# Maximum Likelihood vs. Least Squares for Estimating Mixtures of Truncated Exponentials

### Helge Langseth<sup>1</sup> Thomas D. Nielsen<sup>2</sup> Rafael Rumí<sup>3</sup> Antonio Salmerón<sup>3</sup>

<sup>1</sup>Department of Computer and Information Science The Norwegian University of Science and Technology, Trondheim (Norway)

> <sup>2</sup>Department of Computer Science Aalborg University, Aalborg (Denmark)

<sup>3</sup>Department of Statistics and Applied Mathematics University of Almería, Almería (Spain)

#### INFORMS, Seattle, November 2007

・ロ・・ (日・・ヨ・・

### Motivation.

- The MTE (Mixture of Truncated Exponentials) model.
- Maximum Likelihood (ML) estimation for MTEs.
- Least Squares (LS) estimation of MTEs.
- Experimental analysis.
- Conclusions.

(日) (同) (E) (E) (E) (E)

### Motivation.

The MTE (Mixture of Truncated Exponentials) model.

- 3 Maximum Likelihood (ML) estimation for MTEs.
- Least Squares (LS) estimation of MTEs.
- Experimental analysis.
- Conclusions.

◆□ > ◆□ > ◆ 三 > ◆ 三 > の < ⊙

### Motivation.

- **O** The MTE (Mixture of Truncated Exponentials) model.
- Maximum Likelihood (ML) estimation for MTEs.
- Least Squares (LS) estimation of MTEs.
- Experimental analysis.
- Conclusions.

### Motivation.

- The MTE (Mixture of Truncated Exponentials) model.
- Maximum Likelihood (ML) estimation for MTEs.
- Least Squares (LS) estimation of MTEs.
- Experimental analysis.
- Conclusions.

### Motivation.

- The MTE (Mixture of Truncated Exponentials) model.
- Maximum Likelihood (ML) estimation for MTEs.
- Least Squares (LS) estimation of MTEs.
- Experimental analysis.
- Conclusions.

### Motivation.

- The MTE (Mixture of Truncated Exponentials) model.
- Maximum Likelihood (ML) estimation for MTEs.
- Least Squares (LS) estimation of MTEs.
- Experimental analysis.
- Conclusions.

# **Motivation**

### • Graphical models are a common tool for decision analysis.

- Problems in which continuous and discrete variables interact are frequent.
- A very general solution is the use of MTE models.
- When learning from data, the only existing method in the literature is based on least squares.
- The feasibility of ML estimation seems to be worth studying.

### **Motivation**

- Graphical models are a common tool for decision analysis.
- Problems in which continuous and discrete variables interact are frequent.
- A very general solution is the use of MTE models.
- When learning from data, the only existing method in the literature is based on least squares.
- The feasibility of ML estimation seems to be worth studying.

(日) (同) (E) (E) (E) (E)

- Graphical models are a common tool for decision analysis.
- Problems in which continuous and discrete variables interact are frequent.
- A very general solution is the use of MTE models.
- When learning from data, the only existing method in the literature is based on least squares.
- The feasibility of ML estimation seems to be worth studying.

(日) (同) (E) (E) (E) (E)

- Graphical models are a common tool for decision analysis.
- Problems in which continuous and discrete variables interact are frequent.
- A very general solution is the use of MTE models.
- When learning from data, the only existing method in the literature is based on least squares.
- The feasibility of ML estimation seems to be worth studying.

- Graphical models are a common tool for decision analysis.
- Problems in which continuous and discrete variables interact are frequent.
- A very general solution is the use of MTE models.
- When learning from data, the only existing method in the literature is based on least squares.
- The feasibility of ML estimation seems to be worth studying.

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

## **Bayesian networks**



D.A.G.

- The nodes represent random variables.
- Arc  $\Rightarrow$  dependence.

$$p(\mathbf{x}) = \prod_{i=1}^n p(x_i | \pi_i) \ \mathbf{x} \in \Omega_{\mathbf{X}}$$

・ロト ・回ト ・ヨト ・ヨト

### **Bayesian networks**



D.A.G.

- The nodes represent random variables.
- Arc  $\Rightarrow$  dependence.

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_5|x_3)p(x_4|x_2, x_3)$ .

