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Motivation

Graphical models are a common tool for decision analysis.

Problems in which continuous and discrete variables
interact are frequent.

A very general solution is the use of MTE models.

When learning from data, the only existing method in the
literature is based on least squares.

The feasibility of ML estimation seems to be worth
studying.
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Bayesian networks

X1

X2 X3

X4 X5

D.A.G.

The nodes represent random variables.

Arc ⇒ dependence.

p(x) =
n

∏

i=1

p(xi |πi) x ∈ ΩX
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Bayesian networks

X1

X2 X3

X4 X5

D.A.G.

The nodes represent random variables.

Arc ⇒ dependence.

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1)p(x5|x3)p(x4|x2, x3) .

H. Langseth et al. ML vs. LS for estimating MTEs



The MTE model (Moral et al. 2001)

Definition (MTE potential)

X: mixed n-dimensional random vector. Y = (Y1, . . . , Yd ),
Z = (Z1, . . . , Zc) its discrete and continuous parts. A
function f : ΩX 7→ R

+
0 is a Mixture of Truncated

Exponentials potential (MTE potential) if for each fixed
value y ∈ ΩY of the discrete variables Y, the potential over
the continuous variables Z is defined as:

f (z) = a0 +
m

∑

i=1

ai exp







c
∑

j=1

b(j)
i zj







for all z ∈ ΩZ, where ai , b(j)
i are real numbers.

Also, f is an MTE potential if there is a partition D1, . . . , Dk

of ΩZ into hypercubes and in each Di , f is defined as
above.
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The MTE model (Moral et al. 2001)

Example

Consider a model with continuous variables X and Y , and
discrete variable Z .

X

Y Z
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The MTE model (Moral et al. 2001)

Example

One example of conditional densities for this model is given by
the following expressions:

f (x) =

{

1.16 − 1.12e−0.02x if 0.4 ≤ x < 4 ,

0.9e−0.35x if 4 ≤ x < 19 .

f (y |x) =



















1.26 − 1.15e0.006y if 0.4≤x<5, 0≤y<13 ,

1.18 − 1.16e0.0002y if 0.4≤x<5, 13≤y<43 ,

0.07 − 0.03e−0.4y + 0.0001e0.0004y if 5≤x<19, 0≤y<5 ,

−0.99 + 1.03e0.001y if 5≤x<19, 5≤y<43 .

f (z|x) =



















0.3 if z = 0, 0.4 ≤ x < 5 ,

0.7 if z = 1, 0.4 ≤ x < 5 ,

0.6 if z = 0, 5 ≤ x < 19 ,

0.4 if z = 1, 5 ≤ x < 19 .
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Learning MTEs from data

In this work we are concerned with the univariate case.

The learning task involves three basic steps:

Determination of the splits into which ΩX will be partitioned.

Determination of the number of exponential terms in the
mixture for each split.

Estimation of the parameters.

H. Langseth et al. ML vs. LS for estimating MTEs



Learning MTEs from data

In this work we are concerned with the univariate case.

The learning task involves three basic steps:

Determination of the splits into which ΩX will be partitioned.

Determination of the number of exponential terms in the
mixture for each split.

Estimation of the parameters.

H. Langseth et al. ML vs. LS for estimating MTEs



Learning MTEs from data

In this work we are concerned with the univariate case.

The learning task involves three basic steps:

Determination of the splits into which ΩX will be partitioned.

Determination of the number of exponential terms in the
mixture for each split.

Estimation of the parameters.

H. Langseth et al. ML vs. LS for estimating MTEs



Learning MTEs from data

In this work we are concerned with the univariate case.

The learning task involves three basic steps:

Determination of the splits into which ΩX will be partitioned.

Determination of the number of exponential terms in the
mixture for each split.

Estimation of the parameters.

H. Langseth et al. ML vs. LS for estimating MTEs



Learning MTEs from data by ML

Why ML?

Well developed core theory.

Good asymptotic properties under regularity conditions.

Several procedures connected to Bayesian networks rely
on ML estimations.

Problems for applying ML to MTEs

The likelihood equations cannot be solved for the MTE
model.

Numerical methods are slow and potentially unstable.

Question

Can the LS estimates be used as approximations to the ML
ones?
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Learning MTEs from data

Starting point

R. Rumí, A. Salmerón, S. Moral (2006) Estimating mixtures of
truncated exponentials in hybrid Bayesian networks. Test
15:397–421.

Estimation based on least squares (LS).

Empiric density approximated by a histogram.

