
Sketching Streaming Histogram Elements
Using Multiple Weighted Factors

Quang-Huy Duong
∗

Norwegian University of Science and

Technology, Norway

huydqyb@gmail.com

Heri Ramampiaro

Norwegian University of Science and

Technology, Norway

heri@ntnu.no

Kjetil Nørvåg

Norwegian University of Science and

Technology, Norway

noervaag@ntnu.no

ABSTRACT
We propose a novel sketching approach for streaming data that,

even with limited computing resources, enables processing high

volume and high velocity data efficiently. Our approach accounts

for the fact that a stream of data is generally dynamic, with the

underlying distribution possibly changing all the time. Specifically,

we propose a hashing (sketching) technique that is able to automat-

ically estimate a histogram from a stream of data by using a model

with adaptive coefficients. Such a model is necessary to enable

the preservation of histogram similarities, following the varying

weight/importance of the generated histograms. To address the

dynamic properties of data streams, we develop a novel algorithm

that can sketch the histograms from a data stream using multiple

weighted factors. The results from our extensive experiments on

both synthetic and real-world datasets show the effectiveness and

the efficiency of the proposed method.

CCS CONCEPTS
• Information systems → Data mining; • Theory of compu-
tation → Sketching and sampling;

KEYWORDS
Sketch; Stream; Histogram; Weighted Factors; Concept Drift

ACM Reference Format:
Quang-Huy Duong, Heri Ramampiaro, and Kjetil Nørvåg. 2019. Sketching

StreamingHistogram Elements UsingMultipleWeighted Factors. In The 28th
ACM International Conference on Information and Knowledge Management
(CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Storing and processing high volume and high velocity streaming

data are often infeasible due to the limitation of memory and com-

putation infrastructure. Normally, data in a stream can be accessed

only once, thus making efficient processing of streams a challenging

but crucial task. A possible solution is sketching of the streaming

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

data. Sketching is an effective approximation method that maps a

stream into a maintainable form, while still retaining the character-

istics of the stream with high accuracy. Development of efficient

sketching techniques has attracted much research during the past

decades [24, 25, 27]. In addition to being used to visualize the sta-

tistical information of the data, histogram estimation is among

commonly used techniques to sketch the underlying distribution

of data [21]. Still, an important limitation of existing histogram-

based methods is that most of these methods were developed with

the assumption that histograms are drawn from a non-changing

or static data distribution [10, 22]. In practice, streaming data are

inherently dynamic and evolve over time, which in turn result in

dynamic changes in the underlying data distribution, i.e., concept

drift [8].

To cope with the issues related to concept drift, the concept of

forgetting factor has been introduced to determine the significance

of data according to the time the data occurs in a stream [7, 20, 21,

29]. However, most of the current work, e.g., [21] and [29], assume

that a forgetting factor is constant at every point of observation

and in the whole process, which is too restrictive. This is because in

many real-world applications, we cannot consider the same factor

for every past data at a particular single observation point. To

illustrate, assume we would like to analyse the behavior of tourists

related to point-of-interest (POI) check-ins in several cities at the

same time. Here, there would be several underlying aspects that

might affect the user check-ins. In addition to types and places of

the POIs, changes in the weather conditions, seasons and times of

the day could influence changes in the user behaviors. For instance,

a sightseeing place would normally get more visitors during the

summer thanwinter, but at the same time, they could be impacted by

(possibly sudden) changes of the weather conditions. In conclusion,

analyzing the check-in behaviors without considering the changes

with respect to the dynamic properties and time-dependent changes

would not be enough to cover the whole picture. This example

furthermotivates the need for amodel that is capable of dynamically

adapting to changes in a data stream. We refer such a model to

as an evolving model, i.e., a model that can automatically tune its

coefficients to follow any occurring changes. Here, assuming a

histogram to be formed by a matrix, coefficients are the factors

specifying the weight of the values of such a histogram matrix.

To address the challenges described above, we propose an effi-

cient algorithm called “EnsembleRandomization Sketch of Streams"

(eRSS). The eRSS utilizes an evolving model that automatically

updates its coefficients to minimize a proposed objective cost of

timestamps, with dynamic constraints. To the best of our knowl-

edge, this is the first work that studies a sketching technique for

data streams using a dynamically adapting model, which sketches a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

stream of data, while taking into account the time-sensitive changes

in the stream using different adaptive weighted factors for different

groups of data, at every observation point. Hence, the proposed

model is specifically useful for histogram estimation for stream-

ing data. In particular, we apply weighted minwise hashing on

estimated count-min histograms to sketch the stream.

To explain the basic idea of our approach, Figure 1 shows a block

diagram of the important steps of the method. In this figure, refer-

ring to our earlier example, we consider the data stream to be a

stream of histograms, each of which has elements that are gener-

ated from the check-ins at a POI. Hence, since we have several POIs,

at a given time, t − 1, we need to generate several histograms as

well. Then, at a time t , to handle the increasing number of check-ins

and any occurring changes, we apply an ensemble-based model

consisting of several single sketching processes in order to esti-

mate the final sketch of s elements (sci). Here, we estimate an

adaptive weighted count-min histogram for each POI, and for each

histogram, we generate a sketch by utilizing a sampling process on

the weighted histogram elements.

An important property of our method is that although it provides

an estimated sketch resulting in a compact representation of the

stream, as we will explain later, it is able to preserve the characteris-

tics of the data distribution that underlies a stream. In addition, our

model is able to maintain histogram similarities, which is not only

useful but needed for handling concept drifts. To show its efficiency

and effectiveness we fully evaluate our approach with extensive ex-

periments on both synthetic and real-life datasets. For the sake of re-

producibility, the source code and data used in our experiments are

made publicly available at https://bitbucket.org/duonghuy/sketch.

The remainder of this paper is organized as follows. Section 2

reviews the related work. Section 3 briefly introduces the back-

ground and formulation of sketching a stream of data. Section 4

presents the proposed model and the adaptive estimation method.

Section 5 describes and discusses the results from the experimental

evaluations. Finally, Section 6 concludes the paper and outlines

possible topics for future work.

2 RELATEDWORK
Sketching is a hashing technique [4] that has been extensively stud-

ied and has been widely applied to maintain a dataset in an approxi-

mating compact representation. Numerous algorithms for sketches

have been proposed, including Count-Min sketch (CM) [5], Count-

Min sketch with conservative update (CM-CU) [9], and Augmented

sketch [18]. However, due to skewness and dynamic property of

data in a stream, these sketches are inefficient when applied on real

data streams [6, 31], since they often lead to a need to estimate the

frequency while considering the weight of data in a stream.