< 回 > < E > < E

#### Definition (MTE potential)

X: mixed *n*-dimensional random vector. Y = (Y<sub>1</sub>,..., Y<sub>d</sub>),
 Z = (Z<sub>1</sub>,...,Z<sub>c</sub>) its discrete and continuous parts. A function f : Ω<sub>X</sub> → ℝ<sub>0</sub><sup>+</sup> is a Mixture of Truncated
 Exponentials potential (MTE potential) if for each fixed value y ∈ Ω<sub>Y</sub> of the discrete variables Y, the potential over the continuous variables Z is defined as:

$$f(\mathbf{z}) = a_0 + \sum_{i=1}^m a_i \exp\left\{\sum_{j=1}^c b_i^{(j)} z_j
ight\}$$

for all  $\mathbf{z} \in \Omega_{\mathbf{Z}}$ , where  $a_i$ ,  $b_i^{(j)}$  are real numbers.

Also, *f* is an MTE potential if there is a partition *D*<sub>1</sub>,..., *D<sub>k</sub>* of Ω<sub>Z</sub> into hypercubes and in each *D<sub>i</sub>*, *f* is defined as above.

#### Definition (MTE potential)

X: mixed *n*-dimensional random vector. Y = (Y<sub>1</sub>,..., Y<sub>d</sub>),
 Z = (Z<sub>1</sub>,...,Z<sub>c</sub>) its discrete and continuous parts. A function f : Ω<sub>X</sub> → ℝ<sub>0</sub><sup>+</sup> is a Mixture of Truncated
 Exponentials potential (MTE potential) if for each fixed value y ∈ Ω<sub>Y</sub> of the discrete variables Y, the potential over the continuous variables Z is defined as:

$$f(\mathbf{z}) = a_0 + \sum_{i=1}^m a_i \exp\left\{\sum_{j=1}^c b_i^{(j)} z_j
ight\}$$

for all  $\mathbf{z} \in \Omega_{\mathbf{Z}}$ , where  $a_i$ ,  $b_i^{(j)}$  are real numbers.

Also, *f* is an MTE potential if there is a partition *D*<sub>1</sub>,..., *D<sub>k</sub>* of Ω<sub>Z</sub> into hypercubes and in each *D<sub>i</sub>*, *f* is defined as above.

#### Example

Consider a model with continuous variables X and Y, and discrete variable Z.



・ロ・・ (日・・ (日・・ (日・)

#### Example

One example of conditional densities for this model is given by the following expressions:

 $f(x) = \begin{cases} 1.16 - 1.12e^{-0.02x} & \text{if } 0.4 \le x < 4 \\ 0.9e^{-0.35x} & \text{if } 4 < x < 19 \end{cases}.$ 

#### Example

One example of conditional densities for this model is given by the following expressions:

 $f(x) = \begin{cases} 1.16 - 1.12e^{-0.02x} & \text{if } 0.4 \le x < 4 \\ 0.9e^{-0.35x} & \text{if } 4 < x < 19 \end{cases}.$  $f(y|x) = \begin{cases} 1.26 - 1.15e^{0.006y} \\ 1.18 - 1.16e^{0.0002y} \\ 0.07 - 0.03e^{-0.4y} + 0.0001e^{0.0004y} \\ -0.99 + 1.03e^{0.001y} \end{cases}$ if  $0.4 < x < 5, 0 \le y < 13$ , if 0.4 < x < 5, 13 < y < 43, if  $5 < x < 19, 0 \le y < 5$ , if 5 < x < 19, 5 < y < 43.

### Example

One example of conditional densities for this model is given by the following expressions:

$$f(x) = \begin{cases} 1.16 - 1.12e^{-0.02x} & \text{if } 0.4 \le x < 4 \ , \\ 0.9e^{-0.35x} & \text{if } 4 \le x < 19 \ . \end{cases}$$

$$f(y|x) = \begin{cases} 1.26 - 1.15e^{0.006y} & \text{if } 0.4 \le x < 5, 0 \le y < 13 \ , \\ 1.18 - 1.16e^{0.0002y} & \text{if } 0.4 \le x < 5, 13 \le y < 43 \ , \\ 0.07 - 0.03e^{-0.4y} + 0.0001e^{0.0004y} & \text{if } 5 \le x < 19, 0 \le y < 5 \ , \\ -0.99 + 1.03e^{0.001y} & \text{if } 5 \le x < 19, 5 \le y < 43 \ . \end{cases}$$

