
High Utility Drift Detection in Quantitative Data Streams

Quang-Huy Duonga, Heri Ramampiaroa, Kjetil Nørv̊aga, Philippe Fournier-Vigerb, Thu-Lan Dama

aDepartment of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
bSchool of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen, China

Abstract

This paper presents an efficient algorithm for detecting changes (drifts) in the utility distributions of pat-
terns, named High Utility Drift Detection in Transactional Data Stream (HUDD-TDS). The algorithm is
specifically suitable for quantitative data streams, where each item has a unit profit, and non-binary pur-
chase quantities are allowed. We propose a method that enables the HUDD-TDS algorithm to be used in
an online setting to detect drifts. An important property of HUDD-TDS is that it can quickly adapt to
changes in streams, while considering older transactions to be less important than new ones. Furthermore,
the proposed method applies statistical testing based on Hoeffding bound with Bonferroni correction in order
to ensure that only significant changes are reported to the user. This test allows identifying a change (drift)
if the difference between current and the previous time window is significant in terms of utility distribution.
In this work, we focus on both local and global utility drifts. A local utility drift is a drift in the utility
distribution of a single pattern, whereas a global utility drift is a change in the utilities of all high utility
itemsets. In order to be able to compute the similarity of different high utility itemsets to detect drifts, we
propose a new distance measure function. The results of our experiments on both real world and synthetic
datasets show the feasibility and efficiency of the proposed HUDD-TDS algorithm.

Keywords: High Utility Pattern Mining, Data Stream, Drift Detection, Change Detection

1. Introduction

Frequent Itemset Mining (FIM) is a fundamental research topic in data mining [1]. The task of FIM is
to discover all itemsets in a transactional database so that the frequency of the itemsets is no less than a
user-specified minimum support threshold. FIM has attracted a lot of attention from researchers and it has
been applied in many applications [2, 3]. However, in FIM, the unit profits of items are not considered, and
the purchase quantities are assumed to be binary in each transaction. This assumption often does not hold
in real life. To address the limitation of these studies, the FIM problem has been generalized as the problem
of High Utility Itemset Mining (HUIM) [4]. The goal of HUIM is to discover patterns that generate a high
profit in static customer transaction databases. The key differences between HUIM and FIM are that each
item has a unit profit, and non-binary purchase quantities are allowed. Several studies on HUIM have been
conducted [5, 6], but most of existing approaches are suitable for pattern discovery in a static database.
With more and more data, including customer transactions, being generated in streams, HUIM must also
support pattern discovery in dynamic databases.

As with general data streams, streaming transactional data is generally infinite and changes continuously.
This combined with the high data generation speed makes mining of a stream of transactional data to discover
patterns more challenging than mining a static database. Thus, developing efficient methods and algorithms
for analyzing transaction streams is an important research problem [7, 8]. Nevertheless, most studies on
this topic, including [9, 10], have focused on adapting traditional data mining techniques to streams and

Email addresses: huydqyb@gmail.com (Quang-Huy Duong), heri@idi.ntnu.no (Heri Ramampiaro), noervaag@ntnu.no
(Kjetil Nørv̊ag), philfv8@yahoo.com (Philippe Fournier-Viger), lanfict@gmail.com (Thu-Lan Dam)

Preprint submitted to Knowledge-Based Systems May 14, 2018

improving their efficiency to deal with streaming data. Note, however, that the underlying distribution of
data objects in a stream generally changes over time [11], thus making such approaches unsuitable. At the
same time, detecting changes, called concept drifts, is crucial because it allows to discover the latest trends
in a stream. A concept drift mainly refers to a significant decrease or increase in the distribution of data
objects in a data stream with respect to a given measure [12].

In recent years, incremental and online learning have attracted the attention of many researchers to detect
changes due to their numerous real-life applications, including market basket analysis, image processing,
outlier detection, and climate monitoring [13, 14]. An important challenge of analyzing data streams is that
trends may emerge, or remain steady over time, and that the streams often contain noise. In other words,
to allow decision-makers to quickly react to changes, it is necessary to design efficient algorithms that can
detect and monitor these changes in real-time. Nevertheless, although monitoring changes in data streams
is widely recognized as important, most existing algorithms have mainly focused on discovering frequent
patterns with changing frequencies, rather than considering changes in terms of other meaningful measures,
such as the profit generated by the sale of items. To the best of our knowledge, only few approaches
have been proposed to detect changes in the utility (profit) distribution of itemsets, where transactions
are treated as streaming data. Monitoring such fluctuations in profit is necessary and important in many
real-life applications including online retail stores and monitoring stock exchanges.

The work presented in this paper is motivated by the need to address the limitations due to the lack of
approaches that fully study the issues with concept drifts in high utility itemsets in data streams. We propose
an efficient algorithm called HUDD-TDS (High Utility Drift Detection in Transactional Data Streams),
with which we introduce several novel ideas to detect drifts efficiently. We propose a new distance measure
function to measure the similarity of different high utility itemsets. In order to quickly adapt to changes
in streams, the HUDD-TDS considers weighting factor of older transactions and utilizes statistical testing
based on Hoeffding bound with Bonferroni correction. The proposed method detects changes in the utility
distribution of patterns in quantitative data streams, which include both changes in the utility distribution
of single itemsets and changes in the structure of utility distribution of itemsets.

Overall, the main contributions of this work are as follows:

1. We introduce the task of detecting both local and global drifts by considering the utility measure and
the recency of transactions in streams, defined as follows:

• A local utility drift is a change in the utility distribution of an itemset (e.g., the utility of an
itemset has recently considerably increased or decreased).

• A global utility drift is a change in the total utility distribution of all itemsets (e.g., the sales of
products in a retail store have globally considerably increased or decreased).

2. We propose an efficient algorithm for the drift detection task in 1). The proposed algorithm relies
on probability theory and statistical testing to identify changes in the utility distribution of itemsets
in a quantitative data stream. Moreover, our approach takes into account the evolving behavior of
the streams, and we employ a fading function to identify recent trends. Such a fading function is
specifically useful in weighing the importance of transactions according to their age.

3. We introduce a new distance measure function called Dmo to compare high utility itemsets for detect-
ing drifts. Although Dmo is based on the cosine similarity, which is a standard measure for calculating
the similarity between vectors, it is more general in that Dmo not only considers the difference of vec-
tors in terms of orientation (i.e., vector angles) but also magnitude. As discussed in this paper, this is
necessary to address our problem.

4. We conduct an extensive experiment to evaluate the proposed method HUDD-TDS, showing the
feasibility, effectiveness, and efficiency of our HUDD-TDS algorithm.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related work. Section 3
defines the problem of drift detection and introduces necessary preliminaries. Section 4 presents the proposed
approach for detecting changes in the utility distribution of itemsets in a quantitative transaction data
stream. Section 5 presents results from an extensive experimental evaluation to evaluate the performance
of the proposed algorithm. Finally, Section 6 concludes the paper and outlines our plans for future work.

2

2. Related work

Detecting concept drifts is an important research problem that has applications in many domains such
as flow prediction in industrial systems [15] and information filtering [16]. Numerous approaches have
been proposed to detect changes in the distribution of data objects in data streams. Techniques for drift
detection [17] are generally based on one of the following approaches: sequential analysis [18], statistical
process control [19], comparison of two consecutive time windows [20], and contextual approaches [16].
The Hoeffding’s Inequality has been used to design several approaches for determining the upper bounds
for drift detection. Such upper bounds have been used in algorithms such as the Fast Hoeffding Drift
Detection Method for Evolving Data Streams (FHDDM) [21], Hoeffding Adaptive Tree (HAT) [22], and the
HAT+DDM+ADWIN [23] algorithm which extends ADaptive sliding WINdow (ADWIN) algorithm [24]
and the Drift Detection Method (DDM) [18]. ADWIN is one of the most popular change detection, and
it uses sliding windows to maintain the distribution and detect changes, whilst the DDM uses an online
learning model to control the online error-rate and detect changes. Fŕıas-Blanco et al. [25] proposed online
and non-parametric drift detection methods using several bounds based on Hoeffding’s Inequality. The
algorithm can detect concept drifts based on the movements of distribution averages in streaming data. The
algorithm uses counters to maintain information for detecting drifts. The time complexity of this approach
is constant (O(1) for processing each data point in the stream).

In HUIM, several algorithms have been proposed for discovering high utility itemsets [4, 5, 26, 27] in static
databases. Early HUIM algorithms adopt a two-phase approach to discover patterns in customer transaction
databases. For example, Two-Phase [5], IHUP [26] and UPGrowth [28] are two-phase algorithms. Although
a two-phase approach is useful and guarantees completeness in mining of high utility itemsets, a drawback
is that the two-phase approach generates a huge amount of candidates, requiring a significant amount of
memory to maintain the candidates. This greatly degrades the performance of the two-phase algorithms,
thus making them unsuitable for streaming data. To address this issue, recent HUIM algorithms have
adopted a one-phase approach using the utility-list structure. Liu et al. [29] first introduced and utilized
this structure in the HUI-Miner algorithm. The utility-list structure can be used to mine high utility itemsets
in a single phase, i.e., without maintaining candidates in memory. The utility of itemsets can be directly
calculated using their utility-lists without scanning the database again. The simplicity of the utility-list
structure has led to the development of numerous utility-list-based algorithms [29, 30, 31], which generally
outperform other algorithms. To discover high-utility patterns in data streams, some algorithms have been
proposed [10, 32, 33]. These studies generally extend traditional HUIM methods to increase their efficiency
in a streaming context. Nevertheless, they are not designed to detect changes or drifts.

As mentioned earlier, customer transactions in retail stores can be seen as a stream of data, because
customers continuously purchase products in the stores. This also means that the data is not static and
is often impossible to store in memory due to its large volume. Moreover, in a streaming context, the
distribution of data and the transactional behavior of customers can change and evolve over time. To the
best of our knowledge, no work has been proposed to detect drifts for high utility itemset mining in streams
of quantitative transactions, while considering the importance of utility over time. On the other hand, in
traditional frequent itemset mining, several algorithms have been proposed to identify concept drifts in data
streams [34, 35]. Ng et al. [34] proposed a test paradigm named Algorithm for change detection (ACD)
for detecting changes in transactional data streams by considering the support of itemsets for reservoir
sampling. ACD evaluates drifts by performing reservoir sampling and applying three statistical tests. The
ACD method employs a bound based on Hoeffding’s Inequality to determine the number of transactions to
be kept in each reservoir. ACD selects transactions to fill its reservoir using a distance measure that is a
function of the support of single items. A major limitation of this approach is that high frequency items
have more chance of being sampled. However, in terms of utility (profit), high frequency items are often
low utility itemsets in real-life customer transactions. Thus, this approach may find many patterns that are
frequent but do not necessarily yield a high profit. Recently, Koh [35] proposed the CD-TDS algorithm,
which considers two types of changes in transactional data streams for frequent pattern mining. A local
drift, is a change in the frequency of single items, whilst a global change indicates a major change in the set
of discovered frequent itemsets. The CD-TDS method uses a graph to represent the relationships between

3

items in transactions, and the Levenshtein distance to calculate the similarity between sets of frequent
itemsets found at different times. A limitation of CD-TDS is that it detects local drifts for single items, and
not for itemsets. CD-TDS consider itemsets to detect global drifts but do not provide information about
which itemsets contribute the most to these global drifts. Moreover, CD-TDS considers drifts in terms
of pattern frequencies, but it does not take into account changes in terms of utility. In addition, another
limitation of the CD-TDS algorithm is that it treats all transactions as equally important. However, in
real-life data streams, the most recent transactions are generally the most important transactions, as they
provide information about recent trends.