In order to preserve the characteristics of data, a sketch needs

to simulate the data distributions of a given dataset into a form

that is closest possible to the real distributions. Several algorithms

have been proposed to sketch a given dataset [3, 11, 12, 19]. One

of the most well-known algorithms is locality-sensitive hashing

(LSH) [11], which is a data-independent method that can guaran-

tee the collision probability between similar data points. Examples

of LSH-based methods are SimHash [19] and MinHash [3] which

differ on the ways they compute similarities. SimHash [19] uses

cosine distance to measure the similarity between data files, while

in MinHash (or minwise hashing) [3], Jaccard similarity is used

to estimate the similarity between two sets. MinHash-based algo-

rithms are generally efficient and are more efficient than SimHash

when using cosine similarity, but one of the drawbacks is that

they consume much space. Further, minwise hashing uses large

number of permutations on the data, which, in turn, degrades the

performance of the algorithms since minwise hashing is normally

adopted in the context of binary or high-dimensional data. To cope

with the costly processing of data in minwise hashing, Weighted

Minwise Hashing (WMH) [12], inspired the idea of using densifica-

tion and one permutation [14]. WMH uses a “rotation" scheme for

densifying the estimated sparse sketches of one permutation hash-

ing that assigns new values to all the empty buckets. As a result,

WMH greatly reduces computation cost compared to MinHash-

based hashing. The WMH is much simpler, significantly faster, and

more memory efficient than the original ones, especially in very

sparse datasets [4].

Histograms has long been seen as one of the most important

data statistical tools for providing information about a data dis-

tribution [17]. There exist various algorithms for estimation of

histograms generated from streaming data. A few of these algo-

rithms consider dynamic forgetting factor, including the most re-

cent one, HistoSketch [29]. HistoSketch adopts Weighted Sampling

method [12, 13] and Hamming distance, which is comparable with

our approach. However, every time a new data arrives in the stream,

to cope with concept drift, HistoSketch uses a constant decay factor

to decrease the importance of outdated data. Several adaptive esti-

mation approaches have been proposed to efficiently detect concept

drifts [1, 21]. An important difference with our approach is that all

of these algorithms compute a decay factor at every observation.

This means that they decrease the importance of all outdated data

by that factor, and use the same factor on all data. As mentioned

above, the mechanism of applying the same forgetting factor to

all data at different timestamps in the stream is too restrictive and

could be impractical. To be effective, it is necessary that a sketching

approach considers a model that can automatically adapt its decay

factor following the changes in the stream. Moreover, sketching

the histogram of a stream is an approximate solution and is based

on randomization processes and randomization hashing functions.

Single randomization is usually a weak process, which in general

yields poor performance [20]. Our hypothesis is that combining

several weak single processes to form an ensemble component can

obtain better performance. Particularly, each single component in

the ensemble model estimates a sample of the histogram of the data

in a stream, in a sampled sketch. Then, the final sketch is deter-

mined using a scoring function on these estimated sketches in a

final component.

3 PRELIMINARIES
In the following, we present fundamental definitions about consis-

tent weighted sampling [12, 13, 15] that we use in our solution on

sketching of a streaming data containing concept drifts. Given two

data vectors (weighted set) of k elements X , Y ∈ Rk ,

https://bitbucket.org/duonghuy/sketch

Observation timet1 t-1

Estimated
histograms

SCs SC2 SC1...

s-elements sketch

v

Estimated histograms
Evolving

Δt

Ensemble
component

 Weighted
Minwise Hashing

SCs SC2 SC1...

s-elements sketch

Figure 1: Overview of the proposed method. The processing is performed for each histogram of the stream.

Definition 3.1 (Uniformity [12, 13, 15]). Let (i , Si) be a sample of

X , where 1 ≤ i ≤ k and 0 ≤ Si ≤ Xi . We call a process uniformity

sampling if its sample is distributed uniformly over the pairs.

Definition 3.2 (Consistency [12, 13, 15]). Assume thatX dominates

Y , i.e., Yi ≤ Xi , for all i and 1 ≤ i ≤ k . If a sample (i , Si) is sampled

from X and satisfies Si ≤ Yi , then (i , Si) is also sampled from Y .

Definition 3.3 (Consistent weighted sampling [12, 13, 15]). Con-
sistent weighted sampling is a sampling process that satisfies both

the uniformity and consistency properties.

The min-max similarity between X , Y is defined by [12, 13]:

SIMmin−max (X ,Y) =
∑
min(Xi ,Yi)∑
max(Xi ,Yi)

Let SE(X) and SE(Y) denote the samples of data vectors X and Y ,
respectively, using a consistent weighted sampling schema method.

The collision probability between the two vectors X , Y is exactly

its min-max similarity [12, 13]:

Pr [SE(X) = SE(Y)] = SIMmin−max (X ,Y).

Given a data stream S, let t be the current time point, vt be the
current incoming item at time point (order) t with timestampTt , and

Vt = (v1,v2, . . . ,vt) be the current sub-stream. The task of sketching

a stream S at a point of time t is to maintain a parameter sketch SK (s
elements) so that SK is a compact representation of the current sub-

stream Vt , and SK preserves the interesting (similarity) measure

of Vt . In particular, in this paper, the data stream is a stream of

histogram elements of many POIs (point of interest). We estimate an

adaptive weighted count-min histogram for each POI in the stream.

Then, a sample is generated by utilizing a consistent weighted

sampling schema [12, 13, 15] on each weighted histogram. To get s
samples, we repeat the process s times using an independent set of

random numbers, and the similarity of two samples is preserved

based on the theoretical guarantee of consistent weighted sampling.

4 ENSEMBLE HISTOGRAM SKETCHING
This section presents the proposed model and the adaptive estima-

tion method to sketch the streaming data.

4.1 Histogram
For a data stream, a histogram is a data summarization method,

with which data are hashed into a set of buckets. Each bucket

maintains the frequency of the hashed data. In order to estimate

the histogram of a data stream, we adopt the count-min sketching

method originally proposed by Cormode and Muthukrishnan [5]

because of its efficiency and simplicity. A histogram of a data stream

using a count-min sketch is maintained by a matrix Θ ∈ Rn×m ,

where n is the number of random hash functions hi , i = 1, 2, . . . ,n,
andm is the number of ranges such that each hash function hk will

map an incoming data v of the stream to each range from 1 tom.

When a new data v arrives in the stream, n hash functions hi , i =
1, 2, . . . ,n, will hash the value v to a corresponding range (a column

ofm columns of the matrix Θ), then the value of the corresponding

cell of the matrixΘ is increased by 1, i.e.,Θ(i,hi (v)) = Θ(i,hi (v))+1.

4.2 Weighted Sampling
This subsection presents how the proposed method weighs the

importance of histogram element frequencies in a stream. The

weighted cumulative frequencies of histogram elements are used

to estimate a compact sketch of that stream.

