
Classification using Hierarchical Näıve Bayes models

Helge Langseth Thomas D. Nielsen
Dept. of Mathematical Sciences Dept. of Computer Science

Norwegian University of Science and Technology Aalborg University
N-7491 Trondheim, Norway DK-9220 Aalborg Øst, Denmark

helgel@math.ntnu.no tdn@cs.auc.dk

Abstract

Classification problems have a long history in the machine learning literature. One
of the simplest, and yet most consistently well performing set of classifiers is the Näıve
Bayes models. However, an inherent problem with these classifiers is the assumption
that all attributes used to describe an instance are conditionally independent given
the class of that instance. When this assumption is violated (which is often the case in
practice) it can reduce classification accuracy due to “information double-counting”
and interaction omission.

In this paper we focus on a relatively new set of models, termed Hierarchical Näıve
Bayes models. Hierarchical Näıve Bayes models extend the modelling flexibility of
Näıve Bayes models by introducing latent variables to relax some of the independence
statements in these models. We propose a simple algorithm for learning Hierarchical
Näıve Bayes models in the context of classification. Experimental results show that
the learned models can significantly improve classification accuracy as compared to
other frameworks. Furthermore, the algorithm gives an explicit semantics for the
latent structures (both variables and states), which enables the user to reason about
the classification of future instances and thereby boost the user’s confidence in the
model used.

1 Introduction

Classification is the task of predicting the class of an instance from a set of attributes
describing that instance, i.e., to apply a mapping from the attribute space into a predefined
set of classes. When learning a classifier we seek to generate such a mapping based on a
database of labelled instances. Classifier learning, which has been an active research field
over the last decades, can therefore be seen as a model selection process where the task is to
find the single model, from some set of models, with the highest classification accuracy. The
Näıve Bayes (NB) models (Duda and Hart 1973) is a set of particularly simple models which

1



has shown to offer very good classification accuracy. NB models assume that all attributes
are conditionally independent given the class, but this assumption is clearly violated in
many real world problems; in such situations overlapping information is counted twice by
the classifier. To resolve this problem, methods for handling the conditional dependence
between the attributes have become a lively research area; these methods are typically
grouped into three categories: Feature selection (Kohavi and John 1997), feature grouping
(Kononenko 1991; Pazzani 1995), and correlation modelling (Friedman et al. 1997).

The approach taken in this paper is based on correlation modelling using Hierarchical
Näıve Bayes (HNB) models, see (Zhang et al. 2002). HNBs are tree-shaped Bayesian
networks, with latent variables between the class node (the root of the tree) and the
attributes (the leaves), see Figure 1. The latent variables are introduced to relax some of
the independence statements of the NB classifier. For example, in the HNB model shown
in Figure 1, the attributes A1 and A2 are not independent given C because the latent
variable L1 is unobserved. Note that if there are no latent variables in the HNB, it reduces
to an NB model.

C

L1

A1 A2

A3 L2

A4 A5

Figure 1: An HNB designed for classification. The class attribute C is in the root, and the
attributes A = {A1, . . . , A5} are leaf nodes. L1 and L2 are latent variables.

The idea to use HNBs in classification was first explored by Zhang et al. (2002). Zhang
et al. (2002) search for the model maximizing the BIC score, which is a form of penalized
log likelihood, see (Schwarz 1978); hence they look for a scientific model (Cowell et al.
1999) where the key is to find an interesting latent structure. In this paper we take
the technological modelling approach: Our goal is mainly to build an accurate classifier.
As a spin-off we also provide the latent variables with an explicit semantics, including a
semantics for the state-spaces: Informally, a latent variable can be seen as aggregating
the information from its children which is relevant for classification. Such a semantic
interpretation is extremely valuable for a decision maker employing a classification system,
as she can inspect the classification model and extract the “rules” which the system uses
for the classification task.

The remainder of this paper is organized as follows: In Section 2 we give a brief overview
of some approaches to Bayesian classification, followed by an introduction to HNB models
in Section 3. In Section 4 we present an algorithm for learning HNB classifiers form data,

2



and Section 5 is devoted to empirical results. We discuss some aspects of the algorithm in
further detail in Section 6 and conclude in Section 7.

2 Bayesian classifiers

A Bayesian network (BN) (Pearl 1988; Jensen 2001) is a powerful tool for knowledge
representation, as it provides a compact representation of a joint probability distribution
over a set of variables. Formally, a BN over a set of discrete random variables X =
{X1, . . . , Xm} is denoted by B = (BS,ΘBS

), where BS is a directed acyclic graph and ΘBS

is the set of conditional probabilities. To describe BS, we let pa (Xi) denote the parents
of Xi in BS, we use sp (Xi) to denote the state-space of Xi, and for a set of variables we
have sp (X ) = ×X∈X sp (X). In the context of classification, we shall use C to denote
the class variable (sp (C) is the set of possible classes), and A = {A1, . . . , An} is the set of
attributes describing the possible instances to be classified.

When doing classification in a probabilistic framework, a new instance (described by a ∈
sp (A)) is classified to class c∗ according to:

c∗ = arg min
c∈sp (C)

∑
c′∈sp (C)

L(c, c′)P (C = c′ |a),

where L(·, ·) defines the loss function, i.e., L(c, c′) is the cost of classifying an instance to
class c when the correct class is c′. The two most commonly used loss functions are the
0/1-loss and the log-loss: The 0/1-loss is defined s.t. L(c, c′) = 0 if c′ = c and 1 otherwise,
and the log-loss is given by L(c, c′) = log(P (c′ |a)) independently of c.

Since we rarely have access to P (C = c |A), learning a classifier amounts to estimating
this probability distribution from a set of labelled training samples which we denote by

DN = {D1, . . . , DN}; N is the number of training instances and Di =
(
c(i), a

(i)
1 , . . . , a

(i)
n

)
is the class and attributes of instance i, i = 1, . . . , N . Let P (C = c |A,DN) be the a
posteriori conditional probability for C = c given A after observing DN . Then an optimal
Bayes classifier will classify a new instance with attributes a to class c∗ according to (see
e.g. (Mitchell 1997)):

c∗ = arg min
c∈sp (C)

∑
c′∈sp (C)

L(c, c′)P (C = c′ |a,DN). (1)

An immediate approach to estimate P (C = c |A) is to use a standard BN learning algo-
rithm, where the training data is used to give each possible classifier a score which signals
its appropriateness as a classification model. One such scoring function is based on the

3



minimum description length (MDL) principle (Rissanen 1978; Lam and Bacchus 1994):

MDL(B | DN) =
log N

2

∣∣∣Θ̂BS

∣∣∣− N∑
i=1

log
(
PB

(
c(i), a(i)

∣∣∣ Θ̂BS

))
. (2)

That is, the best scoring model is the one that minimizes MDL(· | DN), where Θ̂BS
is the

maximum likelihood estimate of the parameters in the model, and
∣∣∣Θ̂BS

∣∣∣ is the dimension

of the parameter space (i.e., the number of free parameters in the model). However, as
pointed out in (Greiner et al. 1997; Friedman et al. 1997) a “global” criteria like MDL
may not be well suited for learning a classifier, as:

N∑
i=1

log
(
PB

(
c(i), a(i)

))
=

N∑
i=1

log
(
PB

(
c(i)
∣∣a(i)

))
+

N∑
i=1

log
(
PB

(
a

(i)
1 , . . . , a(i)

n

))
.