Improved version

V. Romero, R. Rumí, A. Salmerón (2006) Learning hybrid
Bayesian networks using mixtures of truncated exponentials.
International Journal of Approximate Reasoning 42:54-68.

Empiric density approximated by a kernel.
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Learning MTEs from data

The split points are determined observing the extreme and
inflexion points.

The number of points (N) to locate is established
beforehand.
The N higher changes from concavity/convexity or
increase/decrease are selected.

The number of exponential terms can be determined
beforehand or decided during the parameter estimation
procedure.
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Learning MTEs: estimating the parameters by LS

Target density

f (x) = k + aebx + cedx

Assume we have initial estimates a0, b0 and k0.

c and d are estimated by fitting to points (x, w), where

w = y − a0 exp {b0x} − k0 ,

a function
w = c exp {dx} ,

minimising the weighted mean squared error.
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Learning MTEs: estimating the parameters by LS

Taking logarithms, the problem reduces to linear
regression:

ln {w} = ln {c} exp {dx} = ln {c} + dx ,

that can be written as

w∗ = c∗ + dx ,

where c∗ = ln {c} and w∗ = ln {w}.

The solution is

(c∗
, d) = arg min

c∗,d

n
∑

i=1

(w∗
i − c∗ − dxi)

2f (xi) .
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Learning MTEs: estimating the parameters by LS

The solution can be obtained by analytical means:

c∗ =

(
∑n

i=1 wixi f (xi)
)

− d
(
∑n

i=1 xi f (xi)
)2

(
∑n

i=1 xi f (xi)
)

d =

(
∑n

i=1 wi f (xi)
) (

∑n
i=1 xi f (xi)

)

−
(
∑n

i=1 f (xi)
) (

∑n
i=1 wixi f (xi)

)

(
∑n

i=1 xi f (xi)
)2

−
(
∑n

i=1 f (xi)
) (

∑n
i=1 x2

i f (xi )
)
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Learning MTEs: estimating the parameters by LS

Once a, b, c and d are known, we go for k :

f ∗(x) = k + ae{bx} + ce{dx}
,

where k ∈ R should be such that minimises the error

E(k) =

n
∑

i=1

(f (xi) − aebxi − cedxi − k)2f (xi)

n
,

This is optimised for

k̂ =

∑n
i=1(f (xi ) − aebxi − cedxi )f (xi)

∑n
i=1 f (xi)

.
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Learning MTEs: estimating the parameters by LS

The contribution of each exponential term can be refined.
Assume that we have an estimated model

f̂ (x) = â0eb̂0x + ĉ0ed̂0x + k̂0 .

The impact of the second exponential term can be
determined by introducing a factor h in the regression
equation, for a sample (x, y), given by

y = â0eb̂0x + hĉ0ed̂0x + k̂0 ,

and the value of h is computed by least squares, obtaining

h =

∑n
i=1(yi − â0eb̂0xi − k̂0)(ed̂0xi )f (xi)

∑n
i=1 ĉ0e2d̂0xi f (xi)

.
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Initialising a, b and k

The initial values of a, b and k can be arbitrary, but a good
selection of them can speed up the convergence of the
method.

These values can be initialised fitting a curve
y = a exp {bx} to the modified sample by exponential
regression, and computing k as before.

Another alternative is to force the empiric density and the
initial model to have the same derivative.
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Experimental setting

Tested distributions:
Normal.
Log-normal.
χ2.
Beta.
MTE.

Sample size: 1000.
Split points detection:

ML: Manually determined.
LS: Automatic detection.
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Graphical comparison: MTE
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Graphical comparison: Log-normal
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Graphical comparison: χ
2
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Graphical comparison: Normal (2 splits)
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Graphical comparison: Normal (4 splits)
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Graphical comparison: Beta
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Graphical comparison: Beta, kernel fitting
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Comparison in terms of likelihood

Artificial χ
2 Beta Normal-2 Normal-4 Log-normal

ML −2263.132 160.687 −2685.765 −1373.499 −1364.643 −1398.300
LS −2293.473 90.234 −2726.950 −1533.889 −1404.747 −1451.568

Comparison through a two-sided paired t-test

Including all the data: p = 0.02039.

Excluding the Beta: p = 0.05418.
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Conclusions

LS highly dependent on the empirical density (kernel or
histogram).

LS and ML very close except for the Beta case.

ML reaches higher likelihood values.

LS efficient from a computational point of view.
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Ongoing work

Refining LS estimation.

More exhaustive comparison with ML.

Extension to the conditional case.

Possible mixed approach ML and LS.
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