Evolving data and weight of histogram: Fading factor, which

is used to weigh the elements within a streaming context, was

proposed to reduce the impact of noise in streaming data and weigh

the importance of data in the stream [20, 21, 29]. In these works, at

each single observation time, the weight of all the old data is divided

by the same constant factor. In a data stream, however, data evolves

over time, and the evolvement of data might be different with

respect to different group of elements. Some previously generated

elements or groups of elements might have more importance than

other elements. Therefore, it is crucial not to treat the importance of

all past data equally by the dividing with the same constant factor.

On top of this, a data point could be correlated with other data

points, which makes this even more important.

Moreover, there might be strong correlation between features of

data during the time they are evolving, such that a feature evolves,

this might affect or impact the evolvement of other features, as well.

Intuitively, the idea of the modeling procedure is as follows. At each

observation time, groups of elements might have different weights

and there might exist correlations between some features. We need

to model the evolvement data features by estimating the variables

that determine the weights of the histogram elements. These vari-

ables are unknown in advance, and they are continuously updated

and estimated from observed data. The model then automatically

performs the variable selection to minimize a loss function, while

considering the variance and sparsity factors of the variables.

Here, to address the correlation of data, we utilize the idea of

the elastic net [32] to simulate the evolvement of data in our pro-

posed method. In our model, we define an objective function at an

observation time t , having a form of an elastic net, as follows:

L(Θi) = Ω1(Θ
t
i) + Ω2(Θ

t
i) + ∆(Θ

t
i ,Θ

t−1
i), (1)

whereΘi are our predicting estimators. The meaning of penalties in

the objective function are the same as in elastic net regularization.

The first term, a penalty term, Ω1(Θ
t
i) = αβΛ(Θt

i) is to control

sparsity in the single solution. To estimate the sparsity, we choose

Λ(Θt
i) as ℓ1 column norm of vector at row i of the matrix Θ at

time t, Λ(Θt
i) =∥ Θ

t
i ∥1, because it minimizes the less squares loss

function [23]. However, using only ℓ1 norm tends to select one

variable from a group of highly correlated variables and set less

important coefficients to zero. To overcome this drawback, the

second term Ω2(Θ
t
i) is used to enforce the hierarchy constraint,

and it is set to a form of 2-norm to force the coefficients close to

the average value rather than zero, Ω2(Θ
t
i) = (1 − α)β ∥ Θt

i ∥
2

2
.

The parameter α , β in the first two penalties are tuning parameters,

β ∈ [0,∞), andα ∈ [0, 1]. Here,α controls the relative weight on the

first two penalties and is a relaxation parameter; while parameter

β controls the selection of parameters.

The last term ∆(Θt
i ,Θ

t−1
i) is a penalty to minimize the deviation

across different timestamps. The last term in Eq. 1 controls this

deviation, on which we target the similarity of Θ at different ob-

servation times t and (t-1). The deviation is estimated by a robust

ℓ2 penalty that is useful in concept drift detection. ∆ has a form of

∆(·) =∥ · ∥2. The objective function in Eq. 1 now can be rewritten

as:

L(Θi) = αβ ∥ Θt
i ∥1 +(1 − α)β ∥ Θ

t
i ∥

2

2
+ ∥ (Θt

i ,Θ
t−1
i) ∥

2

2
(2)

Our evolving model minimizes objective function L(Θi) to ob-

tain its coefficients at observation time t . Figure 2 shows the weight-
ing process of histogram elements of the current technique and our

proposed method.

Time constraints: Studying current approaches, it seems that

most of them assume that the observations are captured sequentially

in time. They only consider the order of observations, and do not

include the time interval in the study but consider the timespan be-

tween observations to be constant. This means that ∆(t) = Tt −Tt−1
is constant, i.e., intervals between sampling are discretely framed.

However, such an assumption usually does not hold in practice. To

cope with this, we re-define the third term of L(Θi)when consider-

ing the real time of observations of data sampling. We let T t
be the

time between two consecutive observations, i.e., the timespan be-

tween current and previous time within which the data are sampled.

The intuition is that we split the frame into T t
equal segments. Fur-

ther, we assume that there are virtual data sampling observations at

each splitting point. Therefore, the deviation penalty is cumulative

deviation via a solution path including T t
penalties:

Ω3(Θ
t
i ,Θ

t−1
i) = f (T t) ∥ (

Θt
i − Θ

t−1
i

T t) ∥2
2
,

where f (.) is an interest function of time. The objective function

corresponding to each row of histogram matrix Θ now becomes:

L(Θi) = αβ ∥ Θt
i ∥1 +(1 − α)β ∥ Θ

t
i ∥

2

2
+f (T t) ∥ (

Θt
i − Θ

t−1
i

T t) ∥2
2

Given a histogram matrix Θ of a data stream, the value of Θ at

observation time (t-1) is denoted as Θt−1
. Given that Θ evolves

over time, at time point t, Θ becomes Θt
such that the objective

function L(Θi) is minimum. Because Θt−1
is known, in the follow-

ing we use notation A regrading Θt−1
to indicate that it is constant.

Our problem is an optimization problem to minimize the objective

function as follows:

L(Z , t) = αβ ∥ Z t ∥1 +(1 − α)β ∥ Z
t ∥2

2

+f (T t) ∥ (Z
t−Ai
Tt
) ∥2

2
,

(3)

where Z is used to denote Θi . For the sake of brevity, in the rest

of the paper, we remove subscript of A and drop the argument t .
The proposed objective function in (3) has a form of an elastic net

regularization [32]. Numerous works have been extensively studied

elastic net regularization in many applications, such as machine

learning and neural networks, but to the best of our knowledge,

using elastic net like in the model in Eq. 3 for sketching a data

stream with concept drift is new.

Optimization solver: To minimize the objective function in Eq. 3,

we employ theAlternatingDirectionMethod ofMultipliers (ADMM) [2]

by controlling each penalty separately. Firstly, the ADMM breaks

the objective function in Eq. 3 into three smaller parts, such that

each part is easier to handle. Thereafter, it solves each part sep-

arately while considering the rest as constant. Finally, the global

convex optimization problem is solved when all parts are handled.

We use a consensus variableU = {U1,U2} and scaled dual form

variable V = {V1,V2}. We form the augmented Lagrangian with re-

spect to the augmented penalty, ρ > 0, which is a penalty parameter

of the ADMM. The augmented Lagrangian is as follows:

Lρ (Z ,U ,V) = (1 − α)β ∥ Z ∥2
2
+f (T t) ∥ (U2−A

Tt
) ∥2

2
+

αβ ∥ U1 ∥1 +
ρ
2

(
∥ Z −U1 +V1 ∥

2

2
+ ∥ Z −U2 +V2 ∥

2

2

)
,

whereU1 = Z ,U2 = Z , and Z j ≥ 0, j ∈ [1, . . . ,m].
The objective has a form of mixed norm regularization with a

non-negative constraints on element values of vector Z (weighted

histogram sampling).We apply ADMM to our optimization problem.