In conclusion, there is an important need for an efficient method for online detection of utility drifts
of high utility itemsets in a stream of quantitative customer transactions, which considers changes in both
the utility of a high utility itemset (local drift) and the utility distribution of high utility itemsets (global
drift), while also considering the recency of transactions. In the next sections, we formalize the problem and
present the proposed method in details.

3. Preliminaries and problem definition

This section introduces preliminaries related to high utility itemset mining and drift detection. In the
following paragraphs, we present some basic definitions that we will use in this paper. The notations used
in this paper are summarized in Table 1.

Let there be a set of items I = {i1, i2, . . . , im} representing products sold in a retail store. For each
item ij ∈ I, the external utility of ij is a positive number representing its unit profit (or more generally,
its relative importance to the user). The external utility of an item ij is denoted as p(ij). Let there
be an infinite sequence of increasing positive integers 1 ≤ x1 < x2 < x3 A streaming quantitative
transactional database D is an infinite sequence of transactions D = {Tx1, Tx2, Tx3, . . . }, where for each
transaction Td ∈ D, the relationship Td ∈ I holds. Moreover, for each transaction Td ∈ D, d is a unique
integer that is said to be the TID (Transaction IDentifier) of Td, and represents its observation time. Thus,
for two transactions Ta and Tb, if a < b, this indicates that transaction Ta has occurred before Tb. Assume
the stream D does not contain two transactions with the same observation time1. Consider two observation
times a and b, a data window Wab is the finite sub-sequence of D containing all transactions from the
observation time a to the observation time b. Formally, Wab = {Ty1, Ty2, . . . , Tyn}, for all integers y1, y2,
. . . , yn such that a ≤ y1 < y2 < · · · < yn ≤ b, and Ty1, Ty2, . . . , Tyn appear in D. The internal utility
of an item ij in a transaction Td is denoted as q(ij , Td). It is a positive number representing the purchase
quantity of item ij in Td. A set of items X = {i1, i2, . . . , il} ⊆ I containing l items is said to be an
itemset of length l, or alternatively, an l -itemset. For example, Figure 1 shows the first four transactions of
a streaming quantitative transactional data stream, which will be used as running example. In this stream,
the set of items I in D is {a, b, c, d, e, g}. The external utilities of these items are respectively 5, 2, 1, 2,
3, and 1.

Definition 1 (Utility of an item in a transaction). Let there be an item i and a transaction Td such that
i ∈ Td. The utility of i in Td is the product of the internal utility (purchase quantity) of item i in Td by the
external utility (unit profit) of i, that is u(i, Td) = q(i, Td)× p(i).

Definition 2 (Utility of an itemset in a transaction). For an itemset X and a transaction Td (X ⊆ Td), the
utility of X in Td is a positive number defined as u(X,Td) =

∑
i∈X u(i, Td).

Definition 3 (Transaction utility and total utility). The utility of a transaction Td is the sum of the utilities
of items appearing in that transaction, that is TU(Td) = u(Td, Td). The total utility of a window W in a
stream D is the sum of the utilities of all transactions in W, that is TUD(W) =

∑
Td∈W TU(Td).

1If two transactions are simultaneous, a total order on these transactions can be obtained by incrementing the observation
time of one of those transactions by a small value.

4

TID Transaction Transaction utility
1 (a,1), (c,1), (d,1) 8
2 (a,2), (c,6), (e,2), (g,5) 27
3 (b,4), (c,3), (d,3), (e,1) 20
4 (b,2), (c,3), (e,2), (g,2) 15

Item a b c d e g
External utility 5 2 1 2 3 1

Figure 1: Four transactions of a quantitative transactional stream (top) and the corresponding external utilities of items
(bottom).

Definition 4 (Utility and relative utility of an itemset). Let there be a window W in a stream D and an
itemset X. The utility of X in W is defined as u(X,W) =

∑
X⊆Td∧Td∈W u(X,Td). The relative utility of

X in W is defined as ru(X,W) = u(X,W)/TUD(W).

Definition 5 (Low utility itemset and high utility itemset). Let the minimum utility threshold (abbreviated
as minutil) be a positive number specified by the user such that 0 < minutil. Consider an itemset X. It
is said to be a high utility itemset (HUI) in W if its utility is no less than minutil, u(X,W) ≥ minutil.
Otherwise, X is said to be a low utility itemset in W .

Example 1. Consider the stream of Figure 1. The utility of itemset c in transaction T1 is u(c, T1) = 1× 1
= 1. The utility of itemset ac in T1 is u(ac, T1) = u(a, T1) +u(c, T1) = 1× 5 + 1× 1 = 5 + 1 = 6. The utility
of transaction T1 is TU(T1) = u(a, T1) + u(c, T1) + u(d, T1) = 5 + 1 + 2 = 8. Consider the window W =
{T1; T2} and that minutil is set to 22. The set of high utility itemsets in that window W is {ac:22, ace:22},
where the number beside each itemset indicates its utility.

Detecting drifts [17] in a stream can be done based on the following definitions. Generally, let there
be a stream S that is a sequence of values {u1; u2; . . . ; ut; ut+1; . . . ; un}. Let µ1 and µ2 respectively
denote the population means of two samples of instances U1 and U2, where U1 = {u1;u2; . . . ;ut} and
U2 = {ut+1; . . . ;un}. Detecting drifts using a statistical test can be done by comparing two hypotheses.
The null hypothesis is that the population means of the two samples have the same distribution, that is H0:
µ1 = µ2. The alternative hypothesis H1 is that µ1 6= µ2. A statistical test is then applied to determine if the
null hypothesis holds for a significance level α. The rule to accept the H1 hypothesis is Pr(|µ1−µ2| ≥ ε) ≥ α,
where ε is a user-defined positive number. A drift is said to occur at an observation time t if the population
of the sample at time t is significantly different from that of the preceding observation time. In that case, t
is said to be a drift point.

The problem of detecting drifts is to find the observation times where there are significant differences in
the data distribution for a given measure (e.g. the support) with respect to the preceding observation times.
Although several papers, e.g., [25, 35] have proposed approaches for drift detection, none have considered
detecting drifts in the utility distribution of patterns including the utility distribution of items in patterns
as well as the utility distribution of patterns in the whole set of patterns. However, the utility is a more
useful measure compared to the support measure as it measures the profit generated by patterns, rather
than simply measuring the number of transactions containing the items without considering their purchase
quantities.

To allow discovering more useful patterns and drifts, this paper adapts the concept of drift to the utility
measure to propose the problem of drift detection for high utility itemset mining in an evolving data stream.
It consists of finding all observation times where there are significant differences in the utility distribution of
itemsets, while also considering the recency of transactions. Finding such drifts provides information that
allows decision-makers to quickly react to changes in customer behavior that influence profitability.

5

Table 1: Table of notations

Symbols Description Symbols Description
D Quantitative database for transaction

stream
Td A specific transaction in D having

transaction IDentifier d
S Sequence of transactions I Set of items in the database D
X An itemset p(i) External utility of single item i
q(i, Td) Internal utility of an item i in a trans-

action Td

Wab A data window containing transactions
from the observation time a to the ob-
servation time b

u(X,Td) Utility of itemset X in transaction Td TUD(W) Total utility of window W in a stream
D

u(X,W) Utility of itemset X in window W µ Population mean
H Hypothesis ut Value in the stream at the observation

time t
λ Decay factor dλ(t) Decay function of factor λ and time t
U(Ti, t, λ) Utility of transaction Ti in the stream

at observation time t
US(X,Ti, t, λ) Utility of itemset X in transaction Ti

at the observation time t

HSn,λW Set of all high utility itemsets in W of
stream at observation time n

U Average of the sequence variables Ui

|W | Cardinality: The number of members
in W

α Confidence level of hypothesis

ε Error value σ2 Variance of utility in a window
Pr Probability E Expectation value of variable
−−−−→
RootS Root vector of stream S

−→
X Vector of itemset X

‖
−→
X‖ Euclidean norm, or Euclidean length,

or magnitude of vector
−→
X

Scos(
−→x ,−→y) Cosine similarity between −→x and −→y

Smo(
−→x ,−→y) Similarity between −→x and −→y Dmo(

−→x ,−→y) Distance between −→x and −→y
DISHS Sum of the movements of high utility

itemsets in the set HS to the root vec-
tor

4. High utility drift detection algorithm in transactional data stream

This section introduces the High Utility Drift Detection in Transactional Data Stream (HUDD-TDS)
algorithm to detect changes in the utility distribution of high utility itemsets in a stream of quantitative
customer transactions. HUDD-TDS can detect both local and global changes by considering the utility
measure, the recency of transactions, and the correlative conjunction of the utility distributions of itemsets
in streams. It gives most importance to the most recent transactions since in practice, i.e., customer
transaction data streams, recent trends are considered as the most valuable. In particular, the proposed
approach uses a fading function to assign a weight to each transaction that is inversely proportional to its
age. The next subsections describes the proposed approach in details.

4.1. A fading function for high utility itemset mining in a stream

An important characteristic of customer transaction data streams is that trends found in a stream change
with time, as the behaviors of customers vary. In a data stream, data points arrive at a high speed. As
previously explained, the importance of data points (transactions) can be viewed as inversely proportional
to their age. Hence, a transaction that occurred a long time ago (before the current observation time) should
be considered as less important than a recent transaction. To model the varying importance of transactions
with respect to the observation time, a decay (fading) function is used in the proposed algorithm. At the
time of observation, the utility values in a transaction that occurred at a time t are multiplied by a decay

6

factor calculated by a decay function dλ(t). The calculated decay factor is a value dλ(t) ∈ [0, 1]. The
decay function dλ(t) is a user-defined function that is inversely proportional to the elapsed time. The decay
function takes a positive constant λ as parameter, called the decay constant, which let the user indicate how
fast the importance of transactions should decrease with respect to time.