$$f(z|x) = \begin{cases} 0.3 & \text{if } z = 0, \ 0.4 \le x < 5 \ , \\ 0.7 & \text{if } z = 1, \ 0.4 \le x < 5 \ , \\ 0.6 & \text{if } z = 0, \ 5 \le x < 19 \ , \\ 0.4 & \text{if } z = 1, \ 5 \le x < 19 \ . \end{cases}$$

The learning task involves three basic steps:

- Determination of the splits into which Ω<sub>X</sub> will be partitioned.
- Determination of the number of exponential terms in the mixture for each split.
- Estimation of the parameters.

・ロト ・回ト ・ヨト ・ヨト

The learning task involves three basic steps:

- Determination of the splits into which  $\Omega_X$  will be partitioned.
- Determination of the number of exponential terms in the mixture for each split.
- Estimation of the parameters.

・ロ・・ (日・・ (日・・ (日・)

The learning task involves three basic steps:

- Determination of the splits into which  $\Omega_X$  will be partitioned.
- Determination of the number of exponential terms in the mixture for each split.
- Estimation of the parameters.

(ロ) (同) (E) (E) (E)

The learning task involves three basic steps:

- Determination of the splits into which  $\Omega_X$  will be partitioned.
- Determination of the number of exponential terms in the mixture for each split.
- Estimation of the parameters.

・ロ・・ (日・・ (日・・ (日・)

### Why ML?

- Well developed core theory.
- Good asymptotic properties under regularity conditions.
- Several procedures connected to Bayesian networks rely on ML estimations.

#### Problems for applying ML to MTEs

- The likelihood equations cannot be solved for the MTE model.
- Numerical methods are slow and potentially unstable.

#### Question

Can the LS estimates be used as approximations to the ML ones?

・ロン ・四 ・ ・ ヨン ・ ヨン

### Why ML?

- Well developed core theory.
- Good asymptotic properties under regularity conditions.
- Several procedures connected to Bayesian networks rely on ML estimations.

#### Problems for applying ML to MTEs

- The likelihood equations cannot be solved for the MTE model.
- Numerical methods are slow and potentially unstable.

#### Question

Can the LS estimates be used as approximations to the ML ones?

・ロン ・四 ・ ・ ヨン ・ ヨン

### Why ML?

- Well developed core theory.
- Good asymptotic properties under regularity conditions.
- Several procedures connected to Bayesian networks rely on ML estimations.

#### Problems for applying ML to MTEs

- The likelihood equations cannot be solved for the MTE model.
- Numerical methods are slow and potentially unstable.

#### Question

Can the LS estimates be used as approximations to the ML ones?

### Why ML?

- Well developed core theory.
- Good asymptotic properties under regularity conditions.
- Several procedures connected to Bayesian networks rely on ML estimations.

### Problems for applying ML to MTEs

- The likelihood equations cannot be solved for the MTE model.
- Numerical methods are slow and potentially unstable.

#### Question

Can the LS estimates be used as approximations to the ML ones?

### Why ML?

- Well developed core theory.
- Good asymptotic properties under regularity conditions.
- Several procedures connected to Bayesian networks rely on ML estimations.

### Problems for applying ML to MTEs

- The likelihood equations cannot be solved for the MTE model.
- Numerical methods are slow and potentially unstable.

#### Question

Can the LS estimates be used as approximations to the ML ones?

(ロ) (同) (E) (E) (E)

### Why ML?

- Well developed core theory.
- Good asymptotic properties under regularity conditions.
- Several procedures connected to Bayesian networks rely on ML estimations.

### Problems for applying ML to MTEs

- The likelihood equations cannot be solved for the MTE model.
- Numerical methods are slow and potentially unstable.

#### Question

Can the LS estimates be used as approximations to the ML ones?

R. Rumí, A. Salmerón, S. Moral (2006) Estimating mixtures of truncated exponentials in hybrid Bayesian networks. *Test* **15**:397–421.