The ADMMalternately estimates (Z ,U ,V) which results in iteration

steps. The iteration of individual penalty solving steps in scaled

form is as follows:

Z (k+1) = argmin

Z
Lρ (Z , U (k), V (k)) (4)

U (k+1) = argmin

U1,U2

Lρ (Z (k+1), U , V (k)) (5)

V (k+1) = V (k) + Z (k+1) −U (k+1) (6)

LetC be the constraint set of non-negative,C = {Z : Z j ≥ 0, for j =
1, . . . ,m}, and

∏
C be a projection ontoC space. The update U step

in Eq. 5 involves a projection

∏
C onto set C , rewritten as:

U (k+1) =
∏
C
(Z (k+1) +V (k))

A non-negative projection on C is chosen as:

∏
C (x) = max(x , 0).

The primal and dual residuals which control the convergence of

the process are determined at iteration step k as p(k) and d(k) and
are computed by:{

p(k+1) = Z (k+1) −U (k+1)

d(k+1) = ρ
(k)
i × (U

(k) −U (k+1))
(7)

If the dual residual d(k) approaches zero, then the obtained value of

the objective is nearly close to the optimal solution. Meanwhile, the

p(k) approaches zero when conditional constraints in the objective

function are enforced accurately. We use a maximum number of

Users-Checkins Histogram

(a) Current histogram of elements

A Decay Function

(b) An exponential decay function

New Histogram

(c) Decay histogram of elements

Users-Checkins Histogram

(d) Current histogram of elements

Evolving Based Elastic Form

(e) An evolving process bases on an
elastic net model

New Evolving Histogram

(f) Evolving histogram of elements

Figure 2: How a histogram of elements evolves over time. From the original histogram (a), the current method applies an
exponential decay function (b), a constant decay, on all the data equally to get a new weighted histogram of elements (c). Our
proposed method utilizes the idea of elastic net (e) in order to allow us to study the correlation of different groups of elements
in the original histogram (d), and finally get an evolving histogram (f).

the iteration steps, l , and a tolerance value, ϵ , on the primal and

dual residuals as stopping criteria, given by:{
∥ p(k) ∥2 ≤ ϵ ×max(∥ Z (k) ∥2

2
, ∥ U (k) ∥2

2
)

∥ d(k) ∥2 ≤ ϵ× ∥ V (k) ∥2
2

(8)

An improvement of ADMM in ρ penalty is a relaxed ADMM ap-

proach. Relaxed ADMM algorithms have a relaxation parameter

γ . After Z -update step in Eq. 4, they continue to update Z by:

γZ (k+1) + (1 − γ)U (k). Like ADMM, the convergence rate of the

relaxed ADMM algorithms depends on the choice of the relaxation

parameter.

To address the drawback of ADMM and the relaxed variants, an

adaptive method for automatically tuning ρ and γ , called Adaptive

Relaxed ADMM (ARADMM) [26], was proposed. The penalty and

relaxation parameters of ARADMM are continuously updated at

each iterationk based on its safeguarding values. (For details on how
to update ρ andγ at every iteration step k, please refer to [26]). In ad-
dition to the ability to automatically tune its parameters, ARADMM

converges fast and is robust. Since it is also suitable for stream-

ing data, we utilize ARADMM in the solver for our optimization

problem. The optimal values of the histogram Θ are obtained when

the optimization reaches convergence. Thereafter, the value of the

corresponding cell ofΘ is increased by 1, i.e.,Θi,hi (v) = Θi,hi (v)+1,

where 1 is used to indicate that it is the weight of the current data

in the stream. Θ is continuously estimated and updated following

the changes in the stream.

4.3 Ensemble Sampling
The histogram of a stream is estimated by a matrix Θ ∈ Rn×m . The

stream is sketched by a vector SK of s values (s elements) based on

the weighted values of the histogram elements in Θ. The value of
sketch element SKi (1 ≤ i ≤ s) is computed using a process with

three random variables as in [12, 13]. The process of choosing the

sketch values of the stream is done as follows:

SKi = argmin

j ∈(1;m)
ai, j , (9)

where

ai, j =
c j

yi, jexp(r j)
,

yi, j = exp(r j (⌊
ln(Hj)

r j
+ βj ⌋ − βj))

r j , c j , and βj are the three random variables that are generated as:

r j ∼ Gamma (2, 1),

c j ∼ Gamma (2, 1),

βj ∼ Uni f orm (0, 1).

Hj is the weighted histogram of element range j, which is esti-

mated as a count-min sketch-modeled histogram Θ. It is given
by Hj = mini (Θi,hi (j)). In order to get s samples of SK , we per-

form this process s times with different values of the three ran-

dom variables r j , c j , and βj . This process corresponds to a single

component, and can be seen as a weak process [20]. We inves-

tigate combining several single processes to improve the perfor-

mance. The ensemble-centric method is used by w components

such that each single componentC j
sketches Θj

with a correspond-

ing sketch SK j
. Hence, the estimated sketch will be aw × s matrix:

SK = [SK1 SK2 . . . SKw]T . The ensemble-centric SC of SK
is computed based on a scoring function: SC = Scorinд(SK), where
Scorinд is a metric summarizing a sketch from the matrix SK , which

Θw
11

Θw
12

Θw
13
. . . Θw

1m

Θw
21

Θw
22

Θw
23
. . . Θw

2m
...

...
...
. . .

...

Θw
n1 Θw

n2 Θw
n3 . . . Θw

nm

Θi
11

Θi
12

Θi
13
. . . Θi

1m

Θi
21

Θi
22

Θi
23
. . . Θi

2m
...

...
...
. . .

...

Θi
n1 Θi

n2 Θi
n3 . . . Θi

nm

Θ2

11
Θ2

12
Θ2

13
. . . Θ2

1m

Θ2

21
Θ2

22
Θ2

23
. . . Θ2

2m
...

...
...
. . .

...

Θ2

n1 Θ2

n2 Θ2

n3 . . . Θ2

nm

Θ1

11
Θ1

12
Θ1

13
. . . Θ1

1m

Θ1

21
Θ1

22
Θ1

23
. . . Θ1

2m
...

...
...
. . .

...

Θ1

n1 Θ1

n2 Θ1

n3 . . . Θ1

nm
SKw

. . .

SK2

SK1

Figure 3: Ensemblew components of histograms.

can be set as the average, min, max, or a random selection. Figure 3

shows an ensemble of w components of histograms of a stream,

where each red square in each row i of the matrix is the corre-

sponding histogram of the incoming stream value vt under hash
function hi . At every observation, a sketch SC of the stream is esti-

mated. Given two sketches SC1 and SC2, then the similarity of two

sketches is computed using a min-max similarity. The similarity

value between the two sketches is used to classify the histograms.

