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Markov chains in higher dimensions

Xi+1XiXi−1

(1948)
Paul Lévy

Xi,j

→ Define neighbouring set in the 2D-model:

N (xi,j) = {xi−1,j, xi+1,j , xi,j−1, xi,j+1}

→ Sought independence relations:

p
(

xi,j|x \ {xi,j}
)

= p
(

xi,j|N (xi,j)
)

Example: The Ising model (Ising, 1925):

→ Model for ferromagnetism

→ Xi,j ∈ {−1, 1}, Ei,j(x) = −1
kT

∑

x`,m∈N (xi,j)
xi,j · x`,m

→ p(x) = 1
Z
· exp(−

∑

i,j Ei,j(x))
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Defining the Markov models in two dimensions

Xi,j

p(x) =
∏

i,j Ψi,j (xi,j ,N (xi,j))

Joint model (Whittle, 1963)

Xi,j

p(xi,j |x \ {xi,j}) = p (xi,j |N (xi,j))

Conditional model (Bartlett, 1966)

→ For Nearest neighbour systems: The class of joint models

contains the class of conditional models (Brook, 1964)

→ Not known (at the time) how to define the full joint

distribution from the conditional distributions

→ Severe constraints in Bartlett’s model
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Besag (1972) on nearest neighbour systems

What is the most general form of the conditional probability

functions that define a coherent joint function?

And what will the joint look like?

→ Assume p (x) > 0, and define

Q (xi,j |xi−1,j, xi+1,j , xi,j−1, xi,j+1) = log

{

p(xi,j |N (xi,j)
p(0|N (xi,j))

}

.

→ Q(x | t, u, v, w) ≡

x{ψ0(x)+tψ1(x, t)+uψ1(u, x)+vψ2(x, v)+wψ2(w, x)}

→ Let xB be the boundary, and xI = x \ xB.

p(xI |xB = 0) = 1
Z
· exp

(

∑

i,j xi,j

{

ψ0(xi,j)+

xi−1,jψ1(xi,j, xi−1,j)+xi,j−1ψ2(xi,j, xi,j−1)

})
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Hammersley-Clifford’s theorem - Notation

Xi

N (Xi)

→ Define a graph G = (V , E), s.t. V = {X1, . . . , Xn} and

{Xi, Xj} ∈ E iff

p(xi | {x1, . . . , xn} \ {xi}) 6= p(xi | {x1, . . . , xn} \ {xi, xj})

→ Define N (Xi) s.t. Xj ∈ N (Xi) iff {Xi, Xj} ∈ E

→ C ⊆ V is a clique iff C ⊆ {X,N(X)} ∀X ∈ C.
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Hammersley-Clifford’s theorem - Result

Assume that p(x1, . . . , xn) > 0 (positivity condition). Then,

p(x) =
1

Z

∏

C∈cl(G)

φC(xC)

Thus, the following are equivalent (given the positivity

condition):

Local Markov property: p
(

xi |x \ {xi}
)

= p
(

xi |N (xi)
)

Factorization property: The probability factorizes according

to the cliques of the graph

Global Markov property: p(xA |xB,xS) = p(xA |xS)

whenever xA and xB are separated by xS in G
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Hammersley-Clifford’s theorem - Proof

Line of proof due to Besag (1974), who clarified the original

“circuitous” proof by Hammersley & Clifford

→ Assume the positivity condition to be correct

→ Let Q(x) = log
[

p(x)/p(0)
]

→ There exists a unique expansion of Q(x),

Q(x) =
∑

1≤i≤n

xiGi(xi) +
∑

1≤i<j≤n

xixjGi,j(xi, xj) + · · ·

+ x1x2 . . . xnG1,2,...,n(x1, x2, . . . , xn)

→ Gi,j,...,s(xi, xj , . . . , xs) 6= 0 only if {i, j, . . . , s} ∈ cl(G)
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Positivity condition: Historical implications

→ Hammersley & Clifford (1971) base their proof on the

positivity condition:

p(x1, . . . , xn) > 0

→ They find the positivity condition unnatural, and postpones

publication in hope of relaxing it

→ They are thereby preceded by Besag (1974) in publishing

the theorem

→ Moussouris (1974) shows by a counter-example involving

only four variables that the positivity condition is required
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Markov properties on DAGs

X1 X2

X3

X4

X6

X5

Define a DAG G→ = (V , E→) for a

well-ordering X1 ≺ X2 ≺ · · · ≺ Xn s.t.