Definition 6 (Utility of a transaction in a stream). Let S = (Tx1, Tx2, . . . , Txn) be a sequence of
transactions, where the notation Ti denotes the transaction that occurred at time i. At the time of
observation t, the utility of a transaction Ti in the stream S is denoted as U(Ti, t, λ) and defined as:
U(Ti, t, λ) = U(Ti, i) ∗ dλ(4T), where 4T = t− i ≥ 0 and U(Ti, i) is the utility of transaction Ti at time i,
it is equal to TU(Ti).

Definition 7 (A fading function to consider the recency of transactions). Let S = (Tx1, Tx2, . . . , Txn) be
a sequence of transactions, and dλ(T) be the user-defined decay function. The utility of an itemset X in a
transaction Ti at the observation time t ≥ i is denoted as US(X,Ti, t, λ), and defined as US(X,Ti, t, λ) =
US(X,Ti, i, λ) × dλ(4T) = u(X,Ti) × dλ(4T), where US(X,Ti, i, λ) is the utility of itemset X in Ti at
observation time i, and u(X,Ti) is the utility of X in Ti as defined in traditional high utility mining
(without applying the decay function).

Example 2. Consider the stream database of Figure 1. Suppose that the decay function is dλ(4T) =

2
−4T

2 . The utility of itemset ac in T1 at observation time t = 2 is US(ac, T1, 2, λ) = 6 × 2
−1
2 = 4.24. The

utility of itemset ac in T1 at time t = 3 is US(ac, T1, 3, λ) = 6 × 2
−2
2 = 3. Consider the window W =

{T1; T2}, and that minutil is set to 22. The set of high utility itemsets in W when considering transaction
recency is {ace:22}. The itemset ac is not high utility because its utility is US(ac, T1, 2, λ) +US(ac, T2, 2, λ)
= 4.24 + 16 = 20.24 < minutil.

There are two important differences between mining high utility itemsets in a stream and in a static
transaction database. First, not all data points from a stream can be stored and kept in memory due to
the limited amount of memory of a computer and the infinite nature of a stream. For this reason, data
points can only be read once. Second, an important issue is that the utility of a transaction should decrease
according to a decay function that is inversely proportional to its age. To consider the decay function when
mining high utility itemsets in a quantitative transactional data stream, we redefine the problem of HUIM
as follows. Let W = (Ty1, Ty2, . . . , Tym) be a window containing m transactions at the observation time ym
of a sequence of transactions S. Let there be a threshold value θ defined by the user. An itemset X is a high
utility itemset in W if the sum of its utilities in W is not less than θ, that is:

∑
Ti∈W (US(X,Ti, ym, λ)) ≥ θ.

In the following, the notation HSn,λW is used to denote the set of all high utility itemsets found in a window W

of a transactional data stream at observation time n. Formally, HSn,λW = {X,
∑
Ti∈W (US(X,Ti, n, λ)) ≥ θ}.

4.2. A Hoeffding bound to assess the significance of drifts

Having explained how we apply fading, this section proposes a bound to detect utility drifts. The
proposed bound is based on the Hoeffding Inequality [36] from the probability theory. This inequality has
been used in various studies to analyze data streams [21, 24, 25, 35]. Given some independent random
variables, the Hoeffding Inequality provides an upper bound on the probability that their sum deviates from
its expected value. In this work, the Hoeffding Inequality is used as the basis for assessing if changes are
statically significant in a flow of independent random transactions arriving in a data stream. If the probability
of a predefined condition is greater than a user-specified threshold, the proposed approach considers that
there is a change in the data. The Hoeffding’s Inequality theorem states as follows [36].

Theorem 1 (Hoeffding’s Inequality). Let U1; U2; . . . ; Un be independent random variables bounded by the
interval [0, 1], that is 0 ≤ Ui ≤ 1, where i ∈ {1; . . . ;n}. Let U denote the average of the random variables,
that is U = 1

n

∑n
i=1(Ui). We have:

Pr(U − E[U] ≥ ε) ≤ e−2nε
2

, (1)

where E[X] is the expected value of X.

7

The inequality states that the probability that the estimation and true values differ by more than
ε is bounded by e−2nε

2

. Symmetrically, the inequality is also valid for the other side of the difference:
Pr(−U + E[U] ≥ ε) ≤ e−2nε2 . As a result, a two-sided variant of the Inequality is obtained:

Pr(|U − E[U]| ≥ ε) ≤ 2e−2nε
2

(2)

This Inequality is true if all variables are bounded by the [0, 1] interval. More generally, if a variable Ui is
bounded by an interval [xi, yi], the Hoeffding’s Inequality is generalized as follows:

Pr(|U − E[U]| ≥ ε) ≤ 2e
−2n2ε2∑n

i=1
(yi−xi)

2
(3)

The Hoeffding’s Inequality (Theorem 1) can be used to assess the significance of changes in a stream of
values, based on the following proposition.

Proposition 1. Let U1;U2; . . . ;Un be independent random variables bounded by the [0, 1] interval. These
variables can be split into two windows using an index m as splitting point. This results in two windows,
W1 = {U1; . . . ;Um} and W2 = {Um+1; . . . ;Un}, such that 1 ≤ m < n. Then, for an error ε > 0, the
following inequality holds:

Pr(U − V − (E[U]− E[V]) ≥ ε) ≤ e
−2ε2|W1|.|W2|
|W1|+|W2| , (4)

where |W1| and |W2| are the size of W1 and W2, respectively. Moreover, U = 1
|W1|

∑m
i=1(Ui) and V =

1
|W2|

∑n
i=m+1(Ui).

If the two-sided variant of the inequality is considered:

Pr(|(U − E[U])− (V − E[V])| ≥ ε) ≤ 2e
−2ε2|W1|.|W2|
|W1|+|W2| (5)

Based on proposition 1, consider a significant confidence level α (probability of making an error), that
controls the maximum false positive rate. The error ε can be estimated with respect to α as follows.

α = 2e
−2ε2|W1|.|W2|
|W1|+|W2| ⇒ 2ε2|W1|.|W2|

|W1|+ |W2|
= ln[

2

α
]

⇒ ε =

√
|W1|+ |W2|
2|W1|.|W2|

ln[
2

α
] (6)

To assess the significance of changes in a stream of values, we use Equation 6 to obtain the cut point
value εα based on the predefined α threshold. An observation time m is said to be a distribution change
point if there is a significant difference between the averages of values in the windows W1 and W2, that is
the difference is not less than εα. Furthermore, if that condition holds, we also say that there is a change
and that the windows W1 and W2 are different. This can be expressed as a statistical test with bounding
probability of errors. Let the null hypothesis be H0: (U−E[U]) = (V −E[V]), stating that the distributions
of the two windows are equal (assuming independent random variables). The H0 hypothesis is compared
with the alternative hypothesis H1: (U −E[U]) 6= (V −E[V]) with the rule |(U −E[U])− (V −E[V])| ≥ ε to
reject H0. HDDM [25] proposed a minor improvement of the Hoeffding’s Inequality by using two counters
instead of three counters for maintaining the left, right and the total mean at the cut point. The proposed
method inherits this improvement to detect a global drift. This improvement is derived from the Hoeffding’s
Inequality as follows.

Proposition 2. Let U1;U2; ...;Un be independent random variables bounded by the [0, 1] interval. These
variables can be split into two windows at an index m to obtainW1 = {U1; . . . ;Um} andW2 = {Um+1; . . . ;Un},
such that 1 ≤ m < n. Then, for an error ε > 0, the following inequality is obtained:

Pr(U − V − (E[U]− E[V]) ≥ ε) ≤ e
−2nmε2

(n−m) , (7)

where U = 1
m

∑m
i=1(Ui) and V = 1

n

∑n
i=1(Ui).

8

The estimated error ε with respect to α is:

α = 2e
2nmε2

(n−m) ⇒ −2nmε2

(n−m)
= ln[

2

α
]

⇒ ε =

√
n−m
2nm

ln[
2

α
] (8)

4.3. Two mechanisms to detect utility changes

This subsection presents the proposed approach to detect changes in the distribution of high utility
itemsets in a stream of customer transactions. In general, change detection consists of detecting each
observation time where there is a significant difference in the distribution of the data. In this paper, the
object of change analysis is the sets of high utility itemsets mined from consecutive windows of transactions
in a stream. As mentioned above, two kinds of changes are considered in this paper: local and global utility
changes. A local utility change is a drift in the utility distribution of a high utility itemset. A global utility
change is a drift in the overall utility distribution of all high utility itemsets. The next paragraphs describe
mechanisms to detect these two types of changes.

4.3.1. Local Utility Change Detection

Let HSx,λW1
and HSy,λW2

be two sets of high utility itemsets mined at two different observation times in
a transactional data stream. Local utility change detection consists of comparing the utility of each high
utility itemset X in HSx,λW1

and HSy,λW2
. For an itemset X, if there is a significant difference in terms of utility

for the two observation times, it is called a local drift of X at the change point from HSx,λW1
to HSy,λW2

. The
theoretical background of our method is probability theory, statistical testing and the Hoeffding’s Inequality.
To detect a drift, existing methods such as CD-TDS [35] and ADWIN [24] apply the Bonferroni correction
with the Hoeffding’s Inequality. The reason is that the Bonferroni correction prevents an increase of the
probability of incorrectly rejecting the null hypothesis when testing multiple hypotheses.

In this paper, the proposed approach applies the Bonferroni correction with the Hoeffding’s Inequality
to detect local drifts for high utility itemsets in two consecutive windows. For the two sets of high utility
itemsets HSx,λW1

and HSy,λW2
, let n1 and n2 be the number of sampled transactions from the stream that were

used to obtain the sets HSx,λW1
and HSy,λW2

at their respective observation times. For the sake of brevity, the
notation HS1 and HS2 will be used to refer to these sets in the following. There is a local change for an
itemset X from HS1 to HS2 if its utility distribution difference in HS1 and HS2 is not less than a cut value:

εα =

√
2(n1 + n2)

n1n2
σ2ln[

2ln(n1 + n2)

α
]

+
2(n1 + n2)

3n1n2
ln[

2(n1 + n2)

α
]

=

√
2mσ2ln[

2ln(n)

α
] +

2m

3
ln[

2ln(n)

α
], (9)

where n = n1 + n2, m = n−11 + n−12 , α is a user-defined confidence level, and σ2 is the observed variance of
the utility of the itemset in the window W formed by joining W1 and W2.