For the classification, we use kNN classifier.

4.4 Implementation Details
Figure 4 shows a flow diagram of the proposed method. The flow

diagram is processed as follows.

(1) Whenever there is a histogram element arriving in the stream,

the corresponding count-min histogram of the element is

updated (step S1).
(2) In the eRSS, the coefficients of the histogram matrix evolve

to new optimal values such that they satisfy an objective

constraint (Eq. 3) corresponding to each individual row of

the matrix (step S2).
(3) After the evolving step, step S3 is processed to update the

histogram with the current element.

(4) An ensemblew components is used in step S4.
(5) Each single component uses a weighted minwise hashing

method with a different set of random variables to sketch the

corresponding histogram to a vector of s elements in step

S5.
(6) The final sketch of the histogram is obtained in step S6 by

using a random selection.

These individual processes are independent. Thus, they can be

implemented in a parallel setting. At the same time, we propose an

ensemble methodwhich combines several single processes to obtain

a more efficient result. The single processes can also be scheduled

into tasks in a parallel configuration. The implementation detail of

the proposed algorithm is shown in Algorithm 1.

Complexity note: For each incoming element in the stream, the

major time-consuming task is the UpdateTheta step. The execution
time of optimization solver for matrixΘ is bounded byO(nl), where
l is the maximum number of iterations of ARADMM. In the worst

case, the running time to get the count-min sketch of Θ (n rows)

and to produce a k element sketch is O(n + kw). In summary, the

runtime complexity of the proposed framework for processing each

incoming element is O(nl + n +wk).
In terms of space, a count-min sketchΘ of size n×m takesO(nm)

space, while using k elements for sketching streaming histogram in

an ensemblew components takes O(wk) space. Overall, the space
complexity is O(nm +wk).

Algorithm 1 eRSS Algorithm

Input: A stream data S
Output: A sketch SK of S , and change alarm

1: Initialization (α , β , Θ, SK)
2: for each data point vt arriving on a stream S do
3: UpdateTheta(Θ)
4: for i from 1 to n do
5: Increase cell value: Θi,hi (vt) ← Θi,hi (vt) + 1

6: end for
7: for i from 1 tow do
8: SK i ← SinдleRandomization
9: end for
10: SC ← Scorinд(SK)
11: if change detected (labeling using kNN) then
12: Report alarm

13: end if
14: end for
15: procedure UpdateTheta(Θ)
16: while not converge by Eq. 8 And ++k ≤ maxiter l do
17: Update Θ,U , V by Eqs. 4-6

18: Update ρ, and γ (refer to [26])

19: Update residuals p and d .
20: end while
21: end procedure
22: function SingleRandomization

23: for k from 1 to s do
24: for l from 1 to m do
25: Random sampling three variables r , c, β

r ∼ Gamma (2, 1),
c ∼ Gamma (2, 1),
β ∼ Uni f orm (0, 1)

26: yl ← exp(r (⌊ ln(Hl)
r + β⌋ − β))

27: al ←
c

yl exp(r)
28: end for
29: SKk ← argmin

l
al

30: end for
31: return SK
32: end function

5 EXPERIMENTS
We evaluated the performance of our eRSS algorithm and compared

it with the current state-of-the-art methods, HistoSketch[29] and

the POISketch[28] algorithms. All the experiments were carried out

on a personal computer running the Windows 10, having a 64 bit

Θ11 . . . Θ1j . . . Θ1m
...
. . .

...
...

...

Θi1 . . . Θi j . . . Θim
...

...
...
. . .

...

Θn1 . . . Θnj . . . Θnm

©«

ª®®®®®®®®®®¬

Histogram at time (t-1)
S1

Θ∗
11
. . . Θ∗

1j . . . Θ∗
1m

...
. . .

...
...

...

Θ∗i1 . . . Θ∗i j . . . Θ∗im
...

...
...
. . .

...

Θ∗n1 . . . Θ∗nj . . . Θ∗nm

©«

ª®®®®®®®®®®®¬

Evolved Histogram

S2

Θ∗
11
. . . Θ∗

1j . . . Θ∗
1m

...
. . .

...
...

...

Θ∗i1 . . . Θ∗i j . . . Θ∗im
...

...
...
. . .

...

Θ∗n1 . . . Θ∗nj . . . Θ∗nm

©«

ª®®®®®®®®®®®¬
Update Histogram at time t

S3

+1

Θw
11
. . . Θw

1j . . . Θw
1m

...
. . .

...
...

...

Θw
i1 . . . Θw

ij . . . Θw
im

...
...

...
. . .

...

Θw
n1 . . . Θw

nj . . . Θw
nm

©«

ª®®®®®®®®®®®¬
S4

Θ1

11
. . . Θ1

1j . . . Θ1

1m
...
. . .

...
...

...

Θ1

i1 . . . Θ1

i j . . . Θ1

im
...

...
...
. . .

...

Θ1

n1 . . . Θ1

nj . . . Θ1

nm

©«

ª®®®®®®®®®®®¬

Ensemble w components

SK11 . . . SK1j . . . SK1s
...
. . .

...
...

...

SKi1 . . . SKi j . . . SKim
...

...
...
. . .

...

SKw1 . . . SKwj . . . SKws

©«

ª®®®®®®®®®®¬
S5

SCt
1
. . . SCt

j . . . SCt
s S6SC

(t−1)
1

. . . SC
(t−1)
j . . . SC

(t−1)
s

Estimated Sketch

Observation time
0 t-1 t

evolves by
solving [3]

update with
new value vt

Ensemble
components

Ensemble
Randomization

Scoring at (t)

Scoring at (t-1)

SIMmin−max
min-max
similarity

min-max
similarity

Processing at
time t

Figure 4: Flow diagram of the proposed method.

Intel i7 2.6 GHz processor and 16 GB of RAM, and the algorithms

were implemented in Matlab
1
version R2017b.

5.1 Datasets
We used both synthetic and real-world datasets. The datasets are

user check-in activity on locations and are simulated as stream of

histogram elements, with the following characteristics:

Synthetic dataset: We created a synthetic data set that contains

1,000,000 check-ins. We simulated the dataset as a stream of his-

togram elements of 1,000 histograms. Each histogram has 1,000 ele-

ments. The histograms are classified into two distribution classes,

and each class has 500 histograms. The classes are generated using

Gaussian distributions such that the mean and the variance of the

distribution are (10,2) and (11,2), respectively.

Real-world dataset: We used POI datasets consisting of different
user check-in data from Foursquare

2
. Specifically, we perform our

experiments on user check-ins in America, Japan, and Turkey, be-

cause these places are the most checked places by Foursquare users.

