
Noname manuscript No.
(will be inserted by the editor)

Efficient High Utility Itemset Mining using Buffered Utility-Lists

Quang-Huy Duong1 · Philippe Fournier-Viger2(B) · Heri

Ramampiaro1(B) · Kjetil Nørv̊ag1 · Thu-Lan Dam3

Received: date / Accepted: date

Abstract Discovering high utility itemsets in customer transaction databases is a key task for studying
the behavior of customers. It consists of finding groups of items bought together that yield a high profit.
Several algorithms have been proposed to mine high utility itemsets using various approaches, with
more or less complex data structures. Among existing algorithms, one-phase algorithms employing the
utility-list structure have shown to be the most efficient. In recent years, the simplicity of the utility-list
structure has led to the development of numerous utility-list based algorithms for various tasks related
to utility mining. However, a major limitation of utility-list based algorithms is that creating and
maintaining utility-lists are time consuming and can consume a huge amount of memory. The reasons
are that numerous utility lists are built and that the utility-list intersection/join operation to construct
utility-lists is costly. This paper addresses this issue by proposing an improved utility-list structure called
utility-list buffer to reduce the memory consumption and speed up the join operation. This structure is
integrated into a novel algorithm named ULB-Miner (Utility-List Buffer for high utility itemset Miner),
which introduces several new ideas to more efficiently discover high utility itemsets. ULB-Miner uses
the designed utility-list buffer structure to efficiently store and retrieve utility-lists, and reuse memory
during the mining process. Moreover, the paper also introduces a linear time method for constructing
utility-list segments in a utility-list buffer. An extensive experimental study on various datasets shows
that the proposed algorithm relying on the novel utility-list buffer structure is highly efficient in terms of
both execution time and memory consumption. The ULB-Miner algorithm is up to 10 times faster than
the FHM and HUI-Miner algorithms and consumes up to 6 times less memory. Moreover, it performs
well on both dense and sparse datasets.

Keywords Pattern mining · Itemset mining · Utility mining · Utility list · Utility list buffer

1 Introduction

In the field of data mining, the task of Frequent Itemset Mining (FIM) has been extensively studied [1,
6, 14–16, 37]. The goal of FIM is to find patterns (frequent itemsets) describing groups of products
frequently purchased by customers in a transaction database. FIM has been widely applied because of
its ability to discover patterns about customer behavior that are easily interpretable by humans and
can support decision-making. Even though FIM has attracted a lot of attention from researchers and
practitioners, a fundamental limitation of FIM is that it is designed to find frequent patterns. In real-life,
however, frequent patterns are not always the most interesting or useful patterns. For example, many

BPhilippe Fournier-Viger
philfv@hitsz.edu.cn

BHeri Ramampiaro
heri@idi.ntnu.no

1 Department of Computer and Information Science, Norwegian University of Science and Technology, Nor-
way
2 School of Natural Sciences and Humanities, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen,
Guangdong, 518055, China
3 Faculty of Information Technology, Hanoi University of Industry, Hanoi, Vietnam

2 Q-H. Duong et al.

frequent patterns, such as {bread, egg}, may be found in transaction databases, but they may generate
a very low profit even though they are frequently purchased.

To find patterns that are profitable rather than solely frequent, the FIM problem has been generalized
as the problem of High Utility Itemset Mining (HUIM) [5,12,22–25,27,29,33]. Key differences between
HUIM and FIM are that HUIM allows non-binary purchase quantities for items in transactions, and
it considers that all items may not be equally important (e.g., may have different unit profits). To
perform HUIM, a user must provide a minimum utility threshold minutil, and the output is a set of
high utility itemsets (HUIs), i.e. sets of items that yield a high profit when purchased together. HUIM
has gained popularity in recent years because finding profitable patterns is more useful for businesses
than finding frequent patterns, since many frequent patterns may yield a low profit, and many infrequent
patterns may yield a high profit. HUIM has several applications besides market basket analysis such as
cross-marketing [3, 29], biomedicine [34] and click stream analysis [4, 28].