In the equation above, the first term on the right-hand side measures how well the classifier
performs on DN , whereas the second term measures how well the classifier estimates the
joint distribution over the attributes. Thus, only the first term is related to the classification
task, and the latter term will therefore merely bias the model search; in fact, the latter
term will dominate the score if n is large. To overcome this problem, Friedman et al.
(1997) propose to replace MDL with predictive MDL, MDLp, defined as:

MDLp(B | DN ) =
log N

2

∣∣∣Θ̂BS

∣∣∣− N∑
i=1

log
(
PB

(
c(i)
∣∣a(i) , Θ̂BS

))
. (3)

However, as also noted by Friedman et al. (1997),
∑N

i=1 log
(
PB

(
c(i)
∣∣∣a(i), Θ̂BS

))
cannot

be calculated efficiently in general.

The argument leading to the use of predictive MDL as a scoring function rests upon the
asymptotic theory of statistics. That is, model search based on MDLp is guaranteed to
select the best classifier w.r.t. both log-loss and 0/1-loss when N → ∞. Unfortunately,
though, the score may not be successful for finite data sets (Friedman 1997). To over-
come this potential drawback, Kohavi and John (1997) describe the wrapper approach.
Informally, this method amounts to estimating the accuracy of a given classifier by cross
validation (based on the training data), and to use this estimate as the scoring function.
The wrapper approach relieves the scoring function from being based on approximations
of the classifier design, but at the potential cost of higher computational complexity. In
order to reduce this complexity when learning a classifier, one approach is to focus on a
particular sub-class of BNs. Usually, these sub-classes are defined by the set of indepen-
dence statements they encode. For instance, one such restricted set of BNs is the Näıve
Bayes models which assume that P (C|A) ∝ P (C)

∏n
i=1 P (Ai|C), i.e., that Ai⊥⊥Aj |C.

Even though the independence statements of the NB models are often violated in practice,
these models have shown to provide surprisingly good classification results. Resent research

4



into explaining the merits of the NB model has emphasized the difference between the 0/1-
loss function and the log-loss, see e.g. (Friedman 1997; Domingos and Pazzani 1997).
Friedman (1997, p. 76) concludes:

Good probability estimates are not necessary for good classification; similarly,
low classification error does not imply that the corresponding class probabilities
are being estimated (even remotely) accurately.

The starting point of Friedman (1997) is that a classifier learned for a particular do-
main is a function of the training set. As the training set is considered a random sample
from the domain, the classifier generated by a learner can be seen as a random variable;
we shall use P̂ (C = c |A) to denote the learned classifier. Friedman (1997) character-

izes a classifier based on its bias (i.e., EDN

[
P (C |A)− P̂ (C |A)

]2
) and its variance (i.e.,

VarDN

(
P̂ (C |A)

)
); the expectations are taken over all possible training sets of size N .

Friedman (1997) shows that in order to learn classifiers with low 0/1-loss it may not be
sufficient to simply focus on finding a model with low classifier bias; robustness in terms
of low classifier variance can be just as important.

An example of a class of models where low bias (i.e., fairly high model expressibility) is
combined with robustness is the Tree Augmented Näıve Bayes (TAN) models, see (Fried-
man et al. 1997). TAN models relax the NB assumption by allowing a more general
correlation structure between the attributes. More specifically, a Bayesian network model
is initially created over the variables in A, and this model is designed s.t. each variable
Ai has at most one parent (that is, the structure is a directed tree). Afterwards, the class
attribute is included in the model by making it the parent of each attribute. Friedman
et al. (1997) use an adapted version of the algorithm by Chow and Liu (1968) to learn
the classifier, and they prove that the structure they find is the TAN which maximizes the
likelihood of DN ; the algorithm has time complexity O (n2(N + log(n))).

3 Hierarchical Näıve Bayes models

A special class of Bayesian networks is the so-called Hierarchical Näıve Bayes (HNB) mod-
els, a concept first introduced by Zhang et al. (2002), see also (Zhang 2002; Kočka and
Zhang 2002). An HNB is a tree-shaped Bayesian network, where the variables are parti-
tioned into three disjoint sets: {C} is the class variable, A is the set of attributes, and L
is a set of latent (or hidden) variables. In the following we use A to represent an attribute,
whereas L is used to denote a latent variable; X and Y denote variables that may be
either attributes or latent variables. In an HNB the class variable C is the root of the tree
(pa(C) = ∅) and the attributes are at the leaves (ch(A) = ∅, ∀A ∈ A); the latent variables
are all internal (ch (L) 6= ∅, pa (L) 6= ∅, ∀L ∈ L). The use of latent variables allows

5



conditional dependencies to be encoded in the model (as compared to e.g. the NB model).
For instance, by introducing a latent variable as a parent of the attributes Ai and Aj , we
can represent the (local) dependence statement Ai 6⊥⊥Aj |C. Being able to model such local
dependencies is particularly important for classification, as overlapping information would
otherwise be double-counted. Note that the HNB model reduces to the NB model in the
special case when there are no latent variables.

When learning an HNB we can restrict our attention to the parsimonious HNB models;
we need not consider models which encode a probability distribution that is also encoded
by another model which has fewer parameters. Formally, an HNB model, H = (BS, ΘBS

),
with class variable C and attribute variables A is said to be parsimonious if there does not
exist another HNB model, H ′ = (B′

S, Θ′
BS

), with the same class and attribute variables
s.t.:

i) H ′ has fewer parameters than H , i.e., |ΘBS
| > |Θ′

BS
|.

ii) The probability distributions over the class and attribute variables are the same in
the two models, i.e., P (C,A|BS, ΘBS

) = P (C,A|B′
S, Θ′

BS
).

In order to obtain an operational characterization of these models, Zhang et al. (2002)
define the class of regular HNB models. An HNB model is said to be regular if for any
latent variable L, with neighbours (parent and children) X1, X2, . . .Xn, it holds that:

|sp(L)| ≤
∏n

i=1 |sp(Xi)|
maxi=1,...,n |sp(Xi)| ,

and strict inequality holds when L has only two neighbours and at least one of them is a
latent node.