The variance σ2 is defined and computed as the sum of the squared distances of each sample in the
distribution from the mean, divided by the number of samples in the distribution. In the proposed algorithm,
an efficient way of calculating the standard deviation for a set of numbers is proposed and as follows.

σ2 =
1

N

∑
X2 − (

∑
X

N
)2 (10)

9

4.3.2. Global Utility Change Detection

Global utility change detection aims at detecting changes by comparing the utility distributions of high
utility itemsets mined in two consecutive windows. For each itemset X, the utility of X is a function
of the utility distributions of the items that it contains. Let I = {i1, i2, . . . , in} be the set of all items
that appear in a customer transaction data stream. A high utility k -itemset X can be represented as
({ij1 : uj1}, {ij2 : uj2}, . . . , {ijk : ujk}), where the notation ijx represents an item in X, and the number
beside each item indicates the utility contributed by that item to the utility of X. Because of differences
in the utility distributions of items in high utility itemsets, this paper proposes a custom distance measure
to efficiently detect drifts for high utility itemsets. The distance of each itemset to a reference point is
calculated. Then, the distance of a set of high utility itemsets to the reference point is calculated as the sum
of the distances of high utility itemsets to that point. The proposed measure is inspired by the observation
that an itemset X with its utility can be presented as a vector, and that the distance between two itemsets
can thus be calculated using vector distance measures. Formally, the distance between high utility itemsets
is computed based on the following definitions.

Definition 8 (Root vector). Let S = (T1, T2, . . . , Tn, . . .) be a sequence of transactions, and I = {i1, i2, . . . , in}
be a set of n items in S, such that ij ≺ ij+1 with 1 ≤ j < n and ≺ be any total order on items from I. The

Root vector in S is denoted as
−−−−→
RootS =

−−−−−−→
i1i2 . . . in = {1, 1, . . . , 1}. It is a vector described with n properties,

and the value of each property is equal to 1 unit.

Definition 9 (Vector of a high utility itemset). Let I = {i1, i2, . . . , in} be a set of items that appear in a
set of transactions. Moreover, let there be a high utility k -itemset X = {ij1ij2 . . . ijk} such that the utility
distribution of its items is ({ij1 : uj1}, {ij2 : uj2}, . . . , {ijk : ujk}). The vector of the high utility itemset X

is denoted as
−→
X and defined as

−→
X = {U1, U2, . . . , Un}, where

Uj =

{
0, if ij /∈ X
u(ij), otherwise.

(11)

Distance. The first step for calculating the distance in the proposed approach is to calculate the
similarity between two vectors using the cosine similarity. Consider two vectors for some high utility itemsets

X and Y, defined as
−→
X = {X1, X2, . . . , Xn},

−→
Y = {Y1, Y2, . . . , Yn}, respectively. The cosine similarity

between
−→
X and

−→
Y is:

Scos(
−→
X,
−→
Y) =

−→
X.
−→
Y

‖
−→
X‖.‖

−→
Y ‖

=

∑n
i=1(Xi.Yi)√∑n

i=1Xi
2
√∑n

i=1 Yi
2

(12)

The cosine similarity is a standard measure for calculating the similarity between vectors. However,
a drawback of this measure is that it only considers the difference in orientation of two vectors, while
ignoring their difference in terms of magnitude [37]. For example, a cosine similarity of 1 indicates that
two vectors have the same orientation. But these vectors may or may not have the same magnitude.
Meanwhile, magnitude of an itemset vector represents its utility. To consider not only the difference in terms
of orientation but also in terms of magnitude, the proposed approach calculates the similarity between two

vectors
−→
X and

−→
Y using an improved similarity measure denoted as Smo(

−→
X,
−→
Y), and defined as follows.

Smo(
−→
X,
−→
Y) = Scos(

−→
X,
−→
Y).(1− abs(‖

−→
X‖ − ‖

−→
Y ‖)

max(‖
−→
X‖, ‖

−→
Y ‖)

(13)

Similarly to the cosine similarity, the proposed Smo similarity measure assigns a value of 1 to two vectors
having the same orientation and magnitude. However, in the proposed approach, the distance between

10

vectors must be calculated rather than the similarity. Thus, based on Smo, a distance measure Dmo is

defined as: Dmo(
−→
X,
−→
Y) = 1 − Smo(

−→
X,
−→
Y). In the following, this measure is called the movement between

two vectors. To check if there is a global drift between two sets of high utility itemsets HS1 and HS2, the
proposed approach computes the sum of the movements of high utility itemsets in the two sets.

DISHS =
∑

X⊆HS

Dmo(
−→
X,
−−→
Root) (14)

Example 3. Consider the stream of Figure 1 and the decay function dλ(4T) = 2
−4T

2 . Furthermore,
suppose that minutil is set to 22 and that the window size is set to 2. Consider the windows W1 = {T1;
T2} and W2 = {T3; T4}. By taking transaction recency into account, the set of high utility itemsets in W1

is {ace:22}. The vector of the itemset ace is −→ace = {10, 0, 6, 0, 6, 0}. The set of high utility itemsets in
W2 is {bce:22.9}. The utility of itemset bce is computed as the sum of its utilities in T3 and T4, that is

13 + 7 ×
√

2 = 22.9. The vector of the itemset bce is
−→
bce = {0, 9.66, 5.12, 0, 8.12, 0}. The distance of the

vector of itemset ace to the root vector is computed as Dmo(
−→ace,−−→root) = 1 - Smo(

−→ace,−−→root) = 1 - 0.128 =

0.872, where Smo(
−→ace,−−→root) is computed by Equation 13. In a similar way, the distance of the vector of

itemset bce to the root vector is computed as Dmo(
−→
bce,
−−→
root) = 1 - 0.1234 = 0.8766.

The total distribution is the sum of the distances of all high utility itemset vectors to the root vector. After
that, the algorithm uses a statistical test (the A-test [25]) with the designed Hoeffding bound to determine
if a global drift occurred at the current observation time. Note that it is also possible to detect drifts
that represent increasing or decreasing trends by using the one-side or two-side variant of the Hoeffding’s
Inequality. We also consider increasing or decreasing trends and report it in Evaluation section of this paper.

4.4. The change detection algorithm

In the proposed approach, high utility itemsets are obtained at different observation times using windows
on the stream. A set of high utility itemsets found at a given time is eventually replaced by a newer set,
as time passes. Another important characteristic of a data stream is that data points arrive at a very
high speed. Thus, an algorithm would be inefficient if it checks for changes for each new data point in the
stream. The solution to this problem is to let the user set a parameter that determines the frequency of
checks. On one hand, frequently checking for changes decreases the efficiency of the algorithm. On the other
hand, rarely checking for changes results in higher efficiency but increases the risk of missing drift points
as the windows may be too large. In the proposed method HUDD-TDS (High Utility Drift Detection in
Transactional Data Stream), the checking frequency is a time interval length, and it is set by the user. The
detailed pseudocode of the proposed method is presented in Algorithm 1.

The Algorithm 1 takes a stream of quantitative customer transactions as input. When a new transaction
Ti is read from the stream, the transaction is temporarily stored in the limited amount of available memory
(line 6). If the memory is full then the oldest transaction(s) are removed to free space for new transaction(s)
Ti (line 4). To detect drift, the user must indicate the time interval length at which the algorithm should
check for drifts (line 7). When the drift detection algorithm is called, it applies a procedure named HUI-
Discovery (Algorithm 2) to mine all high utility itemsets in the window ending at the current observation
time (line 8). Then, the similarity and distance of itemsets and the global distance are calculated (line 9).
Thereafter, global and local checks are performed (lines 10 and 14) to detect significant changes in the utility
distribution.

The HUI-Discovery procedure (Algorithm 2) mines high utility itemsets in a stream. The procedure first
creates the window W ending at the current observation time t (line 3). Then, for each transaction in the
window W , the procedure multiplies the utilities by the decay factor calculated by the fading function. This
decreases the utility of items in the transaction as a function of its age. Then, the HUI-Discovery procedure
applies a traditional HUI mining algorithm to extract each HUI in the current window (lines 12 to 15). For
each itemset found (line 12), the utility distribution of each item is calculated to construct the itemset’s
vector and then calculate its distance to the root vector (line 13).

11

Algorithm 1: HUDD-TDS: High Utility Drift Detection in a Utility Data Stream

Input: Stream of transactions with utility.
Output: Utility changes in the stream.

1 Init() Initialize all variables: minutil, interval, window size, confidence, etc.
2 for (each transaction Ti arriving on a stream Tx1; Tx2; . . . ; Txi; . . .) do
3 if (Memory is full) then
4 Remove the oldest transactions from memory
5 end
6 Add Ti to the limited memory
7 if (Observation time i % check interval = 0) then
8 checkpoints[i].HUIs ←− HUI-Discovery(i) using utility-list based mining method
9 checkpoints[i].distance = sum of the distance of each itemset X in checkpoints[i].HUIs

10 if (IsGlobalDrift(checkpoints)) then
11 Update last index where a drift is detected
12 Output global drift

13 end
14 if (IsLocalDrift(checkpoints)) then
15 Output local drift
16 end

17 end

18 end

Algorithm 2: HUI-Discovery: Mine all high utility itemsets

Input: Observation time t and transactions.
Output: Set of high utility itemsets.

1 Init() Initialize all variables
2 HUIsSet ← φ
3 Scan transactions in memory to create a window W of a predefined length, ending at observation

time t
4 for (each transaction T in W) do
5 if (is fading) then
6 T.utility =T.utility × decay function dλ

7 for (each item it in T) do
8 update the utility of it in the transaction by multiplying it with the decay function dλ

9 end

10 end

11 end
12 while (Found high utility itemset X) do

13 X.distance = Distance(
−→
X ,
−−→
Root)

14 HUIsSet.add(X)

15 end
16 Return HUIsSet

The IsGlobalDrift procedure (Algorithm 3) detects global changes in a stream of values. It is based on
probability theory, statistical testing, and the Hoeffding’s Inequality. Lines 6-8 detect a cut point for an
increasing trend of values, while lines 9-11 detect a cut point for a decreasing trend of values. If a change in
the data distribution rejects the null hypothesis H0 at line 12, a drift is said to occur at the cut point, and
it is reported to the user (line 13).

12

Algorithm 3: IsGlobalDrift: Check if there is a global change in a utility stream

Input: List of distance values at checkpoints starting from the last change index: d1; d2; . . . ; dn.
Output: State with trend.