The datasets are based on 18 months of user check-ins from April

2012 to September 2013, and were provided by [30]. Each POI in the

1
http://mathworks.com/products/matlab/

2
https://developer.foursquare.com/

datasets is classified into hierarchical categories by Foursquare
3
.

We pre-processed the datasets to remove all POIs that have a small

number of check-ins to prevent skewness and sparsity of data. Par-

ticularly, we kept POIs that have number of check-ins greater than

100, 200 and 400 times with America, Japan and Turkey dataset,

respectively. Considering the visiting time behaviors for POIs and

POI types, previous works [28, 29] have shown that the visiting time

behaviors for different types of POIs are different. Each kind of POIs

might have a specific check-in time. For example, the number of

check-ins for a bar is highest during the night, while the check-ins

for a park is highest during daytime. Hence, for a fair comparison,

we use fine-grained element as a pair of user and check-in time in

a week in the HistoSketch method [28] as a histogram element to

make it get the best results. In particular, each week is first split into

168 hours (each day has 24 hours, 7 days a week × 24 = 168 hours).

Second, each check-in time is mapped into a range of 168 hours. A

pair of user and time range will form an element of a histogram.

Since the model used in the eRSS algorithm evolves with respect

to time, we use coarse-grained elements of user check-ins. The

characteristics of the datasets are summarized in Table 1.

3
https://developer.foursquare.com/docs/resources/categories

http://mathworks.com/products/matlab/
https://developer.foursquare.com/
https://developer.foursquare.com/docs/resources/categories

Table 1: Dataset characteristics.

Datasets Check-ins No of POIs No of Users

America 303,647 2,555 16,531

Japan 871,646 1,340 14,052

Turkey 780,657 1,783 15,059

Synthetic 1,000,000 1,000 1,000

5.2 Baseline Algorithms
We evaluated the performance of the proposed method, eRSS, and

compared the classification accuracy and running time against

current state-of-the-art algorithms, POISketch [28] and HistoS-

ketch [29], using the source code provided by the authors. The

POISketch algorithm maintains the frequency of histogram ele-

ments using Count-Min sketch. It does not consider the weight of

the elements in streams. Instead, the POISketch treats the impor-

tance of elements in the stream equally. The HistoSketch algorithm

considers the weight of the elements by using a constant fading

factor. The HistoSketch uses fine-grained elements for similarity

preservation. The eRSS uses an automatically tuning coefficient

model, combining a random ensemble process to adapt to changes

in a stream. We prepared two variants of the eRSS, namely eRSS-
deviation and eRSS-evolving. eRSS-deviation is a version where se-

lection parameter β is set to 0, so that it only considers the opti-

mization objective function in the deviation of Θ, and thus fading

is utilized on Θ. eRSS-evolving, on the other hand, considers both

tuning variables α and β .

5.3 Configuration Setting of Parameters
We conducted the experiments by varying the number of items in

the sketch, s = 20, 50, 100, 150, and 200. The number of components

w was 4, and we used a random selection in the ensemble compo-

nents. We used the same configuration setting of the histogram as

in [29], n = 10 hash functions of rangem = 50. The decay factor in

the HistoSketch was alternately set to 0.02, and 0.01, as done in the

original paper. To classify histograms, we used a k-nearest neigh-
bors (kNN) algorithm [16] because of its implementation simplicity,

robustness to noise, and immediate adaptation with new training

data. We empirically set k = 5 (i.e., five nearest neighbors) to test

the labels for the streaming histograms, where a weight of a hit is

given on its position in the k-nearest neighbors having the testing

label. Specifically, if a nearest neighbor at p-th position order in the

k-nearest neighbors has a label equal to the testing label, then the

weight of the hit is set to 1/p. Otherwise, the hit is set to 0.

We split the datasets into 2 subsets, testing set and training set.

Then, we recorded the accuracy of the algorithms when labeling the

POIs. The testing-training sets are randomly selected as 50%-50%

and 10%-90% of POIs, with the synthetic and real-world datasets,

respectively. In the experiments with the synthetic dataset, a drift

was simulated at point 300K of the stream, and we evolved 25%

of 1000 histograms of the stream randomly during the evaluation.

Further, we varied the parameters k , α , and β to study the impacts

of variables α and β on the sparsity and hierarchy constraint on

the optimization solution of the objective function. On real-world

datasets, we performed the classification at the last check-in time

every month, and the time function in the objective was chosen as

square root of timespan in hour as a unit.

5.4 Experimental Results
Synthetic dataset: Figure 5 shows the classification accuracy re-

sults on the synthetic dataset when we set the sketch length to 50.

As shown in Fig. 5a, POISketch adapts to a concept drift slowly. It

has the worst performance and very low accuracy at the drift point.

The reason is that POISketch treats all data in the past equally.

Conversely, HistoSketch and eRSS quickly adapt to a concept drift.

The classification accuracy of both HistoSketch and eRSS are high,

with being the best. We observe that the accuracy values of the

algorithms are slightly different at stable points, while the speed

of concept drift adaptations are similar. In summary, the average

accuracy of eRSS is 91.87%, while HistoSketch and POISketch obtain

89.04%, and 74.64%, respectively.

Furthermore, the results show a large difference in concept drift

detection. At a drift point, HistoSketch classifies histogram with

a very high error rate. The error rates are 96% and 87% with the

values of the forgetting factor λ = 0.01 and 0.02, respectively. In

contrast, with eRSS the error rate is much lower. Specifically, with

the eRSS-evolving variant with β=0.001, the rate is 50%, and 58%with

eRSS-deviation. In general, the accuracy obtained with eRSS is much

better than the previous methods. eRSS is an order of magnitude

accurate higher than the baseline algorithms with concept drift.

Specifically, our experimental results show that at drift points, eRSS

has 12.5x times higher accuracy value than the baseline algorithms

(50% versus 4%). This can be explained as follows. In streams, when

using the same factor for the whole data as HistoSketch does, it

might be efficient with stable data, and it can quickly adapt to

changes after changes have occurred. However, around drift points,

the data distribution changes dramatically, in terms of both internal

characteristics and the relationship with other features. This is

exactly why considering evolving models with different factors is

useful for detecting concept drifts in streams.

Figures 5b-5d show the classification accuracy of the eRSS when
varying the different parameters, and the timespan was set to a

unit. The experimental results when varying α , β are shown in

Figs. 5b-5c. In the first test, β was set to 10, and we varied the value

of α within [0.9, 0.5, 0.1, 0.05, 0.01, 0.005]. In the second test, α was

set to 0.5, and then we varied the value of β within [1,000, 100, 10,

0.1, 0.01, 0]. We observe that when testing on synthetic dataset,

with time being generated sequentially and equally, the impact of

relaxation parameter is low, and that selecting a small value of β
has significant effect on concept drifts. Further, Figure 5d plots the

classification accuracy when we vary the sketch elements s within
[20, 50, 100, 150, 200] while α , β are set to 0.5, 1.0. We observe that

the adaptive speed of eRSS with concept drift is fast. The result

shows that, when the value of s increases, the accuracy at stable

points also increases. The lowest value is obtained when s = 20, and

the highest accuracy is obtained when s = 200. However, we need

to make a trade-off between accuracy and space complexity, i.e.,

the larger s is, the larger space is consumed.