- Estimation based on least squares (LS).
- Empiric density approximated by a histogram.

#### Improved version

V. Romero, R. Rumí, A. Salmerón (2006) Learning hybrid Bayesian networks using mixtures of truncated exponentials. *International Journal of Approximate Reasoning* **42**:54-68.

• Empiric density approximated by a kernel.

・ロト ・回ト ・ヨト ・ヨト

R. Rumí, A. Salmerón, S. Moral (2006) Estimating mixtures of truncated exponentials in hybrid Bayesian networks. *Test* **15**:397–421.

- Estimation based on least squares (LS).
- Empiric density approximated by a histogram.

#### Improved version

V. Romero, R. Rumí, A. Salmerón (2006) Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning **42**:54-68.

• Empiric density approximated by a kernel.

・ロ・・ (日・・ ほ・・ (日・)

R. Rumí, A. Salmerón, S. Moral (2006) Estimating mixtures of truncated exponentials in hybrid Bayesian networks. *Test* **15**:397–421.

- Estimation based on least squares (LS).
- Empiric density approximated by a histogram.

#### Improved version

V. Romero, R. Rumí, A. Salmerón (2006) Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning **42**:54-68.

Empiric density approximated by a kernel.

・ロ・・ (日・・ ほ・・ (日・)

R. Rumí, A. Salmerón, S. Moral (2006) Estimating mixtures of truncated exponentials in hybrid Bayesian networks. *Test* **15**:397–421.

- Estimation based on least squares (LS).
- Empiric density approximated by a histogram.

#### Improved version

V. Romero, R. Rumí, A. Salmerón (2006) Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning **42**:54-68.

• Empiric density approximated by a kernel.

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

### Learning MTEs from data

# • The split points are determined observing the extreme and inflexion points.

- The number of points (*N*) to locate is established beforehand.
- The *N* higher changes from concavity/convexity or increase/decrease are selected.
- The number of exponential terms can be determined beforehand or decided during the parameter estimation procedure.

・ロ・・ (日・・ (日・・ (日・))

### Learning MTEs from data

- The split points are determined observing the extreme and inflexion points.
  - The number of points (*N*) to locate is established beforehand.
  - The *N* higher changes from concavity/convexity or increase/decrease are selected.
- The number of exponential terms can be determined beforehand or decided during the parameter estimation procedure.

(ロ) (同) (E) (E) (E)

### Learning MTEs from data

- The split points are determined observing the extreme and inflexion points.
  - The number of points (*N*) to locate is established beforehand.
  - The *N* higher changes from concavity/convexity or increase/decrease are selected.
- The number of exponential terms can be determined beforehand or decided during the parameter estimation procedure.

(日) (同) (E) (E) (E) (E)

Target density

$$f(x) = k + ae^{bx} + ce^{dx}$$

• Assume we have initial estimates  $a_0$ ,  $b_0$  and  $k_0$ .

c and d are estimated by fitting to points (x, w), where

$$\mathbf{w} = \mathbf{y} - \mathbf{a}_0 \exp{\{\mathbf{b}_0 \mathbf{x}\}} - \mathbf{k}_0$$

a function

$$w = c \exp\{dx\} ,$$

minimising the weighted mean squared error.

・ロ・・ (日・・ ほ・・ (日・)

#### Target density

$$f(x) = k + ae^{bx} + ce^{dx}$$

#### • Assume we have initial estimates $a_0, b_0$ and $k_0$ .

• c and d are estimated by fitting to points (x, w), where

$$\mathbf{w} = \mathbf{y} - \mathbf{a}_0 \exp{\{\mathbf{b}_0 \mathbf{x}\}} - \mathbf{k}_0$$
 .

a function

$$w = c \exp \left\{ dx \right\} \; ,$$

minimising the weighted mean squared error.

・ロ・・ (日・・ (日・・ (日・))

#### Target density

$$f(x) = k + ae^{bx} + ce^{dx}$$

- Assume we have initial estimates  $a_0$ ,  $b_0$  and  $k_0$ .
- c and d are estimated by fitting to points (x, w), where

$$\mathbf{w} = \mathbf{y} - \mathbf{a}_0 \exp\left\{\mathbf{b}_0 \mathbf{x}\right\} - \mathbf{k}_0 \ ,$$

a function

$$w = c \exp \{dx\}$$
,

minimising the weighted mean squared error.