1 Udrift: average statistic computed from d1; d2; . . . ; ddrift
2 V : average statistic computed from d1; d2; . . . ; dn
3 εUdrift

, εV : error bounds by Hoeffding’s Inequality

4 for (each di in the list of distance values) do
5 update Udrift, V , εUdrift

, εV
6 if (Udrift + εUdrift

≥ V + εV) then

// This is an increasing trend

7 Update cut point: Udrift = V and εUdrift
= εV

8 end

9 if (Udrift - εUdrift
≤ V - εV) then

// This is a decreasing trend

10 Update cut point: Udrift = V and εUdrift
= εV

11 end

12 if (The rule to reject hypothesis H0, |Udrift - V | ≥ ε as Equation 8) then
13 Output drift with trend (increasing or decreasing) & return drift
14 else
15 Output Stable State
16 end

17 end

Algorithm 4: IsLocalDrift: Check if there is a local change in a utility stream

Input: List of checkpoints.
Output: Drift state with itemset.

1 for (each check point cp in list checkpoints) do
2 for (each itemset X in cp.HUIs) do

3 split checkpoints into two different observations HSn,λW1
and HSm,λW2

at cp

4 calculate the variance of X, σ2 by equation 10
5 calculate the epsilon cut point, εα by equation 9 with Bonferroni correction

6 if (The rule to reject the hypothesis H0, |X1 - X2| ≥ εα) then
7 Output local drift of itemset X
8 end

9 end

10 end

The IsLocalDrift procedure (Algorithm 4) is an algorithm to detect local changes in the utilities of
itemsets in a stream. Similar to the IsGlobalDrift procedure, IsLocalDrift is also based on probability
theory, statistical testing, and the Hoeffding’s Inequality. At line 5, the procedure calculates the epsilon
cut point with Bonferroni correction to prevent increasing of incorrectly rejecting a null hypothesis when
multiple hypotheses are tested.

Complexity. The proposed method uses a time interval length m to select checkpoints at which
drift detection is performed. Thus, the time complexity of the proposed approach is O(nm), where n is
the space size of the stream. The HUI-Discovery algorithm is implemented using a traditional utility-list
based algorithm for mining high utilty itemsets. In the worst case, the time complexity of a utility-list
based algorithm is O(2|I

∗|), where I∗ is the set of remaining items in the processing window which have

13

transaction weighted utilities no less than the threshold value. The HUI-Discovery procedure requires only
to scan each window twice. It employs an efficient structure EUCS and an improved utility list construction
method [30] with complexity of O(|W |), where |W | is the window size. The IsGlobalDrift and IsLocalDrift
procedures have O(1) space and time complexity at each checkpoint.

5. Evaluation

This section presents an experimental evaluation of the performance of our approach. In order to show
the generality, feasibility, and applicability of our approach, we performed the evaluation both on synthetic
and real-world datasets. The experiments were carried out on a computer running the Windows 10 operating
system, having a 64 bit Intel i7 2.6 GHz processor, and 16 GB of RAM. The algorithms were implemented

in Java. In all the experiments, the exponential decay function 2−
T−t
|W | was used, excepts experiments in

subsection 5.2.3 studying influence of the decay function. The window size was set to the half-life of the
decay function (the time needed for the decay function to decrease a utility value by half). The interval
parameter is used to monitor changes at each checkpoint. If its value is large, the number of checkpoints is
small and the overlap between windows is small. This, in turn, means that the true positive and accuracy
values are high, but it may miss some changes. Moreover, the global confidence level controls the error rate.
When the value is high, the number of changes will increase with a high error rate. Setting the interval and
confidence level follows the approach proposed in the literature [36, 38, 39] and is application-dependent.
The utility threshold influences the number of itemsets, and is also dataset-dependent. If the threshold is
set to a small value, the number of high utility itemsets may reach millions. If the threshold is large, few
high utility itemsets are obtained. Here, the threshold has been set empirically.

In the following evaluations, we employed several various settings to show the feasibility of our method.
In addition, we carried out experiments to evaluate the effects of different parameter values.

5.1. Experiments on real datasets

For the real-world experiments, we used the datasets named Chainstore, Accidents, and Kosarak. These
datasets are standard benchmark datasets for utility mining, which were obtained from the SPMF open-
source data mining library website2. The Chainstore dataset contains real internal and external utilities. For
the two other datasets, the internal and external utilities have been generated using a Gaussian distribution
in the [1,10] and [1,5] interval, respectively.

Chainstore contains customer transactions from a retail store. The dataset was transformed from the
NU-Mine Bench software, and is provided on the SPMF website. Chainstore contains 1,112,949 transactions,
with an average transaction length of 7.26 items, and 46,086 distinct items. For this dataset, the checkpoint
interval, utility threshold, and global confidence level have been set to 10,000, 600,000, and 0.99, respectively.

Accidents is a traffic accident dataset, often used as a benchmark dataset. It contains 340,183 transac-
tions, 468 distinct items, and having an average transaction length of 33.8 itemsets. For experiments carried
out on this dataset, the checkpoint interval has been set to 10,000. window size, utility threshold and global
confidence level have been initially set to 10,000, 900,000, and 0.99, respectively. These values have then
been changed to 15,000, 1,300,000, and 0.8 in the second experiment.

Kosarak is a click-stream dataset of an online Hungarian news portal. It contains 990,000 transactions
with 41,270 items, where transactions contain 8.1 items on average. For the experiments on this dataset,
the parameters were set to: threshold = 200,000, time interval = 20,000, and window size = 50,000.

Tables 2 - 4 show the results of drift detection on the Chainstore, Accidents, and Kosarak datasets for
various parameter values. In these tables, the columns indicate the window size, the number of check points,
the number of increasing drifts that has been detected (denoted as Rise), and the number of decreasing drifts
that has been detected (denoted as Fall), respectively. The results show that number of drift points vary
slightly as parameters are changed. The number of detected drifts also varies slightly when we change
the confidence level α, the size of the window, and the utility threshold to monitor the drifts. For the

2http://www.philippe-fournier-viger.com/spmf/

14

Table 2: Drift detection in Chainstore

Window size Check points Rise Fall
40,000 108 35 36
50,000 107 38 35

Table 3: Drift detection in Accidents

Window size Check points Rise Fall
10,000 34 18 15
15,000 33 14 18

real world datasets, there is no ground truth to evaluate the detected concept drifts. Therefore, there is
no baseline for testing true positive, false negative and delay detection. In this evaluation, the number of
drift points is reported, as well as the corresponding trend (increasing or decreasing). Figures 2 - 5 show
visualizations of the utility distribution movements for the three datasets. It can be observed that the utility
distribution underlying the data changes gradually and continuously varies for the Chainstore dataset, as
new transactions arrive. When the window size is increased, the number of high utility itemsets and the
total utility distribution in each window increases. However, the number of states in the Chainstore stream
and the utility have only a slight change. Hence, the number of hits (change report) is stable. For the
Accidents datasets, more abrupt changes occurred. The dataset containing the largest percentage of stable
states is the Kosarak dataset. On this dataset, we varied the confidence level, which is a probability that
influences the prediction failure rate. The results in Table 4 show the impact of varying the confidence level.
As we can observe in this table, when the confidence value increases, the number of hits increases in both
rise and fall states.

5.2. Experiments on synthetic datasets

Because of the lack of appropriate datasets with ground truth, we also performed experiments on syn-
thetic datasets including evaluations influence of parameters, performance of the proposed methods, and
comparison to other drift detectors. We used the java open source data mining library SPMF to generated
three synthetic datasets, namely StreamT, StreamX, and StreamY. Each dataset contains 50k transactions.
These datasets were concatenated multiple times to create a long stream. The reason for using different
synthetic datasets and concatenating to form a stream is that the transition points of the resulting stream
are known, and can thus be used to evaluate the ability to perform drift detection. Characteristics of the
three synthetic datasets are as follows:

StreamT : This dataset contains 50k transactions and 10 distinct items. The average transaction length
is 5.5 items. Internal and external utility values were generated in the [1,10] and [1,5] intervals, respectively.

StreamX : This dataset has 50k transactions. The number of distinct items is 15 and the average trans-
action length is 7.98 items. The [1,15] and [1,10] intervals were used to generate the internal and external
utility values of items, respectively, using a Gaussian distribution.

StreamY : This dataset also contains 50k transactions. The average transaction length is 8.02 items, and
20 distinct items are used in this dataset. The internal and external values are generated with the same
interval as in StreamX.

The stream considered in the following experiments is a concatenation of these three synthetic datasets,
obtained by repeating the following pattern 25 times: StreamT + StreamT + StreamX + StreamY. This

Table 4: Drift detection in Kosarak

α Check points Rise Fall
0.9 47 7 6
0.5 47 4 5

15

0

2

4

6

8

10

12

14

16

18

U
ti

lit
y

V
al

u
e

(M
ill

io
n

s)

Transactions (Chainstore)

Window Size = 50,000 Window Size = 40,000

Drift (Window Size = 50,000) Drift (Window Size = 40,000)

Drift (Window Size=50,000; No Distance D_mo) Drift (Window Size = 40,000; No Distance D_mo)

Figure 2: Utility distribution on Chainstore.

0

100

200

300

400

500

600

700

U
ti

lit
y

va
lu

e
(M

ill
io

n
s)

Transactions (Accidents)

Threshold=900,000; Window Size=10,000; α=0.9 Threshold=1,300,000; Window Size=15,000; α=0.8

Drift (α = 0.9; No Distance D_mo) Drift (α = 0.8; No Distance D_mo)

Drift (α = 0.9) Drift (α = 0.8)

Figure 3: Utility distribution on Accidents.

results in a data stream containing 5 million transactions.

5.2.1. Influence of the confidence level

We carried out an experiment on the synthetic datasets to evaluate the influence of difference confidence
level values. The utility threshold was set to 1,500,000. Both the window size and check point interval
were set to 50,000 transactions to ensure that a checkpoint was located at every dataset transition. The
confidence level was varied from 0.55 to 1.0.

Table 5 shows results when the confidence level α is varied. The result shows that the designed drift
detector has a high true positive rate, and low false positive and false negative rates. In particular, when
the confidence level α is increased, the accuracy of the approach increases. Generally, for the 1,000 tests
performed on the synthetic data streams (a test is performed every 50k transactions), the true positive, false
positive and false negative rates, and the accuracy are 86.5%, 0.0%, 27.7%, and 89.6%, respectively. This

16

5

5.2

5.4

5.6

5.8

6

U
ti

lit
y

va
lu

e
(M

ill
io

n
s)

Transactions (Kosarak)

Threshold=200,000; Window Size=50,000; α=0.5

Drift with Threshold=200,000; Window Size=50,000; α=0.5

Drift (No Distance D_mo)

Figure 4: Utility distribution on Kosarak and drift points with α = 0.5.