Although HUIM has desirable properties, as it can provide more useful knowledge compared to FIM
for several applications, it is a more difficult problem than FIM. In FIM, most algorithms are designed
based on the fact that the support is anti-monotonic (the support of an itemset is greater or equal to
the support of its subsets). This property of the support measure allows to efficiently reduce the search
space, as supersets of infrequent itemsets do not need to be considered. However, in HUIM there is no
such property for the utility measure (the utility of an itemset may be less than, equal to or greater
than the utility of its subsets). For his reason, designing efficient algorithms for HUIM requires to design
new methods for reducing the search space.

Utility-lists were introduced in the HUI-Miner [22] algorithm to discover high utility itemsets. HUI-
Miner was shown to be up to 100 times faster than several state-of-the-art algorithms. In this approach,
a utility-list is associated to each itemset, and utility-lists of itemsets are built without scanning the
database by joining the utility-lists of some of their subsets. The algorithm can directly calculate the
utility of itemsets and reduce the search space without having to maintain a set of candidates in memory
or to repeatedly scan the database. The simplicity of the utility-list structure and the high performance
of utility-list based algorithms have led to the development of numerous utility-list based algorithms
for HUIM and variations of the HUIM problem such as closed high utility itemset mining [7, 24, 32],
top-k high utility itemset mining [9,20,30], high utility itemset mining in uncertain databases [21], high
utility sequential pattern mining [31], and on-shelf high utility itemset mining [8,13], among others [11,
12, 17, 35]. Although the introduction of the utility-list structure has been a breakthrough in the field
of HUIM, the utility-list structure still have to be improved. In particular, it can be observed that the
amount of memory required by utility-lists can be quite large.

In this study, we address this need for a more efficient structure for HUIM by proposing an improved
utility-list structure called Utility-List Buffer, and related operations for exploiting this structure to mine
HUIs. The major contributions of this work are fourfold.

– A novel Utility-List Buffer structure is proposed. It is based on the principle of buffering utility-
lists to decrease memory consumption. A Utility-List Buffer consists of multiple segments, which are
reused to store utility-list information.

– An efficient join operation is designed to create utility-lists segments in a Utility-List Buffer in linear
time, to decrease the time required for utility-list construction.

– An efficient algorithm named ULB-Miner (Utility-List Buffer Miner) is proposed to mine HUIs
efficiently using the designed Utility-List Buffer structure and several implementation optimizations.

– An extensive experimental study is conducted in order to evaluate the efficiency of the proposed
utility-list buffer structure and ULB-Miner algorithm on both sparse and dense datasets having
various characteristics. In these experiments, the performance of ULB-Miner is compared with state-
of-the-art algorithms with or without the novel utility-list buffer structure. Our results show that the
proposed ULB-Miner algorithm outperforms the previous state-of-the-art utility-list based HUIM
algorithms. Moreover, our experiments show that algorithms employing the novel structure are up
to 10 time faster than when using standard utility-lists and consumes up to 6 times less memory.
Also, the proposed technique performs quite well on both dense and sparse datasets.

The rest of this paper is organized as follows. In Section 2, we briefly review the related literature. In
Section 3, we define the problem of mining high utility itemsets and introduce the preliminaries of this
paper. In Section 4, we present the novel utility-list buffer structure, its construction and join operations,
and the ULB-Miner algorithm. In Section 5, we report on and discuss the experimental results. Finally,
in Section 6, we conclude our paper and outline the future work.