Taking logarithms, the problem reduces to linear regression:

 $\ln \{w\} = \ln \{c\} \exp \{dx\} = \ln \{c\} + dx ,$ 

that can be written as

$$w^* = c^* + dx$$

where  $c^* = \ln \{c\}$  and  $w^* = \ln \{w\}$ .

The solution is

$$(c^*, d) = \arg\min_{c^*, d} \sum_{i=1}^n (w_i^* - c^* - dx_i)^2 f(x_i)$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Taking logarithms, the problem reduces to linear regression:

 $\ln \{w\} = \ln \{c\} \exp \{dx\} = \ln \{c\} + dx ,$ 

that can be written as

$$w^* = c^* + dx$$

where  $c^* = \ln \{c\}$  and  $w^* = \ln \{w\}$ .

The solution is

$$(c^*, d) = \arg\min_{c^*, d} \sum_{i=1}^n (w_i^* - c^* - dx_i)^2 f(x_i)$$

◆□> ◆□> ◆三> ◆三> 三 のへで

The solution can be obtained by analytical means:

$$= \frac{\left(\sum_{i=1}^{n} w_i x_i f(x_i)\right) - d\left(\sum_{i=1}^{n} x_i f(x_i)\right)^2}{\left(\sum_{i=1}^{n} x_i f(x_i)\right)}$$

 $d = \frac{\left(\sum_{i=1}^{n} w_i f(x_i)\right) \left(\sum_{i=1}^{n} x_i f(x_i)\right) - \left(\sum_{i=1}^{n} f(x_i)\right) \left(\sum_{i=1}^{n} w_i x_i f(x_i)\right)}{\left(\sum_{i=1}^{n} x_i f(x_i)\right)^2 - \left(\sum_{i=1}^{n} f(x_i)\right) \left(\sum_{i=1}^{n} x_i^2 f(x_i)\right)}$ 

(日) (ヨ) (ヨ) (ヨ)

• The solution can be obtained by analytical means:

$$c^{*} = \frac{\left(\sum_{i=1}^{n} w_{i} x_{i} f(x_{i})\right) - d\left(\sum_{i=1}^{n} x_{i} f(x_{i})\right)^{2}}{\left(\sum_{i=1}^{n} x_{i} f(x_{i})\right)}$$

$$d = \frac{\left(\sum_{i=1}^{n} w_i f(x_i)\right) \left(\sum_{i=1}^{n} x_i f(x_i)\right) - \left(\sum_{i=1}^{n} f(x_i)\right) \left(\sum_{i=1}^{n} w_i x_i f(x_i)\right)}{\left(\sum_{i=1}^{n} x_i f(x_i)\right)^2 - \left(\sum_{i=1}^{n} f(x_i)\right) \left(\sum_{i=1}^{n} x_i^2 f(x_i)\right)}$$

・ロン ・四 ・ ・ ヨン ・ ヨン

• Once *a*, *b*, *c* and *d* are known, we go for *k*:

$$f^*(x) = k + ae^{\{bx\}} + ce^{\{dx\}}$$

where  $k \in \mathbb{R}$  should be such that minimises the error

$$E(k) = \sum_{i=1}^{n} \frac{(f(x_i) - ae^{bx_i} - ce^{dx_i} - k)^2 f(x_i)}{n} ,$$

This is optimised for

$$\hat{k} = \frac{\sum_{i=1}^{n} (f(x_i) - ae^{bx_i} - ce^{dx_i})f(x_i)}{\sum_{i=1}^{n} f(x_i)}$$

・ロ・・ (日・・ (日・・ (日・))

• Once *a*, *b*, *c* and *d* are known, we go for *k*:

$$f^*(x) = k + ae^{\{bx\}} + ce^{\{dx\}}$$

where  $k \in \mathbb{R}$  should be such that minimises the error

$$E(k) = \sum_{i=1}^{n} \frac{(f(x_i) - ae^{bx_i} - ce^{dx_i} - k)^2 f(x_i)}{n} ,$$

This is optimised for

$$\hat{k} = rac{\sum_{i=1}^{n} (f(x_i) - ae^{bx_i} - ce^{dx_i})f(x_i)}{\sum_{i=1}^{n} f(x_i)}$$

・ロン ・四 ・ ・ ヨン ・ ヨン

• The contribution of each exponential term can be refined. Assume that we have an estimated model

$$\hat{f}(x) = \hat{a}_0 e^{\hat{b}_0 x} + \hat{c}_0 e^{\hat{d}_0 x} + \hat{k}_0$$
 .