5

5.2

5.4

5.6

5.8

6

U
ti

lit
y

va
lu

e
(M

ill
io

n
s)

Transactions (Kosarak)

Threshold=200,000; Window Size=50,000; α=0.9
Drift with Threshold=200,000; Window Size=50,000; α=0.9
Drift (No Distance D_mo)

Figure 5: Utility distribution on Kosarak and drift points with α = 0.9.

result can be explained as follows. When the confidence level is high, at each checkpoint, the detector checks
the utility distribution of two successive windows and it reports concept drifts more accurately than for lower
confidence levels where the detector probes concept drifts more tightly. In terms of runtime, the proposed
approach is very fast, running in less than three seconds for processing windows of 50k transactions. Hence,
the results from this experiment show that the detector can be used in an online setting to detect drifts,
and that it can quickly adapt itself to changes.

5.2.2. Influence of the observation times

In the preceding subsection, an experiment was performed where the transition points were known, and
where the proposed algorithm was applied exactly at these transition points, while varying the confidence
level α. This section describes a follow-up experiment where the proposed algorithm is not applied exactly
at the transition points to see the influence of the observation times. Instead, the checkpoint are gradually
moved away from the transition points in the data stream. For this experiment, the confidence level was set

17

Table 5: Detection on synthetic datasets

α FP TP FN Rise Fall Time Avg
rate(%) rate(%) rate(%) (s)

0.55 0.0 66.2 49.01 25 24 2.773
0.60 0.0 66.2 49.01 25 24 2.725
0.65 0.0 66.2 49.01 25 24 2.721
0.70 0.0 66.2 49.01 25 24 2.709
0.75 0.0 100.0 0.0 25 49 2.721
0.80 0.0 100.0 0.0 25 49 2.690
0.85 0.0 100.0 0.0 25 49 2.570
0.90 0.0 100.0 0.0 25 49 2.583
0.95 0.0 100.0 0.0 25 49 2.580
1.00 0.0 100.0 0.0 25 49 2.563
Summary Accuracy rate Time Avg
(tests) (%) (s)
1000 0.0% 86.5% 27.7% 89.6% 2.664

to 0.9. The observation times where the change detection algorithm applying was shifted 8 times forward
by 25 transactions. As a result, windows considered by the algorithm may contain transactions from two
datasets. After each shift, the proposed algorithm was executed 100 times for 100 checkpoints.

Table 6: Detection on synthetic datasets with shift point

Shift FP TP FN Rise Fall Time Avg
rate(%) rate(%) rate(%) (s)

25 0.0 100.0 0.0 25 49 2.744
50 0.0 100.0 0.0 25 49 2.707
75 0.0 100.0 0.0 25 49 2.733
100 0.0 100.0 0.0 25 49 2.768
125 0.0 100.0 0.0 25 49 2.748
150 0.0 100.0 0.0 25 49 2.771
175 0.0 100.0 0.0 25 49 2.726
200 0.0 100.0 0.0 25 49 2.754
Summary Accuracy rate Time Avg
(tests) (%) (s)
800 0.0% 100.0% 0.0% 100.0% 2.744

Table 6 shows the results of this experiment, where checkpoints are shifted away from the real transition
points of datasets. It is observed that when the shift is increased from 25 to 200 transactions, the detector
can detect changes in the utility distribution without making any mistakes. The false positive and false
negative rates of the proposed method are in that case equal to zero. The proposed drift detector has high
true positive rate and accuracy. In a stream, data evolves and changes over time. Detecting changes within
an acceptable delay is crucial. As shown in our experiments, when the number of shifted transactions was
non-zero, our detector was able to detect exactly all changes in the utility distribution of the datasets under
an acceptable delay, which was defined as 200 transactions for these experiments.

5.2.3. Influence of the decay function

We generated a synthetic stream containing 101 instances. Each instance in the stream has 50k trans-
actions. Thus the stream has 5.05 million transactions. We use the dataset StreamT as our first seed. Each
instance in the stream was seeded from its previous instance as follows. We randomly sampled a 10% of
transactions in the seed. We added noise to these samples by increasing utility value to 5%. In the stream,

18

the instances at positions of 11, 21, 31, . . . and so on were reset seeded from the StreamT. The utility
threshold was set to 1,200,000. In the previous experiments, the window size was used as the half-life of the
decay function. To evaluate the influence of the decay function, we multiplied the decay function with a
constant λ. The value of λ was set to 0.01, 0.02, 0.03, 0.04, 0.05, and 0.07, respectively. We recorded exper-
iment results of the proposed algorithm without using decay fading and with using different decay values as
described above. Figure 6a is the utility distribution of high utility itemsets in the stream. Figures 6b - 6c
show the accuracy of the proposed algorithm with the confidence level value set to 0.7 and 0.8 respectively.
The results show that the accuracy is gradually stable, and it is affected by decay value. From Figure 6a,
we can observe that the utility changes slightly when we vary the decay factor. If λ’s value is high, the
importance of old transactions quickly decreases. Therefore, the weights of past transactions have a minor
influence on the utility of itemsets, and the total utility distribution changes more smoothly than for small
λ values. When α=0.7, the best accuracy of the proposed detector was obtained with λ=0.03 or λ=0.04.
While the best accuracy of the proposed detector was obtained with λ=0.05 if α=0.8. The value of decay
function is application-specific and can be chosen either by using a heuristic method.

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

4.50E+08

5.00E+08

5.50E+08

1 11 21 31 41 51 61 71 81 91 101

U
ti

lit
y

Streaming transactions (50k)

HUDD-TDS-NoFading HUDD-TDS-λ-0.01 HUDD-TDS-λ-0.02 HUDD-TDS-λ-0.03 HUDD-TDS-λ-0.04 HUDD-TDS-λ-0.05 HUDD-TDS-λ-0.07

2.50E+02

3.00E+02

3.50E+02

4.00E+02

4.50E+02

5.00E+02

1 11 21 31 41 51 61 71 81 91 101

U
ti

lit
y

(M
ill

io
n

s)

Streaming transactions (50k)

HUDD-TDS-NoFading HUDD-TDS-λ-0.01 HUDD-TDS-λ-0.02 HUDD-TDS-λ-0.03 HUDD-TDS-λ-0.04 HUDD-TDS-λ-0.05 HUDD-TDS-λ-0.07

(a) Utility obtained

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101

A
cc

u
ra

cy

Streaming transactions (50k)

(b) Accuracy with confidence α=0.7

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101
A

cc
u

ra
cy

Streaming transactions (50k)

(c) Accuracy with confidence α=0.8

Figure 6: Influence of the decay function.

5.2.4. Evaluation on a random stream

The synthetic data stream used in the previous experiments is a repeated concatenation of the following
sequence of datasets: StreamT + StreamT + StreamX + StreamY. To more extensively evaluate the per-
formance of the designed method, an additional experiment was performed where we concatenated several
datasets in different ways to generate a synthetic stream. In this experiment, streams are generated by com-
bining a sequence of datasets formed as Dataset1 −Dataset2 − · · · −Datasetk, where Dataseti (1 ≤ i ≤ k)
is randomly selected among StreamT, StreamX and StreamY. Each stream includes 100 random instances of
datasets and has 5 million transactions. Four random data streams were generated. The designed algorithm
was run with a confidence level set to 0.8 and 0.9, and a minimum utility threshold set to 1,500,000 and
1,700,000.

Figures 7a - 7d show drift points detected by our detector for the four random data streams. In these
figures, a red point indicates an observation time where a change in the utility distribution of high utility
itemsets was found. At each checkpoint, the proposed algorithm examines the movement in utility distribu-
tions in the window consisting of the transactions since the last estimated change point. If the movement
is significantly different, the algorithm marks the checkpoint as a drift point. That checkpoint is then re-
membered as the last estimated change point. Results have shown that the proposed algorithm can detect
exactly all the drift points at the checkpoints, where there is a significant change at the transitions between
successive windows.

5.2.5. Evaluation of the drift detector for classification

This subsection presents experiments to evaluate our proposed detector in terms of detection delay,
true positive (TP), true negative (TN), false negative (FN), and accuracy with a base incremental classifier
applied on a stream. We used Naẗıve Bayes (NB) and Hoeffding Tree (HT) classifiers as base learners

19

40

400

4,000

40,000

U
ti

lit
y

va
lu

e
(m

ill
io

n
s)

Transactions (Random stream data)

Threshold=1,500,000 Drift Point, α = 0.8

(a) Threshold = 1,500,000 and α = 0.8

40

400

4,000

40,000

U
ti

lit
y

va
lu

e
(m

ill
io

n
s)

Transactions (Random stream data)

Threshold=1,500,000 Drift Point, α = 0.9

(b) Threshold = 1,500,000 and α = 0.9

2

20

200

2,000

20,000

U
ti

lit
y

va
lu

e
(m

ill
io

n
s)

Transactions (Random stream data)

Threshold = 1,700,000 Drift Point, α = 0.8

(c) Threshold = 1,700,000 and α = 0.8

2

20

200

2,000

20,000

U
ti

lit
y

va
lu

e
(m

ill
io

n
s)

Transactions (Random stream data)

Threshold=1,700,000 Drift Point, α = 0.9

(d) Threshold = 1,700,000 and α = 0.9

Figure 7: Drift points on Random Streams.

because they are usually used as benchmark classifiers in the literature [24, 25]. Moreover, we compared
the results with several state-of-the-art drift detectors, namely EDDM [40], ECCD [41], SeqDrift2 [42], and
RDDM [39]. All experiments were performed using the MOA framework [38] with parameters set to the
default values for all the compared algorithms, as recommended in the original papers. Note that our drift
detector uses a statistical test [25] as global detector. However, the original detector tests to reject the null
hypothesis with an error bound ε of the streaming values from the [0; 1] interval. The proposed detector
considers the error bound ε on a real value interval of the streaming data. For this evaluation, we used three
widely-used synthetic data streams, namely Mixed, Sine, and Circles [21, 25]. Each stream dataset contains
100,000 instances.

The characteristics of these datasets are as follows [18]:
• Mixed : This dataset contains four attributes, including two Boolean attributes (v, w) and two numeric

attributes (x, y) in the [0, 1] interval. If two of three conditions are satisfied: v, w, y < 0.5+0.3sin(3πx),
the instance is classified as positive. The Mixed dataset contains abrupt concept drifts. Drifts occur
at every 20,000 instances with a transition length ξ = 50.

• Sine1 : There are two attributes x and y that are uniformly distributed in the [0, 1] interval. If all
points are below the piecewise function y = sin(x), they are classified as positive. The classification
is reversed after a change. The Sine1 dataset contains abrupt concept drifts. Drifts occur at every
20,000 instances with a transition length ξ = 50.