Efficient High Utility Itemset Mining using Buffered Utility-Lists 3

2 Related work

A key difference between FIM (Frequent Itemset Mining) and HUIM (High Utility Itemset Mining)
is that the interestingness measure used in HUIM to evaluate patterns is neither anti-monotonic nor
monotonic, contrarily to the support measure used in FIM. In other words, an itemset may have supersets
having a utility that is less than, equal to or greater than its utility. Because of this, the utility measure
should not be directly used to reduce the search space. If an algorithm ignores all the supersets of a
low utility itemset, some high utility itemsets may be missed, and the algorithm would be incomplete.
The solution to this issue, adopted by most HUIM algorithms, has been to rely on upper-bounds on the
utility of itemsets that are anti-monotonic to prune the search space without missing any high utility
itemsets. The Transaction-Weighted Utilization (TWU) is the first such measure, which was introduced
in the Two-Phase algorithm [23]. Because the TWU is anti-monotonic, it can be used to reduce the
search space, while ensuring that no High Utility Items (HUIs) are missed. According to the property of
the TWU measure, if an itemset has a TWU lower than the minutil threshold, all its supersets can be
ignored. Although this property is useful for reducing the search space, a problem is that the TWU is a
loose upper bound on the utility of itemsets. For this reason, many itemsets still need to be considered
by algorithms relying on the TWU measure, to extract the set of HUIs. This can result in long execution
times and high memory usage.

Many algorithms have been designed to discover HUIs [3, 12, 22, 23, 25–27, 29, 36]. To reduce the
search space and mine HUIs efficiently, these algorithms have included various methods to overestimate
the utility of itemsets. Several high utility itemset mining algorithms discover high utility itemsets using
the TWU measure and a two phase approach. This includes algorithms such as Two-Phase [23], UP-
Growth+ [29], PB [19] and BAHUI [25]. In the first phase, the algorithms overestimate the utility of
itemsets to obtain a set of candidate HUIs using the TWU measure and other strategies. Then, in the
second phase, they scan the database again to calculate the utility of these candidates and filter those
that are not HUIs. Although these algorithms are complete as they can find the whole set of HUIs, the
two phase approach can lead to considering and maintaining a very large number of candidate itemsets
in memory. The cost of scanning the database for each itemset in the second phase to calculate their
utility is also very costly. As a result, these algorithms can be slow and consume a huge amount of
memory.

In recent years, to avoid the drawbacks of the two phase approach, algorithms have been proposed
to mine high utility itemsets using a single phase. These algorithms can directly calculate the utility of
itemsets in memory without having to repeatedly scan the database or maintain candidates in memory.
Moreover, they utilize tighter upper-bounds and more efficient strategies to reduce the search space,
compared to two phase algorithms. The concept of single phase algorithm was introduced in the HUI-
Miner algorithm [22] by using a novel structure called utility-list. This structure stores all the information
needed to calculate the utility of itemsets and reduce the search space, without repeatedly scanning the
database. To discover HUIs, the HUI-Miner algorithm first constructs a utility-list for each item by
scanning the database. Then, HUI-Miner recursively builds utility-lists of larger itemsets by joining the
utility-lists of some of their subsets, i.e., without scanning the database again. The HUI-Miner algorithm
is a complete algorithm as it can enumerate all high utility itemsets with their utility values using the
utility-list structure. In terms of performance, it was shown that HUI-Miner outperforms the state-
of-the-art two phase HUIM algorithms [22]. Nonetheless, the performance of HUI-Miner can still be
improved. An important observation is that the join operation for obtaining the utility-lists of itemsets
is costly in terms of runtime. To reduce the number of join operations performed by HUI-Miner, Fournier
et al. designed the Faster High-Utility Itemset Mining (FHM) algorithm [12]. FHM applies a strategy to
eliminate low utility itemsets using information about item co-occurrences. For each itemset eliminated
using this strategy, the join operation does not need to be applied, thus reducing the execution time.
It was shown that this pruning strategy can greatly reduce the number of join operations, and that
FHM [12] can be up to six times faster than HUI-Miner.

The utility-list structure was proposed in HUI-Miner [22] to discover HUIs in a single phase, and
hence avoid drawbacks of two-phase algorithms, which are to maintain a large amount of candidates in
memory and to scan the database repeatedly to calculate the utilities of itemsets. HUI-Miner utilizes
utility-lists to store information about the utilities of itemsets in transactions. This information allows to
quickly derive the utilities of any itemset and to calculate upper-bounds on the utilities of its supersets
for reducing the search space. To discover HUIs, HUI-Miner scans the database to create a utility-list
for each item. Thereafter, HUI-Miner performs a depth-first search to explore the search space of all
itemsets containing more than one item. During this search, the utility-list of each itemset is constructed
by joining the utility-lists of some of its subsets, that is without scanning the database.