 The impact of the second exponential term can be determined by introducing a factor *h* in the regression equation, for a sample (x, y), given by

$$\mathbf{y} = \hat{\mathbf{a}}_0 \mathbf{e}^{\hat{\mathbf{b}}_0 \mathbf{x}} + h\hat{\mathbf{c}}_0 \mathbf{e}^{\hat{\mathbf{d}}_0 \mathbf{x}} + \hat{\mathbf{k}}_0$$
 ,

and the value of *h* is computed by least squares, obtaining

$$h = \frac{\sum_{i=1}^{n} (y_i - \hat{a}_0 e^{\hat{b}_0 x_i} - \hat{k}_0) (e^{\hat{d}_0 x_i}) f(x_i)}{\sum_{i=1}^{n} \hat{c}_0 e^{2\hat{d}_0 x_i} f(x_i)}$$

・ロン ・回 と ・ ヨン・

• The contribution of each exponential term can be refined. Assume that we have an estimated model

$$\hat{f}(x) = \hat{a}_0 e^{\hat{b}_0 x} + \hat{c}_0 e^{\hat{d}_0 x} + \hat{k}_0$$
 .

 The impact of the second exponential term can be determined by introducing a factor *h* in the regression equation, for a sample (x, y), given by

$$\mathbf{y} = \hat{a}_0 e^{\hat{b}_0 \mathbf{x}} + h \hat{c}_0 e^{\hat{d}_0 \mathbf{x}} + \hat{k}_0$$
 ,

and the value of h is computed by least squares, obtaining

$$h = \frac{\sum_{i=1}^{n} (y_i - \hat{a}_0 e^{\hat{b}_0 x_i} - \hat{k}_0) (e^{\hat{d}_0 x_i}) f(x_i)}{\sum_{i=1}^{n} \hat{c}_0 e^{2\hat{d}_0 x_i} f(x_i)}$$

・ロット (四)・ (日)・ (日)・

## Initialising a, b and k

- The initial values of *a*, *b* and *k* can be arbitrary, but a good selection of them can speed up the convergence of the method.
- These values can be initialised fitting a curve
   y = a exp {bx} to the modified sample by exponential regression, and computing k as before.
- Another alternative is to force the empiric density and the initial model to have the same derivative.

### Initialising a, b and k

- The initial values of *a*, *b* and *k* can be arbitrary, but a good selection of them can speed up the convergence of the method.
- These values can be initialised fitting a curve
   y = a exp {bx} to the modified sample by exponential regression, and computing k as before.
- Another alternative is to force the empiric density and the initial model to have the same derivative.

(ロ) (同) (E) (E) (E)

- The initial values of *a*, *b* and *k* can be arbitrary, but a good selection of them can speed up the convergence of the method.
- These values can be initialised fitting a curve
   y = a exp {bx} to the modified sample by exponential regression, and computing k as before.
- Another alternative is to force the empiric density and the initial model to have the same derivative.

(日) (同) (E) (E) (E) (E)

# **Experimental setting**

### • Tested distributions:

- Normal.
- Log-normal.
- $\chi^2$ .
- Beta.
- MTE.
- Sample size: 1000.
- Split points detection:
  - ML: Manually determined.
  - LS: Automatic detection.

# **Experimental setting**

### • Tested distributions:

- Normal.
- Log-normal.
- $\chi^2$ .
- Beta.
- MTE.
- Sample size: 1000.
- Split points detection:
  - ML: Manually determined.
  - LS: Automatic detection.

# **Experimental setting**

### • Tested distributions:

- Normal.
- Log-normal.
- χ<sup>2</sup>.
- Beta.
- MTE.
- Sample size: 1000.
- Split points detection:
  - ML: Manually determined.
  - LS: Automatic detection.