• Circles: This dataset uses four circles to simulate drift concepts. The radius of the circles are 0.15,
0.2, 0.25, and 0.3, respectively. Each instance has two numeric attributes (x, y) on the [0, 1] interval.
If an instance is inside the circles, it is classified as positive. The Circles dataset contains gradual
concepts drifts. Drifts occur at every 25,000 instances with a transition length ξ = 500.

In streaming data, to evaluate the measures of concept drift detector, such as true positive, true negative,
false negative, and accuracy, the acceptable delay length metric [21, 43] is often adopted. Given a threshold
∆, if a detector can detect a change within a delay ∆ from the true change point, it is considered as a true
positive. Mixed and Sine1 contain abrupt concept drifts, while Circles contains gradual drifts. Therefore, in

20

Table 7: Results with Naẗıve Bayes(NB) and Hoeffding Tree(HT) classifiers

Algorithms Delay TP FP FN Accuracy Rank

M
ix

ed
d

a
ta

se
t N
B

HUDD-TDS 81.75 ± 18.71 3.97 ± 0.17 1.61 ± 1.34 0.03 ± 0.17 83.26 ± 0.09 1
RDDM 104.97 ± 12.12 3.99 ± 0.1 1.86 ± 1.66 0.01 ± 0.1 83.24 ± 0.09 2
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.39 ± 0.79 0.0 ± 0.0 82.91 ± 0.08 3
ECCD 38.87 ± 24.65 3.81 ± 0.42 142.29 ± 7.90 0.19 ± 0.42 81.00 ± 0.15 4
EDDM 247.47 ± 8.65 0.11 ± 0.31 20.22 ± 7.70 3.89 ± 0.31 80.30 ± 2.33 5

H
T

HUDD-TDS 68.20 ± 15.44 4.0 ± 0.0 3.41 ± 2.09 0.0 ± 0.0 83.25 ± 0.14 1
RDDM 106.68 ± 11.32 3.99 ± 0.1 3.49 ± 2.48 0.01 ± 0.1 83.17 ± 0.12 2
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.98 ± 1.21 0.0 ± 0.0 82.91 ± 0.11 3
ECCD 39.76 ± 26.08 3.79 ± 0.46 138.34 ± 7.95 0.21 ± 0.46 80.95 ± 0.15 4
EDDM 248.46 ± 7.73 0.05 ± 0.22 21.51 ± 7.74 3.95 ± 0.22 80.65 ± 0.82 5

S
in

e1
D

a
ta

se
t N
B

HUDD-TDS 85.68 ± 24.47 3.96 ± 0.20 1.04 ± 1.06 0.04 ± 0.20 85.94 ± 0.25 2
RDDM 89.73 ± 16.54 3.99 ± 0.10 3.93 ± 2.92 0.01 ± 0.1 85.98 ± 0.27 1
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.26 ± 0.0 0.0 ± 0.58 85.60 ± 0.25 3
ECCD 33.30 ± 23.22 3.85 ± 0.39 153 ± 8.34 0.15 ± 0.39 84.38 ± 0.14 4
EDDM 234.28 ± 22.33 0.57 ± 0.64 33.53 ± 11.56 3.43 ± 0.64 83.44 ± 2.88 5

H
T

HUDD-TDS 58.96 ± 13.04 4.0 ± 0.0 2.25 ± 1.56 0.0 ± 0.0 86.93 ± 0.17 1
RDDM 93.54 ± 7.82 4.0 ± 0.0 4.72 ± 3.59 0.0 ± 0.0 86.79 ± 0.19 2
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.83 ± 1.16 0.0 86.53 ± 0.15 3
ECCD 36.58 ± 25.54 3.8 ± 0.43 153.78 ± 7.67 0.2 ± 0.43 84.28 ± 0.14 5
EDDM 243.83 ± 22.33 0.22 ± 0.64 33.77 ± 11.56 3.78 ± 0.64 84.71 ± 2.88 4

C
ir

cl
es

D
at

as
et N
B

HUDD-TDS 311.18 ± 109.16 2.9 ± 0.3 1.01 ± 0.93 0.1 ± 0.3 84.09 ± 0.12 2
RDDM 406.50 ± 69.75 2.99 ± 0.1 2.15 ± 1.95 0.01 ± 0.1 84.05 ± 0.12 3
SeqDrift2 276.67 ± 91.56 2.92 ± 0.27 2.49 ± 0.98 0.08 ± 0.27 84.13 ± 0.14 1
ECCD 194.64 ± 158.13 2.84 ± 0.37 174.53 ± 7.62 0.16 ± 0.37 83.18 ± 0.11 4
EDDM 938.27 ± 107.14 0.35 ± 0.5 31.09 ± 18.23 2.65 ± 0.5 83.12 ± 0.4 5

H
T

HUDD-TDS 242.60 ± 147.48 2.56 ± 0.52 4.71 ± 1.67 0.44 ± 0.52 85.97 ± 0.23 3
RDDM 293.80 ± 38.72 2.98 ± 0.14 0.79 ± 1.26 0.02 ± 0.14 86.46 ± 0.16 2
SeqDrift2 202.67 ± 16.19 3.0 ± 0.0 3.08 ± 0.91 0.0 ± 0.0 86.47 ± 0.14 1
ECCD 186.40 ± 151.67 2.86 ± 0.35 175.16 ± 8.39 0.14 ± 0.35 83.21 ± 0.12 5
EDDM 987.75 ± 54.64 0.06 ± 0.24 24.45 ± 14.57 2.94 ± 0.24 84.89 ± 0.29 4

Algorithms HUDD-TDS RDDM SeqDrift2 ECCD EDDM
Average Rank 1.67 2.0 2.33 4.33 4.67

this experiment, smaller values of acceptable delay are set for Mixed and Sine1 than for Circles. Specifically,
the acceptable delay is set to 250 on the Mixed and Sine1 datasets, and 1,000 on the Circles dataset.

Table 7 shows the average and standard deviation of classification results for the proposed detector,
EDDM, ECCD, SeqDrift2, and RDDM running on 100 samples of datasets. We can observe that on the
Mixed and Sine1 datasets, ECCD has the shortest detection delay, with high true positive (TP) rates
with both Naẗıve Bayes (NB) and Hoeffding Tree (HT) classifiers. This is because ECCD uses a window
containing a small number of instances. However, the false positive (FP) rates are also very high, resulting
in a low accuracy. For the Sine1 dataset with NB learner, RDDM discards old instances from the stream
and is the most accurate. However, the difference between RDDM and HUDD-TDS is small, and the FP
rate of RDDM is higher than the FP rate of HUDD-TDS. In almost all other cases, the proposed detector
has the best accuracy and very good flow rates of detection delay, TP, FP, and false negative (FN). The
reason for this is that for the Mixed and Sine1 datasets, changes are abrupt, and the proposed detector is
an online and non-parametric detector. It estimates precisely the distribution of the stream. Therefore, it
can quickly detect points lying out of the distribution boundary. For gradual concept drifts such as in the

21

Circles dataset, SeqDrift2 has the best performance, either using NB or HT learners. The reason is that
SeqDrift2 uses a block of 200 instances for reservoir sampling. The block is helpful for the Circles dataset
since it contains gradual concepts drifts with a transition length of 500. Nevertheless, FP rate of SeqDrift2
is still high. In most cases, ECCD and EDDM are the worst detectors.

To summaraze, the average ranks of the algorithms are shown in Table 7. This shows that the proposed
detector is ranked first among the five compared detectors.

5.3. Evaluation of runtime performance

This section presents the experimental results of the proposed method in terms of runtime consumption
on both real-world datasets and synthetic datasets. Figures 8 - 10 show the runtime of the proposed approach
on the real-world datasets including Chainstore, Accidents, and Kosarak. The average runtime is very small,
and it is just around a second for performing drift detection and processing windows of 50k transactions
at each checkpoint. The average runtime are respectively around 156(ms), 2.5(s), and 494(ms) on the
Chainstore, Accidents, and Kosarak datasets.

156 ms

113 ms

20

200

1 16 31 46 61 76 91 106

R
u

n
ti

m
e

(m
s)

Checkpoint

Window size = 50,000 Window size = 40,000

Average runtime with window size = 50,000 Average runtime with window size = 40,000

Figure 8: Runtime on Chainstore.

1.5 s

2.5 s

0

1

10

1 5 9 13 17 21 25 29 33

R
u

n
ti

m
e

(s
)

Checkpoint

Window size = 10,000 Window size = 15,000

Average runtime with window size = 10,000 Average runtime with window size = 15,000

Figure 9: Runtime on Accidents.

22

460 ms

494 ms

50

500

1 6 11 16 21 26 31 36 41 46

R
u

n
ti

m
e

(m
s)

Checkpoint

α=0.9 α=0.5

Average runtime with α=0.9 Average runtime with α=0.5

Figure 10: Runtime on Kosarak.

On the four random data streams, the proposed approach is quite fast. As presented in Figures 11a
- 11b, it takes around three seconds in average for performing detection in a window of 50k transactions.
Figure 12 shows average runtime performing detection on random streams while varying window size. At
first, window size was set to 50,000 and then was increased 10 times. Each time we increased the size of
window by 10,000 transactions. We record the average runtime consumption while utility threshold values
are set to 1,500,000 and 1,700,000 respectively, along with and without using the Dmo distance. The result
shows that the average runtime consumption is small, and it is linear when the size of window increases.

3.75 (s)

3.65 (s)

0

3

1 10 19 28 37 46 55 64 73 82 91 100

R
u

n
ti

m
e

(s
)

Detection point

Threshold=1,500,000 Threshold=1,700,000 Average Average

(a) α = 0.8

3.43 (s)

3.40 (s)

0

4

1 10 19 28 37 46 55 64 73 82 91 100

R
u

n
ti

m
e

(s
)

Detection point

Threshold=1,500,000 Threshold=1,700,000 Average Average

(b) α = 0.9

Figure 11: Runtime on Random Streams.

0

5

10

15

50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000 130,000 140,000

R
u

n
ti

m
e

(s
)

Window Size (α = 0.9)

Threshold=1,500,000 Threshold=1,700,000
Threshold=1,500,000; No Distance D_mo Threshold=1,700,00; No Distance D_mo

Figure 12: Average Runtime on Random Streams.

23

In general, our empirical experiments have shown that running time of the proposed algorithm is very
small on both real-world datasets and synthetic datasets under various parameter settings. Furthermore,
our detector is online and non-parametric, which makes it suitable for online drift detection from a stream,
where concept drifts are short and the method must quickly detect changes with high true positive, high
accuracy, and low detection delay.