Zhang et al. (2002) show that i) any parsimonious HNB model is regular, and ii) for a
given set of class and attribute variables, the set of regular HNB model structures is finite.
Observe that these two properties ensure that when searching for an HNB model we only
need to consider regular HNB models and we need not deal with infinite search spaces.

As opposed to other frameworks, such as NB or TAN models, an HNB can model any
correlation among the attribute variables by simply choosing the state-spaces of the latent
variables large enough (although the encoding is not necessarily done in a cost-effective
manner in terms of model complexity); note that the independence statements are not
always represented explicitly in the graphical structure, but are sometimes only encoded
in the conditional probability tables. On the other hand, the TAN model, for instance,
is particular efficient for encoding such statements but may fail to represent certain types
of dependence relations among the attribute variables. A TAN model is, e.g., not able to
represent the statement “C = 1 if and only if exactly two out of the three attributes A1,
A2 and A3 are in state 1”.

6



4 Learning HNB classifiers

4.1 The main algorithm

Our search algorithm is based on a greedy search over the space of all HNBs; we initiate the
search with an HNB model, H0, and learn a sequence {Hk}, k = 1, 2 . . . of HNB models.
The search is conducted s.t. at each step we investigate the search boundary of the current
model (denoted B (Hk)), i.e., the set of models that can be reached from Hk in a single
step. From this set of models the algorithm always selects a model with a higher score
than the current one; if no such model can be found, then the current model is returned
(see Algorithm 1).

Algorithm 1 (Greedy search)

1. Initiate model search with H0;

2. For k = 0, 1, . . .

(a) Select H ′ = arg max
H∈B(Hk)

Score(H | DN);

(b) If Score(H ′ | DN) > Score(Hk | DN) then:
Hk+1 ← H ′; k ← k + 1;

else
return Hk;

In order to make the above algorithm operational we need to specify the score function
Score(· | DN) as well as the search operator (which again defines the search boundary).

The score-function is defined s.t. a high value corresponds to what is thought to be a
structure with good classification qualities (as measured by the average loss on unseen
data), i.e., Score(H | DN) measures the “goodness” of H . Note that the algorithm makes
sure that Score(Hk+1 | DN ) > Score(Hk | DN ) for k = 0, 1, . . . which ensures convergence
as long as the score is finite for all models. In order to apply a score metric that is closely
related to what the search algorithm tries to achieve, we use the wrapper approach by
Kohavi and John (1997). That is, we use cross validation (over the training set DN)
to estimate an HNB’s classification accuracy on unseen data; notice that the test-set (if
defined) is not used when the score is calculated.

The search operator is defined s.t. the HNB structure is grown incrementally. More specif-
ically, if Lk is the set of latent variables in model Hk, then the set of latent variables in
Hk+1, is enlarged s.t. Lk+1 = Lk∪{L}, where L is a new latent variable. We restrict ourself
to only considering candidate latent variables which are parents of two variables X and Y
where {X, Y } ⊆ ch (C) in Hk. Hence, we define Hk+1 as the HNB which is produced from

7



Hk by including a latent variable L s.t. pa (L) = {C} and pa (X) = pa (Y ) = {L}; Hk+1 is
otherwise identical to Hk. Thus, the search boundary B(Hk) consists of all models where
exactly one latent variable has been added to Hk; there is one model in B(Hk) for each
possible definition of the state-space of each possible new latent variable. Finally, as our
starting point, H0, we use the NB model structure; this implies that each Hk is a tree with
a binary internal structure, i.e., any latent node L′ ∈ Lk has exactly two children but the
class node C may have up to n children. It is obvious that any distribution is in principle
reachable by the search algorithm but, as the score function is multi-modal over the search
space, the search will in general only converge towards a local optimum.

4.2 Restricting the search boundary

Unfortunately, B(Hk) is too large for the search algorithm to efficiently examine all models.
To overcome this problem we shall instead focus the search by only selecting a subset of the
models in B(Hk), and these models are then used to represent the search boundary. The
idea is to pinpoint a few promising candidates in the search boundary without examining
all models available. Basically the algorithm proceeds in two steps by first deciding where
to include a latent variable, and then defining the state-space of the new latent variable:1

1. Find a candidate latent variable.

2. Select the state-space of the latent variable.

Note that when using this two-step approach for identifying a latent variable, we cannot
use scoring functions such as the wrapper approach, MDL, or MDLp in the first step; this
step does not select a completely specified HNB.

Before describing the two steps in detail, recall that the algorithm starts out with an NB
model, and that the goal is to introduce latent variables to improve upon that structure,
i.e., to avoid “double-counting” of information when the independence statements of the
NB model are violated.

4.2.1 Step 1: Finding a candidate latent variable

To facilitate the goal of the algorithm, a latent variable L is proposed as the parent of
{X, Y } ⊆ ch (C) if the data points towards X 6⊥⊥Y |C. That is, we consider variables
that are strongly correlated given the class variable as indicating a promising position for
including a latent variable; from this perspective there is no reason to introduce a latent
variable as a parent of X and Y if X⊥⊥Y |C. Hence, the variables that have the highest

1Ideally, a candidate latent variable should be selected directly (that is, defining location and state-space
at the same time), but this is computationally prohibitive.

8



correlation given the class variable may be regarded as the most promising candidate-
pair. More specifically, we calculate the conditional mutual information given the class
variable, I(·, · |C), for all (unordered) pairs {X, Y } ⊆ ch (C). However, as I(X, Y |C)
is increasing in both |sp (X)| and |sp (Y )| we cannot simply pick the pair {X, Y } that
maximizes I(X, Y |C); this strategy would unintentionally bias the search towards latent
variables with children having large domains. Instead we utilize that:

2N · I(X, Y |C)
L→ χ2∣∣∣sp (C)

∣∣∣(∣∣∣sp (X)
∣∣∣−1

)(∣∣∣sp (Y )
∣∣∣−1

),

where
L→ means convergence in distribution as N →∞, see e.g. (Whittaker 1990). Finally,

we calculate
Q(X, Y | DN) = P (Z ≤ 2N · I(X, Y |C)) , (4)

where Z is χ2 distributed with |sp (C)| (|sp (X)| − 1) (|sp (Y )| − 1) degrees of freedom. The
pairs {X, Y } are ordered according to these probabilities, s.t. the pair with the highest
probability is picked out. By selecting the pairs of variables according to Q(X, Y | DN),
the correlations are normalized w.r.t. the size differences in the state-spaces.