Real-world POI datasets: Figure 6 shows the classification ac-

curacy of the algorithms on real-world POI datasets. We set the

sketch length to 50 and the forgetting factor in HistoSketch to 0.02

150k 300k 450k 600k 750k 900k
Histogram elements

0

0.25

0.5

0.75

1

A
cc

ur
ac

y HistoSketch- -0.01
HistoSketch- -0.02
PoiSketch
eRSS-deviation
eRSS-evolving- =0.5, =1
eRSS-evolving- =0.5, =0.001
eRSS-evolving- =0.5, =1000

(a) Accuracy

150k 300k 450k 600k 750k 900k
Histogram elements

0.25

0.5

0.75

1

A
cc

ur
ac

y

eRSS-evolving- =0.9
eRSS-evolving- =0.5
eRSS-evolving- =0.1
eRSS-evolving- =0.05
eRSS-evolving- =0.01
eRSS-evolving- =0.005

(b) Varying α with β = 10

150k 300k 450k 600k 750k 900k

Histogram elements

0.25

0.5

0.75

1

A
cc

ur
ac

y

eRSS-evolving- =1,000
eRSS-evolving- =100
eRSS-evolving- =10
eRSS-evolving- =0.1
eRSS-evolving- =0.01
eRSS-deviation

(c) Varying β with α = 0.5

150k 300k 450k 600k 750k 900k
Histogram elements

0

0.25

0.5

0.75

1

A
cc

ur
ac

y

eRSS-evolving-s=20
eRSS-evolving-s=50
eRSS-evolving-s=100
eRSS-evolving-s=150
eRSS-evolving-s=200

(d) Varying sketch length

Figure 5: Classification accuracy on synthetic dataset.

Table 2: Average runtime (second) and velocity (number of
elements per ms).

Datasets America Japan Turkey Synthetic

Histo 24.513 59.512 60.228 60.459

Sketch 12.38 14.64 12.96 16.54

POI 71.329 205.240 168.807 62.711

Sketch 4.26 4.24 4.62 15.95

eRSS 71.411 196.167 169.635 46.815

Deviation 4.25 4.44 4.60 21.36

eRSS 72.816 188.441 175.084 49.055

Evolving 4.17 4.63 4.46 20.39

as suggested in the original paper, which give the best performance

for the HistoSketch algorithm. We empirically set the value of (α ,
β) in evolving variant of eRSS to (0.5, 100). We observe that on the

Japan dataset, POISketch performs the worst, while HistoSketch

has the best performance, and both variants of the proposed method

have similar results as HistoSketch. Nevertheless, the gap among

all the results is very small, around 0.6% between HistoSketch and

eRSS. On America and Turkey datasets, on the other hand, the

worst accuracy is obtained by HistoSketch, and the eRSS is the

most accurate algorithm. These results can be analyzed as follows.

The Japan dataset is the most dense dataset with largest number of

check-ins and smallest number of users and POIs. This increases

collaboration and feature selectivity between check-ins, users and

POIs. Therefore, it might be sufficient to apply the same factor for

all data. However, the America and Turkey datasets are very sparse.

Hence, the correlation between check-ins, users and POIs is loose

Jun-12 Sep-12 Dec-12 Mar-13 Jun-13 Sep-13
Checking time (end of months)

0

0.2

0.4

A
cc

ur
ac

y

HistoSketch PoiSketch
eRSS-deviation eRSS-evolving

(a) America

Jun-12 Sep-12 Dec-12 Mar-13 Jun-13 Sep-13
Checking time (end of months)

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

HistoSketch

PoiSketch

eRSS-deviation

eRSS-evolving

(b) Japan

Jun-12 Sep-12 Dec-12 Mar-13 Jun-13 Sep-13
Checking time (end of months)

0

0.2

0.4

A
cc

ur
ac

y

HistoSketch
PoiSketch

eRSS-deviation
eRSS-evolving

(c) Turkey

Synthetic America Japan Turkey
Synthetic & Real Datasets

0.25

0.5

0.75

1
A

cc
ur

ac
y

 HistoSketch
 POISketch
 eRSS-deviation
 eRSS-evolving

(d) Average accuracy

Figure 6: Classification accuracy on real datasets.

or even independent, which, in turn, forms very different check-in

behaviors. In the HistoSketch paper, the authors did not seem to

have investigated the correlation of different characteristics of data.

Although HistoSketch used fine-grained elements, it applied a

constant factor on all the data at different observations. This calls

for an evolving model that takes such correlations in a stream into

account. The eRSS utilizes an auto-tuning model with respect to

different kinds/groups of data to explore the relations between in-

dividual check-in behaviors. This’s why the eRSS is able to obtain

good performance on sparse datasets. Figure 6d plots the average

accuracy of the algorithms on the experimental datasets. We learn

that the eRSS has a good performance and has the best average ac-

curacy on three of four test datasets. Importantly, the eRSS quickly

adapts to concept drifts but also preserves the high classification

accuracy when drift occurs.

In terms of running time, Table 2 displays the execution time

and the number of elements can be processed in the streams per

millisecond (ms). Interestingly, it reveals that in [29], HistoSketch

traded off accuracy (3.5%) for speed (7500x speedup as compared to

Histogram-Fine-Forgetting, a variant of POISketch). Note, however,

that the efficiency of HistoSketch in term of running time benefits

from kNN classification. The result shows that eRSS is a bit slower

than HistoSketch, around 2.9 times, which is as we expected. Nev-

ertheless, it is a trade-off between running time and accuracy and

concept drift adaptation speed. In addition, the proposed method is

not only efficient with high accuracy classification (3.99% higher

than HistoSketch for the Turkey and America datasets) and quickly

adapts to changes, it also has a fast execution time (2500x speed up,

compared to Histogram-Fine-Forgetting according to [29]). With

our experimental setup, eRSS is capable of processing streams at

high velocity, up to 4000 check-ins per second.

6 CONCLUSION
In this paper, we proposed a novel robust method for sketching

streaming histograms based on an ensemble randomization method.