6. Conclusion

In this paper we presented an algorithm named High Utility Drift Detection in Transactional Data Stream
(HUDD-TDS) to detect changes in the utility distributions of itemsets in a stream of quantitative customer
transactions. The algorithm utilizes a fading function to quickly adapt to changes in a data stream by
placing less importance on older transactions than the recent ones. To ensure that only significant changes
are reported to the user, we proposed an approach that uses statistical testing based on the Hoeffding’s
Inequality with Bonferroni correction. The main advantage with our algorithm is that it can detect both
local and global utility drifts, i.e., drifts in the utility distribution of single patterns and of multiple high
utility patterns, respectively, in addition to discovering both increasing and decreasing trends. To detect
global utility drifts, we proposed a new distance measure, which generalizes the cosine similarity, by also
taking the distance between pairs of high utility itemsets into account. To evaluate our approach, we carried
out extensive experiments both on real and synthetic datasets. The results from the experiments showed
the efficiency of the proposed method. In particular, it can identify both types of changes in the utility
distributions of high utility itemsets in real-time, yielding a high true positive rate, while keeping both false
positive and false negative at a lowest possible rate.

For future work, we will explore the detection of patterns with different weights in streams, online detec-
tion, and also develop techniques to automatically set the parameters for specific applications. Moreover,
we plan to extend the proposed method to detect changes using closed and maximal high utility itemsets.

Acknowledgements

This research was funded by the Norwegian University of Science and Technology (NTNU) through the
MUSED project.

References

[1] R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules , VLDB (1994) 487–499.
[2] W. Yao-Te, A. J. T. Lee, Mining Web navigation patterns with a path traversal graph, Expert Systems with Applications

38 (6) (2011) 7112–22.
[3] A. Deepak, D. Fernandez-Baca, S. Tirthapura, M. J. Sanderson, M. M. McMahon, EvoMiner: frequent subtree mining in

phylogenetic databases, Knowledge and Information Systems 41 (3) (2014) 559–590.
[4] H. Yao, H. J. Hamilton, C. J. Butz, A foundational approach to mining itemset utilities from databases, in: Proceedings

of the 4th Siam International Conference on Data Mining, 2004, pp. 482–486.
[5] Y. Liu, W.-k. Liao, A. Choudhary, A Two-phase Algorithm for Fast Discovery of High Utility Itemsets, in: Proceedings

of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2005, pp. 689–695.
[6] P. Fournier-Viger, J. C.-W. Lin, Q.-H. Duong, T.-L. Dam, FHM+: Faster High-Utility Itemset Mining Using Length

Upper-Bound Reduction, in: Trends in Applied Knowledge-Based Systems and Data Science, 2016, pp. 115–127.
[7] J. Cheng, Y. Ke, W. Ng, A survey on algorithms for mining frequent itemsets over data streams, Knowledge and Infor-

mation Systems 16 (1) (2008) 1–27.
[8] N. Manerikar, T. Palpanas, Frequent items in streaming data: An experimental evaluation of the state-of-the-art, Data

& Knowledge Engineering 68 (4) (2009) 415 – 430.
[9] H.-F. Li, H.-Y. Huang, S.-Y. Lee, Fast and memory efficient mining of high-utility itemsets from data streams: with and

without negative item profits, Knowledge and Information Systems 28 (3) (2011) 495–522.
[10] S.-J. Yen, Y.-S. Lee, An Efficient Approach for Mining High Utility Itemsets Over Data Streams, in: Proceedings of Data

Science and Big Data: An Environment of Computational Intelligence, 2017, pp. 141–159.
[11] A. Balzanella, R. Verde, Summarizing and Detecting Structural Drifts from Multiple Data Streams, in: Proceedings of

Classification and Data Mining, 2013, pp. 105–112.
[12] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift adaptation, ACM Computing

Surveys 46 (4) (2014) 44:1–44:37.

24

[13] G. Ditzler, R. Polikar, Incremental Learning of Concept Drift from Streaming Imbalanced Data, IEEE Transactions on
Knowledge and Data Engineering 25 (10) (2013) 2283–2301.

[14] D. Marron, J. Read, A. Bifet, T. Abdessalem, E. Ayguade, J. Herrero, Echo State Hoeffding Tree Learning, in: Proceedings
of the 8th Asian Conference on Machine Learning, Vol. 63, 2016, pp. 382–397.

[15] M. Pechenizkiy, J. Bakker, I. Žliobaitė, A. Ivannikov, T. Kärkkäinen, Online Mass Flow Prediction in CFB Boilers with
Explicit Detection of Sudden Concept Drift, SIGKDD Explorations Newsletter 11 (2) (2010) 109–116.

[16] R. Klinkenberg, Learning Drifting Concepts: Example Selection vs. Example Weighting, Intelligent Data Analysis 8 (3)
(2004) 281–300.

[17] J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A Survey on Concept Drift Adaptation, ACM Computing
Surveys 46 (4) (2014) 44:1–44:37.

[18] J. Gama, P. Medas, G. Castillo, P. P. Rodrigues, Learning with Drift Detection, in: Advances in Artificial Intelligence -
SBIA, 2004, pp. 286–295.

[19] A. Bouchachia, Fuzzy classification in dynamic environments, Soft Computing 15 (5) (2011) 1009–1022.
[20] I. Adä, M. R. Berthold, EVE: a framework for event detection, Evolving Systems 4 (1) (2013) 61–70.
[21] A. Pesaranghader, H. L. Viktor, Fast Hoeffding Drift Detection Method for Evolving Data Streams, in: Proceedings of

the 2016 ECML Machine Learning and Knowledge Discovery in Databases Conference, 2016, pp. 96–111.
[22] A. Bifet, R. Gavaldà, Adaptive Learning from Evolving Data Streams, Springer Berlin Heidelberg, Berlin, Heidelberg,

2009, pp. 249–260.
[23] U. Adhikari, T. Morris, S. Pan, Applying Hoeffding Adaptive Trees for Real-Time Cyber-Power Event and Intrusion

Classification, IEEE Transactions on Smart Grid PP (99) (2017) 1–12.
[24] A. Bifet, R. Gavaldà, Learning from Time-Changing Data with Adaptive Windowing, in: Proceedings of the 2007 SIAM

International Conference on Data Mining, pp. 443–448.
[25] I. Fŕıas-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno, A. Ortiz-Dı́az, Y. Caballero-Mota, Online

and Non-Parametric Drift Detection Methods Based on Hoeffding’s Bounds, IEEE Transactions on Knowledge and Data
Engineering 27 (3) (2015) 810–823.

[26] C. Ahmed, S. Tanbeer, B. S. Jeong, Y. K. Lee, Efficient Tree Structures for High Utility Pattern Mining in Incremental
Databases, IEEE Transactions on Knowledge and Data Engineering 21 (12) (2009) 1708–1721.

[27] Q.-H. Duong, P. Fournier-Viger, H. Ramampiaro, K. Nørv̊ag, T.-L. Dam, Efficient high utility itemset mining using
buffered utility-lists, Applied Intelligence PP (2017) 1–19.

[28] V. Tseng, B.-E. Shie, C.-W. Wu, P. Yu, Efficient Algorithms for Mining High Utility Itemsets from Transactional
Databases, IEEE Transactions on Knowledge and Data Engineering 25 (8) (2013) 1772–1786.

[29] M. Liu, J. Qu, Mining High Utility Itemsets Without Candidate Generation, in: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, 2012, pp. 55–64.

[30] Q.-H. Duong, B. Liao, P. Fournier-Viger, T.-L. Dam, An Efficient Algorithm for Mining the Top-k High Utility Itemsets,
Using Novel Threshold Raising and Pruning Strategies, Knowledge-Based Systems 104 (C) (2016) 106–122.

[31] T.-L. Dam, K. Li, P. Fournier-Viger, Q.-H. Duong, An efficient algorithm for mining top-k on-shelf high utility itemsets,
Knowledge and Information Systems (2017) 1–35.

[32] H. F. Li, H. Y. Huang, Y. C. Chen, Y. J. Liu, S. Y. Lee, Fast and Memory Efficient Mining of High Utility Itemsets in
Data Streams, in: 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 881–886.

[33] S. Dawar, V. Sharma, V. Goyal, Mining top-k high-utility itemsets from a data stream under sliding window model,
Applied Intelligence 47 (4) (2017) 1240–1255.

[34] W. Ng, M. Dash, A Test Paradigm for Detecting Changes in Transactional Data Streams, in: Proceedings of the 13th
International Conference on Database Systems for Advanced Applications, 2008, pp. 204–219.

[35] Y. S. Koh, CD-TDS: Change detection in transactional data streams for frequent pattern mining, in: Proceedings of the
2016 International Joint Conference on Neural Networks, 2016, pp. 1554–1561.

[36] W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical
Association 58 (301) (1963) 13–30.

[37] A. Heidarian, M. J. Dinneen, A Hybrid Geometric Approach for Measuring Similarity Level Among Documents and
Document Clustering, in: 2016 IEEE Second International Conference on Big Data Computing Service and Applications
(BigDataService), 2016, pp. 142–151.

[38] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive Online Analysis, The Journal of Machine Learning Research
11 (2010) 1601–1604.

[39] R. S. Barros, D. R. Cabral, P. M. Gonalves, S. G. Santos, RDDM: Reactive drift detection method, Expert Systems with
Applications 90 (Supplement C) (2017) 344 – 355.

[40] M. Baena-Garćıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá, R. Morales-Bueno, Early drift detection method,
in: The 4th International Workshop on Knowledge Discovery from Data Streams, 2006.

[41] G. J. Ross, N. M. Adams, D. K. Tasoulis, D. J. Hand, Exponentially weighted moving average charts for detecting concept
drift, Pattern Recognition Letters 33 (2) (2012) 191 – 198.

[42] R. Pears, S. Sakthithasan, Y. S. Koh, Detecting concept change in dynamic data streams, Machine Learning 97 (3) (2014)
259–293.

[43] A. Pesaranghader, H. Viktor, E. Paquet, McDiarmid Drift Detection Methods for Evolving Data Streams, CoRR
abs/1710.02030. arXiv:1710.02030.

25

http://arxiv.org/abs/1710.02030

	Introduction
	Related work
	Preliminaries and problem definition
	High utility drift detection algorithm in transactional data stream
	A fading function for high utility itemset mining in a stream
	A Hoeffding bound to assess the significance of drifts
	Two mechanisms to detect utility changes
	Local Utility Change Detection
	Global Utility Change Detection

	The change detection algorithm

	Evaluation
	Experiments on real datasets
	Experiments on synthetic datasets
	Influence of the confidence level
	Influence of the observation times
	Influence of the decay function
	Evaluation on a random stream
	Evaluation of the drift detector for classification

	Evaluation of runtime performance

	Conclusion