# Graphical comparison: MTE

Artificial 1000 Sample Size



Black=Original, Red=LSE, Blue=ML

・ロ・・ (日・・ (日・・ (日・))

æ

# Graphical comparison: Log-normal

LogNormal 1000 Sample Size



Black=Original, Red=LSE, Blue=ML

H. Langseth et al. ML vs. LS for estimating MTEs

æ

# Graphical comparison: $\chi^2$

Chi 1000 Sample Size



Black=Original, Red=LSE, Blue=ML

# Graphical comparison: Normal (2 splits)

Normal 1000 Sample Size



Black=Original, Red=LSE, Blue=ML

H. Langseth et al. ML vs. LS for estimating MTEs

・ロ・・ (日・・ ほ・・ (日・)

# Graphical comparison: Normal (4 splits)

Normal 1000 Sample Size



Black=Original, Red=LSE, Blue=ML

H. Langseth et al. ML vs. LS for estimating MTEs

・ロト ・回ト ・ヨト ・ヨト

# Graphical comparison: Beta

Beta 1000 Sample Size



Black=Original, Red=LSE, Blue=ML

H. Langseth et al. ML vs. LS for estimating MTEs

・ロ・・ (日・・ ほ・・ (日・)

# Graphical comparison: Beta, kernel fitting



Beta 1000 Sample & Kernel values

Comparison Kernel values vs LSE (red)

H. Langseth et al. ML vs. LS for estimating MTEs

æ

< 🗇 ▶

### Comparison in terms of likelihood

|    | Artificial | $\chi^2$ | Beta      | Normal-2  | Normal-4  | Log-normal |
|----|------------|----------|-----------|-----------|-----------|------------|
| ML | -2263.132  | 160.687  | -2685.765 | -1373.499 | -1364.643 | -1398.300  |
| LS | -2293.473  | 90.234   | -2726.950 | -1533.889 | -1404.747 | -1451.568  |

Comparison through a two-sided paired *t*-test

- Including all the data: p = 0.02039.
- Excluding the Beta: p = 0.05418.

(日) (同) (E) (E) (E) (E)

### Comparison in terms of likelihood

|    | Artificial | $\chi^2$ | Beta      | Normal-2  | Normal-4  | Log-normal |
|----|------------|----------|-----------|-----------|-----------|------------|
| ML | -2263.132  | 160.687  | -2685.765 | -1373.499 | -1364.643 | -1398.300  |
| LS | -2293.473  | 90.234   | -2726.950 | -1533.889 | -1404.747 | -1451.568  |

#### Comparison through a two-sided paired *t*-test

- Including all the data: p = 0.02039.
- Excluding the Beta: p = 0.05418.

(ロ) (同) (E) (E) (E)

### Conclusions

- LS highly dependent on the empirical density (kernel or histogram).
- LS and ML very close except for the Beta case.
- ML reaches higher likelihood values.
- LS efficient from a computational point of view.

・ロ・・ (日・・ ほ・・ (日・)

- LS highly dependent on the empirical density (kernel or histogram).
- LS and ML very close except for the Beta case.
- ML reaches higher likelihood values.
- LS efficient from a computational point of view.

・ロ・・ (日・・ (日・・ (日・))

- LS highly dependent on the empirical density (kernel or histogram).
- LS and ML very close except for the Beta case.
- ML reaches higher likelihood values.
- LS efficient from a computational point of view.

- LS highly dependent on the empirical density (kernel or histogram).
- LS and ML very close except for the Beta case.
- ML reaches higher likelihood values.
- LS efficient from a computational point of view.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

### • Refining LS estimation.

More exhaustive comparison with ML.

• Extension to the conditional case.

• Possible mixed approach ML and LS.

・ロ・・ (日・・ ほ・・ (日・)

- Refining LS estimation.
- More exhaustive comparison with ML.
- Extension to the conditional case.
- Possible mixed approach ML and LS.

・ロ・・ (日・・ (日・・ (日・))

- Refining LS estimation.
- More exhaustive comparison with ML.
- Extension to the conditional case.
- Possible mixed approach ML and LS.

(日)

- Refining LS estimation.
- More exhaustive comparison with ML.
- Extension to the conditional case.
- Possible mixed approach ML and LS.