To obtain the histogram elements, we developed an algorithm called

eRSS, which uses an evolving model with adaptive coefficients. To

obtain the values of the coefficients, the eRSS algorithm considers

the timestamps of different observations in each coefficient and

solves an optimization problem. Here, we studied applying Adaptive

Relaxed Alternating Direction Method of Multipliers (ARADMM)

as a solver for the optimization problem. To evaluate our approach,

we performed extensive experiments on both real-world datasets

and synthetic dataset. The results from this evaluation showed

the effectiveness and the efficiency of the proposed method. More

specifically, our algorithm was able to achieve up to 3.99% higher

overall classification accuracy than the baseline algorithms. Overall,

our evaluation demonstrated our method’s ability to preserve the

similarity of generated sketches, with the capability to adapt to

concept drifts in data streams, in an online fashion.

For future work, we plan to explore applying our method on high

dimensional streaming data, and apply it to solve event detection

problems, including anomaly and outlier detection.

REFERENCES
[1] Dean A. Bodenham and Niall M. Adams. 2017. Continuous monitoring for

changepoints in data streams using adaptive estimation. Statistics and Computing
27, 5 (2017), 1257–1270.

[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.

Distributed Optimization and Statistical Learning via the Alternating Direction

Method of Multipliers. Foundations and Trends in Machine Learning 3, 1 (2011),

1–122.

[3] A. Broder. 1997. On the Resemblance and Containment of Documents. In Pro-
ceedings of the 1997 Compression and Complexity of Sequences (SEQUENCES).
21–29.

[4] Lianhua Chi and Xingquan Zhu. 2017. Hashing Techniques: A Survey and

Taxonomy. Comput. Surveys 50 (2017), 11:1–11:36.
[5] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream

Summary: The Count-Min Sketch and its Applications. Journal of Algorithms 55,
1 (2005), 58–75.

[6] Graham Cormode and S. Muthukrishnan. 2005. Summarizing and Mining Skewed

Data Streams. In Proceedings of the 2005 SIAM International Conference on Data

Mining (SDM). 44–55.
[7] Quang-Huy Duong, Heri Ramampiaro, Kjetil Kjetil Nørvåg, Philippe Fournier-

Viger, and Thu-Lan Dam. 2018. High utility drift detection in quantitative data

streams. Knowledge-Based Systems 157 (2018), 34–51.
[8] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. 2014. A Survey on Concept Drift Adaptation. Comput. Surveys 46, 4,
Article 44 (2014), 37 pages.

[9] Amit Goyal, Hal Daumé III, and Graham Cormode. 2012. Sketch Algorithms for

Estimating Point Queries in NLP. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). 1093–1103.

[10] Sudipto Guha, Kyuseok Shim, and Jungchul Woo. 2004. REHIST: Relative Error

Histogram Construction Algorithms. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB). 300–311.

[11] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In Proceedings of the 13th Annual ACM
Symposium on Theory of Computing (STOC). 604–613.

[12] Sergey Ioffe. 2010. Improved Consistent Sampling, Weighted Minhash and L1

Sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining
(ICDM). 246–255.

[13] Ping Li. 2015. 0-Bit Consistent Weighted Sampling. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). 665–674.

[14] Ping Li, Art B Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing. In

Proceedings of the 25th International Conference on Neural Information Processing
Systems (NIPS). 3113–3121.

[15] Mark Manasse, Frank McSherry, and Kunal Talwar. 2010. Consistent Weighted

Sampling. Microsoft Technical Report (June 2010).
[16] Thomas M. Mitchell. 1997. Machine Learning. McGraw-Hill, Inc., New York,

USA.

[17] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita.

1996. Improved Histograms for Selectivity Estimation of Range Predicates. In

Proceedings of the 1996 ACM International Conference on Management of Data
(SIGMOD). 294–305.

[18] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented Sketch: Faster

and More Accurate Stream Processing. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD). 1449–1463.

[19] Caitlin Sadowski and Greg Levin. 2007. SimHash: Hash-based Similarity Detec-

tion. Google Technical Report (2007).
[20] Saket Sathe and Charu C. Aggarwal. 2018. Subspace histograms for outlier

detection in linear time. Knowledge and Information Systems 56, 3 (2018), 691–
715.

[21] Raquel Sebastião, João Gama, and Teresa Mendonça. 2017. Fading histograms in

detecting distribution and concept changes. International Journal of Data Science
and Analytics 3, 3 (2017), 183–212.

[22] Mingwang Tang and Feifei Li. 2014. Scalable Histograms on Large Probabilis-

tic Data. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). 631–640.

[23] Robert Tibshirani. 1996. Regression Shrinkage and Selection via the Lasso. Journal
of the Royal Statistical Society. Series B (Methodological) 58, 1 (1996), 267–288.

[24] W. Wu, B. Li, L. Chen, C. Zhang, and P. Yu. 2018. Improved Consistent Weighted

Sampling Revisited. IEEE Transactions on Knowledge and Data Engineering (2018),
1–14.

[25] W. Xie, F. Zhu, J. Jiang, E. P. Lim, and K. Wang. 2016. TopicSketch: Real-Time

Bursty Topic Detection from Twitter. IEEE Transactions on Knowledge and Data
Engineering 28, 8 (2016), 2216–2229.

[26] Z. Xu, M. A. T. Figueiredo, X. Yuan, C. Studer, and T. Goldstein. 2017. Adaptive Re-

laxed ADMM: Convergence Theory and Practical Implementation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
7234–7243.

[27] Bo Yang, Ahmed S. Zamzam, and Nicholas D. Sidiropoulos. 2018. ParaSketch:

Parallel Tensor Factorization via Sketching. In Proceedings of the 2018 SIAM
International Conference on Data Mining (SDM). 396–404.

[28] Dingqi Yang, Bin Li, and Philippe Cudré-Mauroux. 2016. POIsketch: Semantic

Place Labeling over User Activity Streams. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI). 2697–2703.

[29] D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux. 2017. HistoSketch: Fast Similarity-

Preserving Sketching of Streaming Histograms with Concept Drift. In Proceedings
of the 2017 IEEE International Conference on Data Mining (ICDM). 545–554.

[30] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu. 2015. Modeling User Activity Pref-

erence by Leveraging User Spatial Temporal Characteristics in LBSNs. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 45, 1 (2015), 129–142.

[31] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. 2017. Pyra-

mid Sketch: A Sketch Framework for Frequency Estimation of Data Streams.

Proceedings of the VLDB Endowment 10, 11 (2017), 1442–1453.
[32] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the

Elastic Net. Journal of the Royal Statistical Society, Series B 67 (2005), 301–320.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Ensemble Histogram Sketching
	4.1 Histogram
	4.2 Weighted Sampling
	4.3 Ensemble Sampling
	4.4 Implementation Details

	5 Experiments
	5.1 Datasets
	5.2 Baseline Algorithms
	5.3 Configuration Setting of Parameters
	5.4 Experimental Results

	6 Conclusion
	References