Unfortunately, to greedily select a pair of highly correlated variables as the children of a
new latent variable is not always the same as improving classification accuracy, as can be
seen from the example below:2

Example 1 Consider a classifier with binary attributes A = {A1, A2, A3} (all with uni-
form marginal distributions) and target concept C = 1 ⇔ {A1 = 1 ∧ A2 = 1}. Assume
that A1 and A2 are marginally independent but that P (A2 = A3) = 0.99. It then follows
that:

P (Q(A2, A3 | DN ) > Q(A1, A2 | DN ))→ 1

as N grows large (the uncertainty is due to the random nature of DN ). Hence, the heuristic
will not pick out {A1, A2} which is most beneficial w.r.t.˙ classification accuracy, but will
propose to add a variable L′ with children ch (L′) = {A2, A3}.

4.2.2 Step 2: Selecting the state-space

To find the cardinality of a latent variable L, we use an algorithm similar to the one
by Elidan and Friedman (2001): Initially, the latent variable is defined s.t. |sp (L)| =∏

X∈ch(L) |sp (X)|, where each state of L corresponds to exactly one combination of the
states of the children of L. Let the states of the latent variable be labelled l1, . . . , lt.
We then iteratively collapse two states li and lj into a single state l∗ as long as this is
“beneficial”. Ideally, we would measure this benefit using the wrapper approach, but as
this is computationally expensive we shall instead use the MDLp score to approximate the

2This issue is also discussed in Section 6.

9



classification accuracy. Let H ′ = (B′
S,ΘB′

S
) be the HNB model obtained from a model

H = (BS,ΘBS
) by collapsing states li and lj . Then li and lj should be collapsed if and only

if ∆L(li, lj | DN) = MDLp (H | DN) −MDLp (H ′ | DN) > 0. For each pair (li, lj) of states
we therefore compute:

∆L(li, lj | DN ) = MDLp(H|DN )−MDLp(H
′|DN)

=
log(N)

2

(|ΘBS
| − ∣∣ΘB′

S

∣∣)+ N∑
i=1

[
log
(
PH′(c(i)|a(i))

)− log
(
PH(c(i)|a(i))

)]
.

For the second term we first note that:

N∑
i=1

[
log
(
PH′(c(i)|a(i))

)− log
(
PH(c(i)|a(i))

)]
=

N∑
i=1

log
PH′(c(i)|a(i))

PH(c(i)|a(i))

=
∑

D∈DN :f(D,li,lj)

log
PH′

(
cD|aD

)
PH (cD|aD)

,

where f(D, li, lj) is true if case D includes either {L = li} or {L = lj}; cases which does not
include these states cancel out. This is also referred to as local decomposability in (Elidan
and Friedman 2001), i.e., the gain of collapsing two states li and lj is local to those states
and it does not depend on whether or not other states have been collapsed. In order to
avoid considering all possible combinations of the attributes we approximate the difference
in predictive MDL as the difference w.r.t. the relevant subtree. The relevant subtree is
defined by C together with the subtree having L as root:3

∑
D∈DN :f(D,li,lj)

log
PH′

(
cD|aD

)
PH (cD|aD)

(5)

≈ log
∏

c∈sp (C)

[(
N(c, li)

N(li)

)N(c,li)

·
(

N(c, lj)

N(lj)

)N(c,lj)

/

(
N(c, li) + N(c, lj)

N(li) + N(lj)

)N(c,li)+N(c,lj)
]

,

where N(c, s) and N(s) are the sufficient statistics, e.g., N(c, s) =
∑N

i=1 γ(C = c, L = s :
Di); γ(C = c, L = s : Di) takes on the value 1 if (C = c, L = s) appears in case Di, and
0 otherwise; N(s) =

∑
c∈sp (C) N(c, s). Note that Equation 5 is in fact an equality if the

relationship between C and ch (C) satisfy independence of causal influence (Heckerman
and Breese 1994).

States are collapsed in a greedy manner, i.e., we find the pair of states with highest
∆L(li, lj | DN ) and collapse those two states if ∆L(li, lj | DN) > 0. This is repeated (making
use of local decomposability) until no states can be collapsed, see also Algorithm 2.

3The relevant subtree can also be seen as the part of the classifier structure that is directly affected by
the potential collapse of the states li and lj .

10



Algorithm 2 (Determine state-space of L)

1. Initiate state-space s.t. |sp (L)| = ∏
X∈ch (L) |sp (X)|;

Label the states s.t. each state corresponds to a unique combination of ch (L);

2. For each {li, lj} ⊆ sp (L) do:
Calculate ∆L(li, lj | DN);

3. Select {l′i, l′j} ⊆ sp (L) s.t. ∆L(l′i, l
′
j | DN) is maximized;

4. If ∆L(l′i, l
′
j | DN) > 0 then:

Collapse states l′i and l′j ; goto 2;

5. Return state-space of L.

It should be noted that Elidan and Friedman (2001) initialize their search with one state
in L for each combination of the variables in the Markov blanket of L, whereas we use the
smaller set of variables defined by ch (L). This is done to facilitate a semantic interpretation
of the latent variables (described below), and it does not exclude any regular HNB models.4

Example 2 (Example 1 cont’d) The state-space of L′ with ch (L′) = {A2, A3} is col-
lapsed by Algorithm 2 after L′ is introduced. For large N the penalty term in MDLp ensures
that the state-space will be collapsed to two states mirroring the states of A2 because L′

will not significantly change the predictive likelihood from what the model previously held
(note that P (C = c |A2, A3,DN ) ≈ P (C = c |A2,DN)). Hence, by introducing L′ we get
a more robust classifier, where the classification noise introduced by A3 is removed. The
latent variable L′′ with children ch (L′′) = {L′, A1} will be introduced in the next iteration
of Algorithm 1, and the target concept can eventually be learned.

An important side-effect of Algorithm 2 is that we can give a semantic interpretation to
the state-spaces of the latent variables: L ∈ L aggregates the information from its children
which is relevant for classification. If, for example, L is the parent of two binary variables
A1 and A2, then Algorithm 2 is initiated s.t. L’s state-space is sp (L) = {A1 = 0 ∧ A2 =
0, A1 = 0∧A2 = 1, A1 = 1∧A2 = 0, A1 = 1∧A2 = 1}. When the algorithm collapses states,
we can still maintain an explicit semantics over the state-space, e.g., if the first and second
state is collapsed we obtain a new state defined as (A1 = 0∧A2 = 0)∨(A1 = 0∧A2 = 1), i.e.,
A1 = 0. Having such an interpretation can be of great importance when the model is put
into use: The semantics allows a decision maker to inspect the “rules” that form the basis
of a given classification. Through this insight she can consider whether the classification
of the system should be overruled or accepted.

