

N(c, li) + N(c, lj)

N(li) + N(lj)

� N(c,li)+N(c,lj)

�

where N(c, s) and N(s) are the sufficient statistics, e.g.:

N(c, s) =

|D|

i=1

γ(C = c, L = s : Di),

where γ(C = c, L = s : Di) takes on the value 1 if (C = c, L = s) appears in case Di, and
0 otherwise.
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Locally decomposable IV

When combining it all we get:
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log(N)
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Complexity

• Initiate model search with H0 (the NB model).

• For k = 0, 1, . . .

a. Select H′ ∈ arg maxH∈B(Hk) Score(Hk|DN ).

b. If Score(H ′|DN ) > Score(Hk|DN ), then
Hk+1 ← H′ and k ← k + 1

else
Return Hk.

The algorithm can now be shown to have complexity:

O(n2 ·N).
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D
at

a
se

ts
Database # Attributes # Classes #Instances

Train Test

postop 8 3 90 XVal(5)

iris 4 3 150 XVal(5)

monks-1 6 2 124 432

monks-2 6 2 124 432

monks-3 6 2 124 432

glass 9 7 214 XVal(5)

glass2 9 2 163 XVal(5)

diabetes 8 2 768 XVal(5)

heart 13 2 270 XVal(5)

hepatitis 19 2 155 XVal(5)

pima 8 2 768 XVal(5)

cleve 13 2 296 XVal(5)

wine 13 3 178 XVal(5)

thyroid 5 3 215 XVal(5)

ecoli 7 8 336 XVal(5)

breast 10 2 683 XVal(5)

vote 16 2 435 XVal(5)

crx 15 2 653 XVal(5)

australian 14 2 690 XVal(5)

chess 36 2 2130 1066

vehicle 18 4 846 XVal(5)

soybean-large 35 19 562 XVal(5)
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Results

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

NB classification error

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

TAN classification error

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

See5 classification error

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

NN classification error

HNB workshop – p.17/18


	slides.pdf
	Motivation
	Bayesian classifiers
	The score
	Predictive MDL and the wrapper approach
	The basic algorithm I
	The basic algorithm II
	Find a candidate hidden variable
	Find the cardinality
	Which states to collapse?
	Locally decomposable I
	Locally decomposable II
	Locally decomposable III
	Locally decomposable IV
	Complexity
	Data sets
	Results
	Which classifier to choose?

	numerical-results.pdf