→ V = {X1, . . . , Xn} (as before)

→ Assume Xj ≺ Xi. Then (Xj, Xi) ∈ E
→

(i.e., Xj → Xi in G→) iff

p(xi |x1, . . . , xi−1) 6=

p(xi |x1, . . . , xj−1, xj+1, . . . , xi−1)

Define the parents of Xi as pa(Xi) = {Xj : (Xj, Xi) ∈ E
→}

Directed factorization property: p(x) factorizes according to G→

iff p(x) =
∏

i p
(

xi | pa(xi)
)
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Markov properties on DAGs (cont’d)

X1 X2

X3

X4

X6

X5

→ Define moral graph Gm = (V, Em) from

G→ by connecting parents and dropping

edge directions

→ Note that {Xi, pa(Xi)} ∈ cl(Gm), i.e.,

factorization relates to cl(Gm)

→ Local and Global Markov properties

defined “as usual”
The following are equivalent even without the positivity

condition (Lauritzen et al., 1990):

→ Factorization property

→ Local Markov property

→ Global Markov property
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Spatial statistics

The theorem has had major implications in many areas of spatial

statistics. Application areas include:

→ Quantitative geography (e.g, Besag, 1975)

→ Geographical analysis of the spread of diseases (e.g,

Clayton & Kaldor,1987)

→ Image analysis (e.g, Geman & Geman, 1984)
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Markov Point Processes
→ Consider a point process on

e.g. R
n

→ Let x = {x1, x2, . . . , xm} be

the observed points

→ Define the neighbour set as

N (ξ|r) = {xi : ||ξ−xi|| ≤ r}

r

ξ

N (ξ|r)

→ A density function f is Markov if f(ξ |x) depends only on

ξ and N (ξ) ∩ x

→ Ripley&Kelly (1977): f(x) is a Markov function iff there

exist functions φC s.t. f(x) = 1
Z

∏

C∈cl(G)
φC(xC)
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Log-linear models

→ The analysis of contingency tables set into the framework

of log-linear models in the 70’s

→ log p(x) = uφ +
∑

i ui(xi) + · · · + u1...n(x1, . . . , xn)

→ Connection with Hammersley & Clifford’s theorem made

by Darroch et al. (1980):

• G is defined s.t. Xi and Xj are only connected if

uij 6= 0 (with consistency assumptions)

• A Hammersley & Clifford theorem can be proven for

this structure

• Representational benefits follows for the class of

graphical models
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MCMC and the Gibbs sampler

→ Metropolis-Hastings algorithm: Define a Markov chain

which has a desired distribution π(·) as its unique

stationary distribution

Algorithm:

1. Initialization: x
(0) ← fixed value

2. For i = 1, 2, . . .:

i) Sample y from q(y |x(i−1))

ii) Define αy ←
π(y) · q(x(i−1) |y)

π(x(i−1)) · q(y |x(i−1))

iii) x
(i) ←







y with p = min{1, αy}

x
(i−1) with p = max{0, 1− αy}
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MCMC and the Gibbs sampler (cont’d)

→ Geman & Geman (1984): Metropolis Hastings for

high-dimensional x

→ Problem: How to sample y and calculate αy efficiently?

→ Solution: Flip only one element x(i)
j at a time:

x
(i+1) =

(

x
(i)
1 , . . . , x

(i)
j−1, x

(i+1)
j , x

(i)
j+1, . . . , x

(i)
n

)

→ q
(

y |x(i)
)

is defined by the conditional probability

p
(

xj |x
(i)

)

:

p
(

x
(i+1)
j |x(i)

)

=
1

Zj

∏

C:Xj∈C

φC

(

x
(i)
C

)

→ αy = 1 for the Gibbs sampler

→ An algorithm of constant time complexity can be designed!
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Too much of a good thing?

→ Global properties from local models:

• Model error dominates (e.g. Rue and Tjelmeland,

2002)

• The critical temperature of the Ising model

“Beware — Gibbs sampling can be dangerous!”

Spiegelhalter et al. (1995): The BUGS v0.5 manual, p. 1

→ Alternative representations:

• Bayesian networks (e.g. Pearl, 1988)

• Vines (e.g. Bedford and Cooke, 2001)
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Clifford’s (MCMC) conclusion

“. . . from now on we can compare our data with the

model we actually want to use rather than with a

model which has some mathematical convenient form.

This is surely a revolution.”

Dr. Peter Clifford (1993),

The Royal Statistical Society meeting on the Gibbs sampler and

other statistical Markov Chain Monte Carlo methods

Journal of the Royal Statistical Society, Series B, 55(1), p. 53
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