Another important aspect of the semantic interpretation, is that it allows us to infer data
for the latent variables due to the deterministic relations encoded in the model. This

4Note that we do not consider regular HNB models with singly connected latent variables.

11



fact provides us with a fast calculation scheme, as we “observe” all the variables in A
and L. Therefore, it also follows that we can represent the HNB classifier using only the
class variable and its children. Hence, the representation we will utilize is a Näıve Bayes
structure where the “attributes” are represented by the variables which occur as children
of the class variable in the HNB model. It is simple to realize that the number of free
parameters required to represent this structure equals:

|ΘBS
| = (|sp (C)| − 1) + |sp (C)|

∑
X∈ch (C)

(|sp (X)| − 1) , (6)

see also (Kočka and Zhang 2002). Hence, the difference in predictive MDL (used in Algo-
rithm 2) can be approximated by:

∆L(li, lj) ≈ log2(N)
|sp (C)|

2
(7)

−
∑

c∈sp (C)

N(c, li) log2

(
N(c, li)

N(c, li) + N(c, lj)

)

−
∑

c∈sp (C)

N(c, lj) log2

(
N(c, lj)

N(c, li) + N(c, lj)

)

+ N(li) log

(
N(li)

N(li) + N(lj)

)
+ N(lj) log

(
N(lj)

N(li) + N(lj)

)
.

Note again that the approximation is exact if the relationship between C and the children
of C can be modelled using independence of causal influence.

4.2.3 The search boundary

By following the two-step procedure described above, the focusing algorithm produces a
single candidate model H ′ ∈ B(Hk) to represent the search boundary. However, from
our experiments we have found that picking out a single model to represent the search
boundary is not an adequate representation of B(Hk). We can easily solve this drawback
in at least two different ways:

i) Go through the candidate latent nodes one at a time in order of decreasing Q(·, · | DN),
and accept the first candidate model H ′′ ∈ B(Hk) for which Score(H ′′ | DN) >
Score(Hk | DN ) in Step 2b of Algorithm 1.

ii) Limit the number of candidates used to represent the boundary to κ > 1 models,
and do a greedy search over these models.

The first approach can be seen as a hill-climbing search, where we use Equation 4 to guide
the search in the right direction. Step 2a will in this case not be a maximization over

12



B(Hk), but merely a search for a model which can be accepted in Step 2b. In Step 2a the
algorithm may have to visit all models in the boundary B′(Hk) ⊂ B(Hk) where B′(Hk) is
defined s.t. each possible latent node is represented by exactly one state-space specification,
i.e., a total of O(n2) models. On the other hand, the second approach will only examine κ
models in Step 2a. It follows that alternative i) has higher computational complexity; in
fact we may have to inspect O(n3) candidates before the algorithm terminates (Step 2 may
be repeated n−1 times), and since inspecting each candidate latent variable involves costly
calculations it may be computationally expensive. For the results reported in Section 5 we
have therefore used the second alternative: A fixed number of candidate models (κ = 10)
are selected from the search boundary, and the search proceeds as in Algorithm 1. The
computational complexity of this approach is detailed in Section 4.3.

An immediate approach for implementing this refined algorithm would be to: 1) pick
out the κ node pairs that have the strongest correlation (according to Equation 4), 2)
find the associated state-spaces, and 3) select the model with the highest score in Step
2a. However, to increase the robustness of the algorithm, we do it slightly differently:
Initially, we randomly partition the training data DN in κ partly overlapping subsets,
each containing (κ− 1)/κ of the training data, and then each of these subsets are used to
approximate the best model in the search boundary; this results in a list of up to κ different
candidate models. We let these models represent B(Hk), and continue as if this was the
whole boundary: If the best model amongst them (the one with the highest accuracy
estimated by cross validation over the training data) is better than the current model
candidate, we select that one and start all over again. If the best model is inferior to the
current model, the search algorithm terminates, and the current model is returned (see
Algorithm 3).

Algorithm 3 (Find HNB classifier)

1. Initiate model search with H0;

2. Partition the training-set into κ partly overlapping subsets D(1), . . . ,D(κ);

3. For k = 0, 1, . . . , n− 1

(a) For i = 1, . . . , κ

i. Let {X(i), Y (i)} = arg max{X,Y }⊆ch (C) Q
(
X, Y | D(i)

)
(i.e.,

{
X(i), Y (i)

} ⊆ ch (C) in Hk), and define the latent

variable L(i) with children ch
(
L(i)
)

=
{
X(i), Y (i)

}
;

ii. Collapse the state-space of L(i) (Algorithm 2 with D(i) used
in place of DN);

iii. Define H(i) by introducing L(i) into Hk;

(b) H ′ = arg max
i=1,...,κ

Score
(
H(i) | DN

)
;

13



(c) If Score(H ′ | DN) > Score(Hk | DN) then:
Hk+1 ← H ′; k ← k + 1;

else
return Hk;

4. Return Hn;

4.3 Complexity analysis

When analyzing the complexity of the algorithm we can divide the description into three
steps:

1) Find a candidate latent variable.

2) Find the state-space of a candidate latent variable, and check if it is useful.

3) Iterate until no more candidate latent variables are accepted.

Part 1
Proposing a candidate latent variable corresponds to finding the pair (X, Y ) of variables
having the strongest correlation (Equation 4). There are at most (n2 − n)/2 such pairs,
where n is the number of attribute variables. Calculating the conditional mutual informa-
tion for a pair of variables can be done in time O(N) (N being the number of cases in the
database) hence, calculating the correlation measure for each pair of variables can be done
in time O(N · n2). Finally, the list is sorted (to accommodate future iterations), and the
resulting time complexity is O(n2 · (N + log(n))).

Part 2
When determining the cardinality of a latent variable, L, we consider the gain of collaps-
ing two states as compared to the current model; the gain is measured as the difference
in predictive MDL. The time complexity of calculating the gain of collapsing two states
is simply O(N), see Equation 7. Due to local decomposability, the gain of collapsing
two states has no effect on collapsing two other states, and there are therefore at most
(|sp (L)|2 − |sp (L)|)/2 possible combinations, i.e., O(|sp (L)|2 · N). When two states are
collapsed, ∆L(·, ·) must be calculated for |sp (L)| − 1 new state combinations, next time
|sp (L)|−2 state combinations are evaluated, and so on; the collapsing is performed at most
|sp (L)| − 1 times. The time complexity of finding the state-space of a candidate latent
variable is therefore O

(
N · |sp (L)|2 + N · |sp (L)| (|sp (L)| − 1)/2

)
= O(|sp (L)|2 ·N).

Having found the cardinality of a candidate variable, say L, we test whether it should
be included in the model using the wrapper approach. From the rule-based propagation
method it is easy to see that the time complexity of this task is O(n ·N). Thus, the time
complexity of Part 2 is O((n + |sp (L)|2) ·N).

14



Part 3
Each time a latent variable is introduced we would in principle need to perform the above
steps again, and the time complexity would therefore be n− 1 times the time complexities
above. However, as described below some of the previous calculations can be reused.

First of all, as Q(X, Y |D) is a local measure we only need to calculate Q(L, Z|D), Z ∈
ch (C), where L is the latent variable introduced in the previous iteration. Moreover, since
we need to calculate Q(L, ·|D) at most n− 2 times, the time complexity will be O(n ·N),
and, as the pairs (X, Y ) are still sorted according to Q(X, Y |D), we only need to sort
n − 2 pairs, i.e., after having included a latent variable the re-initialization of step 1 has
complexity O(n ·N + (n− 1) · log(n− 1)) = O(n · (N + log(n))).

Moreover, after having introduced a latent variable L with children X and Y , we cannot
create another latent variable having either X or Y as a child (due to the structure of the
HNB model). Thus, after having included a latent variable the cardinality of the resulting
set of candidate pairs is reduced by n− 1. This implies that we will perform at most n− 2
re-initializations, thereby giving the overall time complexity O(n2 ·N +n·(n·(N +log(n))+
(|sp (L)|2 ·N))) = O(n2 · (log(n) + |sp (L)|2 ·N)).

5 Empirical results

In this section we will investigate the merits of the proposed learning algorithm by using
it to learn classifiers for a number of different domains. All data-sets are taken from the
Irvine Machine Learning Repository (Blake and Merz 1998), see Table 1 for a summary of
the 22 datasets used in this empirical study.

We have compared the results of the HNB classifier to those of the Näıve Bayes model
(Duda and Hart 1973), the TAN model (Friedman et al. 1997), C5.0 (Quinlan 1998),
and a standard implementation of neural networks with one hidden layer trained by back-
propagation.5 As some of the learning algorithms require discrete variables, the attributes
were discretized using the entropy-based method of (Fayyad and Irani 1993). In addi-
tion, instances containing missing attribute-values were removed; all pre-processing was
performed using MLC++ (Kohavi et al. 1994).

The accuracy-results are given in Table 2. For each dataset we have estimated the accuracy
of each classifier (in percentage of instances which are correctly classified), and give a
standard deviation of this estimate. The standard deviations are the theoretical values
calculated according to (Kohavi 1995), and are not necessarily the same as the empirical
standard deviations observed during cross validation. For comparison of the algorithms

5We used Clementine (SPSS Inc. 2002) to generate the C5.0 and neural network models. We have
not compared our system to that of (Zhang et al. 2002) because of the high computational complexity of
Zhang et al.’s algorithm. However, the numerical results reported by Zhang et al. (2002) point towards
our model offering significantly better classification accuracy.

15



#Inst #Inst
Database #Att #Cls Train Test Database #Att #Cls Train Test
postop 8 3 90 CV(5) cleve 13 2 296 CV(5)
iris 4 3 150 CV(5) wine 13 3 178 CV(5)
monks-1 6 2 124 432 thyroid 5 3 215 CV(5)
monks-2 6 2 124 432 ecoli 7 8 336 CV(5)
monks-3 6 2 124 432 breast 10 2 683 CV(5)
glass 9 7 214 CV(5) vote 16 2 435 CV(5)
glass2 9 2 163 CV(5) crx 15 2 653 CV(5)
diabetes 8 2 768 CV(5) australian 14 2 690 CV(5)
heart 13 2 270 CV(5) chess 36 2 2130 1066
hepatitis 19 2 155 CV(5) vehicle 18 4 846 CV(5)
pima 8 2 768 CV(5) soybean-large 35 19 562 CV(5)

Table 1: A summary of the 22 databases used in the experiments: #Att indicates the
number of attributes; #Cls is the number of classes; #Inst is the number of instances
(given separately for training and test sets). CV(5) denotes 5-fold cross validation. Further
details regarding the datasets can be found at the UCI Machine Learning Repository.

we made sure that the same cross validation folds were used for all the different learning
methods. The best result for each dataset is given in boldface. We note that the HNB
classifier achieves the best result for 10 of the 22 datasets, comes top-two for all but 5
datasets, and also has the best performance averaged over all datasets.

To quantify the difference between the HNB classifier and the other classifiers we advocate
the method of (Kohavi 1995); Kohavi (1995) argues that the true merit of a classifier
cannot be found by calculating the accuracy on a finite test-set. Instead we define α as the
true accuracy of a classifier (only to be found if the target concept of the domain is known
or fully described by an infinite test set), and we use α̂ to denote the estimate of α based
on a test set of size N . Kohavi (1995) argues that α̂ is approximately Gaussian distributed
with expectation α and variance α · (1− α)/N for large N . In our setting we have several
datasets (indexed by i = 1, . . . , t; t is the number of datasets, i.e., t = 22 in this study) and
several classifier algorithms (indexed by j), and with this notation Kohavi’s approximation
can be written as α̂ij ∼ N (αij, αij · (1 − αij)/Ni). To simplify, we assume α̂ij⊥⊥α̂ik for
j 6= k and α̂ij⊥⊥α̂`j for i 6= `. Finally, we use the estimated standard deviation sij (given
in Table 2) as if it was known. It follows that under the hypothesis that classifiers j and
k are equally capable (αij = αik, i = 1, . . . , t) then:

Λi(j, k) = α̂ij − α̂ik ∼ N (0, s2
ij + s2

ik) , Λ(j, k) =
t∑

i=1

Λi

t
∼ N

(
0,

t∑
i=1

s2
ij + s2

ik

t2

)
.

This enables us to test the hypothesis that the HNB classifier is not better than the other
classifiers; more precisely we test the hypothesis H0: Λ(·, ·) ≤ 0 against H1: Λ(·, ·) > 0,

16



Database NB TAN C5.0 NN HNB
postop 64.25+/-5.0 63.20+/-5.1 67.31+/-4.9 63.04+/-5.1 68.95+/-4.9
iris 94.00+/-2.0 94.00+/-2.0 93.55+/-2.0 90.32+/-2.4 94.00+/-2.0
monks-1 71.53+/-2.2 95.83+/-1.0 75.50+/-2.1 96.54+/-0.9 100.0+/-0.1
monks-2 62.04+/-2.3 66.90+/-2.3 65.05+/-2.3 99.77+/-0.3 66.20+/-2.0
monks-3 97.22+/-0.8 96.06+/-0.9 97.22+/-0.8 97.22+/-0.8 97.22+/-0.8
glass 71.04+/-3.1 70.56+/-3.1 72.42+/-3.1 68.50+/-3.2 71.04+/-3.1
glass2 81.61+/-3.0 81.69+/-3.0 80.37+/-3.1 82.21+/-3.0 84.11+/-3.1
diabetes 75.65+/-1.5 75.25+/-1.6 74.25+/-1.6 73.08+/-1.6 75.25+/-1.5
heart 83.70+/-2.2 84.07+/-2.2 80.36+/-2.4 81.45+/-2.4 85.93+/-2.3
hepatitis 92.34+/-2.1 87.25+/-2.7 84.89+/-2.9 74.23+/-3.5 93.29+/-2.1
pima 76.17+/-1.5 74.74+/-1.6 73.68+/-1.6 72.96+/-1.6 76.04+/-1.5
cleve 83.46+/-2.1 81.38+/-2.2 79.08+/-2.4 80.36+/-2.3 83.45+/-2.2
wine 98.86+/-0.8 96.03+/-1.5 93.45+/-1.9 94.49+/-1.7 98.86+/-0.8
thyroid 92.56+/-1.8 93.02+/-1.7 93.64+/-1.7 92.73+/-1.8 93.02+/-1.7
ecoli 80.95+/-2.1 79.76+/-2.2 82.70+/-2.1 78.89+/-2.2 82.44+/-2.1
breast 97.36+/-0.6 96.19+/-0.7 94.92+/-0.8 96.36+/-0.7 97.36+/-0.6
vote 90.11+/-1.4 92.64+/-1.3 94.55+/-1.1 95.00+/-1.1 93.15+/-1.3
crx 86.22+/-1.3 83.93+/-1.4 85.71+/-1.4 85.71+/-1.4 86.51+/-1.3
australian 85.80+/-1.3 82.32+/-1.5 85.61+/-1.3 83.88+/-1.4 84.64+/-1.4
chess 87.12+/-1.0 92.48+/-0.8 89.60+/-0.9 97.78+/-0.5 93.71+/-0.7
vehicle 59.09+/-1.7 68.79+/-1.6 67.80+/-1.6 66.74+/-1.6 63.59+/-1.7
soybean-large 92.90+/-1.0 91.28+/-1.1 93.82+/-1.0 92.25+/-1.1 92.36+/-1.1
Average 82.91 83.97 82.98 84.71 85.52

Table 2: Calculated accuracy for the 22 datasets used in the experiments. The results are
given together with their theoretical standard deviation.

17



0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

NB classification error

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

TAN classification error

a) NB vs. HNB b) TAN vs. HNB

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

C5.0 classification error

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n 

er
ro

r

NN classification error

c) C5.0 vs. HNB d) NN vs. HNB

Figure 2: Scatter plot of classification error for HNB and a selection of other classification
systems. In each plot, a point represents a dataset. The HNB’s classification error is given
on the x-axis, whereas the other system’s error is given on the y-axis. Hence, data points
below the diagonal corresponds to datasets where the HNB is superior, whereas points
above the diagonal are datasets where the HNB classifier is inferior to the other system.

where the classifiers are labelled s.t. higher average accuracy for the HNB classifier coincides
with a positive value of Λ(·, ·). With this setup H0 is rejected at level p = 5 · 10−12 (NB),
p = 6 · 10−6 (TAN), p = 6 · 10−11 (C5.0) and p = .02 (NN).

Finally, we note that in some of the domains the HNB models come up with an interesting
latent structure. We are not experts to tell whether these structures are in fact meaningful,
but some of them are at least worth attention. For example, in the heart model the HNB
aggregates information about “Chest pain” and “Training induced angina”. The probabil-
ity of a heart disease increases slightly when chest pain is of a certain type; this probability
can then again be increased dramatically if the instance also contains information about a
training induced angina. Training induced angina has no effect in the model if chest pain is
not of this particular type. Note that the classifier in this example uses the latent variable
to encode context specific independence (Boutilier et al. 1996).

18



6 Discussion

6.1 Parameter learning

The parameters in the model are estimated by their maximum likelihood values. This
may not be optimal for classification, and recent research has shown some improvement
in classification accuracy when the parameters are chosen otherwise (Wettig et al. 2002).
However, to support the interpretation of the empirical results in Section 5 we have delib-
erately not taken the opportunity of improving the classification accuracy further in this
way. Optimization of the model is left for future work.

6.2 Finding candidate latent variables

As described by Example 1 and Example 2 the search for candidate latent variables may
introduce a latent variable for a pair of variables which are marginally dependent, but where
only one of the variables is actually dependent on the class variable C; as also shown is
the examples, this does not jeopardize classification accuracy (actually it can be seen as
a form of feature selection). Similarly, if several attributes are marginally dependent but
independent of the class variable, the algorithm performs some redundant computations:
For each such pair of attributes we include a latent variable, but as these attributes are
independent of the class variable all states of such a latent variable are collapsed and the
effect of the attributes on the classification result is removed.

Obviously both of the above mentioned problems can be overcome by simply performing
a feature selection before initializing the learning algorithm. However, another approach
would be to apply a correlation measure which directly considers the probability distribu-
tion over the class variable conditioned on the two variables X and Y in question. That is,
the difference between the probability distribution P (C|X, Y ) and the probability distribu-
tion P ′(C|X, Y ), where the latter is encoded by the model where X⊥⊥Y |C. This distance
can be described using the well-known Kullback-Leibler (KL) divergence (Kullback and
Leibler 1951) averaged over the possible states of X and Y :

E(KL(P ; P ′)|X, Y ) =
∑
x,y

P (x, y)
∑

c

P (c|x, y) log

(
P (c|x, y)

P ′(c|x, y)

)
.

In the context of classification, this distance measure can also be given another interpre-

19



tation by observing that:

E(KL(P ; P ′)|X, Y ) =
∑
c,x,y

P (c, x, y) log

(
P (c, x, y)

P (x, y)
· 1

P ′(c|x, y)

)
=
∑
c,x,y

P (c, x, y) log

(
P (c, x, y)

P (x, y)
·
∑

c(P (x|c)P (y|c)P (c))

P (x|c)P (y|c)P (c)

)
=
∑
x,y,c

P (x, y, c) log

(
P (x, y|c)

P (x|c)P (y|c)
)

−
∑
x,y

P (x, y) log

(
P (x, y)∑

c P (x|c)P (y|c)P (c)

)
= I(X, Y |C)−KL(P (X, Y ), P ′(X, Y )).

Thus, the expected KL-divergence can be interpreted as the difference in conditional mu-
tual information between X and Y conditioned on C, and the KL-divergence between
P (X, Y ) in the unconstrained model and the model where X⊥⊥Y |C. In particular, if X
and Y are marginally dependent but independent of the class variable C, we would have
E(KL(P ; P ′)|X, Y ) = 0 whereas I(X, Y |C) > 0 would have suggested that a latent variable
should be introduced. Thus, this distance measure also takes into account that variables
may be marginally dependent but independent of the class variable.

6.3 Inference and model structure

The algorithm for collapsing the state-space of a latent variable is the source of the se-
mantics for these nodes, and in turn the reason why we can represent the HNB as a Näıve
Bayes model with aggregations in place of the attributes. This compact representation
requires a “deterministic inference engine” to calculate P (C |a), because the aggregations
defined by the semantics of the latent variables can in general not be encoded by the condi-
tional probability tables for the variables. Assume, for instance, that we have three binary
variables L, X, Y , ch (L) = {X, Y }, and “L = 1 if and only if X = Y ”. This relationship
cannot be encoded in the model X ← L→ Y , and to infer the state of the latent variable
L from X and Y we would therefore need to design a special inference algorithm which
explicitly uses the semantics of L. To alleviate this potential drawback we can simply re-
define the network-structure: Introduce a new latent variable L′, and change the network
structure s.t. ch (L) = pa (X) = pa (Y ) = {L′}; L′ is equipped with at most one state for
each possible combination of its children’s states. This enlarged structure is capable of
encoding any relation between {X, Y } and L using the conditional probability tables only.
Hence, the enlarged structure can be handled by any standard BN propagation algorithm
and, since the structure is still an HNB, the inference can be performed extremely fast.

20



7 Concluding remarks

In this paper we have used Hierarchical Näıve Bayes models for classification, and through
experiments we have shown that the HNB classifiers offer results that are significantly
better than those of other commonly used classification methods. Moreover, a number
of existing tools may be able to improve the classification accuracy even further. These
include feature selection (Kohavi and John 1997), smoothing (significant improvements
reported by (Friedman et al. 1997) for some model classes), and supervised learning of the
probability parameters (Wettig et al. 2002). We leave the investigation of these sources
of potential improvements for future work. Finally, the proposed learning algorithm also
provides an explicit semantics for the latent structure of a model. This allows a decision
maker to easily deduce the rules which govern the classification of some instance hence,
the semantics may also increase the user’s confidence in the model.

Acknowledgements

We have benefited from interesting discussions with the members of the Decision Support
Systems group at Aalborg University, in particular Tomás Kočka, Nevin L. Zhang, and
Jǐŕı Vomlel. We would like to thank Hugin Expert (www.hugin.com) for giving us access
to Hugin Decision Engine which forms the basis for our implementation. The first author
was supported by a grant from the Research Council of Norway.

References

Blake, C. and C. Merz (1998). UCI repository of machine learning databases. URL:
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller (1996). Context-specific inde-
pendence in Bayesian networks. In Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence, Portland, OR., pp. 115–123.

Chow, C. K. and C. Liu (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory 14, 462–467.

Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter (1999). Probabilistic
Networks and Expert Systems. Statistics for Engineering and Information Sciences.
New York: Springer Verlag.

Domingos, P. and M. Pazzani (1997). On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29 (2–3), 103–130.

Duda, R. O. and P. E. Hart (1973). Pattern Classification and Scene Analysis. New
York: John Wiley & Sons.

21



Elidan, G. and N. Friedman (2001). Learning the dimensionality of hidden variables. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
San Francisco, CA., pp. 144–151. Morgan Kaufmann Publishers.

Fayyad, U. M. and K. B. Irani (1993). Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, San Mateo, CA., pp. 1022–1027. Morgan
Kaufmann Publishers.

Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse of dimensionality.
Data Mining and Knowledge Discovery 1 (1), 55–77.

Friedman, N., D. Geiger, and M. Goldszmidt (1997). Bayesian network classifiers. Ma-
chine Learning 29 (2–3), 131–163.

Greiner, R., A. J. Grove, and D. Schuurmans (1997). Learning Bayesian nets that per-
form well. In Proceedings of the Thirteenth Annual Conference on Uncertainty in
Artificial Intelligence, San Francisco, CA., pp. 198–207. Morgan Kaufmann Publish-
ers.

Heckerman, D. and J. S. Breese (1994). A new look at causal independence. In Proceed-
ings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence, San
Francisco, CA., pp. 286–292. Morgan Kaufmann Publishers.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. New York: Springer
Verlag.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, San Mateo, CA., pp. 1137–1143. Morgan Kaufmann
Publishers.

Kohavi, R., G. John, R. Long, D. Manley, and K. Pfleger (1994). MLC++: A machine
learning library in C++. In Proceedings of the Sixth International Conference on
Tools with Artificial Intelligence, pp. 740–743. IEEE Computer Society Press.

Kohavi, R. and G. H. John (1997). Wrappers for feature subset selection. Artificial
Intelligence 97 (1–2), 273–324.

Kononenko, I. (1991). Semi-naive Bayesian classifier. In Proceedings of Sixth European
Working Session on Learning, Berlin. Springer Verlag.

Kočka, T. and N. L. Zhang (2002). Dimension correction for hierarchical latent class
models. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence, San Francisco, CA., pp. 267–274. Morgan Kaufmann Publishers.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. Annals of Math-
ematical Statistics 22, 79–86.

Lam, W. and F. Bacchus (1994). Learning Bayesian belief networks: An approach based
on the MDL principle. Computational Intelligence 10 (4), 269–293.

22



Mitchell, T. M. (1997). Machine Learning. Boston, MA.: McGraw Hill.

Pazzani, M. (1995). Searching for dependencies in Bayesian classifiers. In Proceedings of
the Fifth International Workshop on Artificial Intelligence and Statistics.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA.: Morgan Kaufmann Publishers.

Quinlan, R. (1998). C5.0: An informal tutorial. Available from the internet at URL:
http://www.rulequest.com/see5-unix.html.

Rissanen, J. (1978). Modelling by shortest data description. Automatica 14, 465–471.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–
464.

SPSS Inc. (2002). Clementine v6.5. http://www.spss.com/spssbi/clementine/index.htm.

Wettig, H., P. Grünwald, T. Roos, P. Myllymäki, and H. Tirri (2002). On supervised
learning of Bayesian network parameters. HIIT Technical Report 2002-1, Helsinki
Institute for Information Technology.

Whittaker, J. (1990). Graphical models in applied multivariate statistics. Chichester:
John Wiley & Sons.

Zhang, N. (2002). Hierarchical latent class models for cluster analysis. In Proceedings of
the Eighteenth National Conference on Artificial Intelligence, Menlo Park, CA., pp.
230–237. AAAI Press.

Zhang, N., T. D. Nielsen, and F. V. Jensen (2002). Latent variable discovery in classifi-
cation models. Available from the first author upon request.

23