4 Q-H. Duong et al.

Creating the utility-lists of itemsets using the join is costly. It requires a significant amount of
memory, since an algorithm has to maintain many utility-lists in memory during the search for HUIs.
Moreover, in terms of execution time, the complexity of building a utility-list is also high [12]. In general,
it requires to join three utility-lists of smaller itemsets. Recently, improved versions of the HUI-Miner
algorithm called HUP-Miner [18] and FHM [12] have been proposed by introducing additional search
space pruning strategies and optimizations. It was shown that these algorithms can be up to 6 times
faster than HUI-Miner, and are the state-of-the-art algorithms for HUIM. Although some algorithms [9,
12, 21, 30, 32] have introduced strategies to reduce the number of join operations, this operation is
repeatedly performed to mine high utility itemsets, and this high cost has a negative impact on the
performance, especially when the number of items is huge or a database contains long transactions.
Hence, joining utility-lists remains the main performance bottleneck in terms of execution time, and
storing utility-lists remains the main issue in terms of memory consumption [12]. Due to the wide
applications of the utility-list structure in high utility pattern mining, there is an important need to
propose a more effective and efficient utility-list structure that can be constructed in linear time and
can reduce memory usage.

3 Preliminaries and problem definition

Let there be a set of items I = {i1, i2, . . ., im} representing products sold in a retail store. For each
item ij ∈ I, the external utility of ij is a positive number representing its unit profit (or more generally,
its relative importance to the user). A transaction database D is a set of transactions denoted as
D = {T1, T2, . . . , Tn}, where for each transaction Td ∈ D, the relationship Td ∈ I holds. For each
transaction Td ∈ D, d is a unique integer that is said to be the TID (transaction identifier) of Td. The
internal utility of an item ij in a transaction Td is denoted as q(i, Td). It is a positive number representing
the purchase quantity of the item ij in Td. A set of items X = {i1, i2, . . . , il} ⊆ I containing l items is
said to be an itemset of length l, or alternatively, an l-itemset. In the rest of this paper, the notation
xy will be used to indicate the itemset obtained by concatenating two items x and y. Furthermore, the
notation XY will be used to refer to the union of two itemsets X and Y , i.e., X∪Y.

Table 1 A transaction database

TID Transaction Transaction Utility

T1 (a,1), (c,1), (d,1) 8
T2 (a,2), (c,6), (e,2), (g,5) 27
T3 (a,1), (b,2), (c,1), (d,6),(e,1),(f,5) 30
T4 (b,4), (c,3), (d,3), (e,1) 20
T5 (b,2), (c,2), (e,1), (g,2) 11

Table 2 External utility values of items {a, b, c, d, e, f, g}

Item a b c d e f g
External utility 5 2 1 2 3 1 1

Example 1 Consider the transaction database depicted in Table 1, which comprises five transactions
denoted as T1, T2, T3, T4, and T5. This database will be used as running example. This database
contains seven items denoted by the letters a to g, that is I = {a, b, c, d, e, f, g}. Table 2 indicates the
external utility of each item (e.g., unit profit). The external utilities of items a, b, c, d, e, f, and g are 5,
2, 1, 2, 3, 1, and 1, respectively. The itemset bc is a 2-itemset appearing in transactions T3, T4, and T5.
In transaction T4, the items b, c, d, and e have internal utilities (purchase quantities) of 4, 3, 3, and 1,
respectively.

In high utility itemset mining, the utility measure is used to assess how important (e.g., how prof-
itable) a pattern is.

Efficient High Utility Itemset Mining using Buffered Utility-Lists 5

Definition 1 (Utility of an item in a transaction) Let there be an item i and a transaction Td such
that i ∈ Td. The utility of i in Td is the product of the internal utility (purchase quantity) of item i in
Td by the external utility (unit profit) of i, that is u(i, Td) = q(i, Td)× p(i).

For example, in the database of Table 1, u(a, T1) = 1× 5 = 1, and u(c, T1) = 1× 1 = 1.

Definition 2 (Utility of an itemset in a transaction) For an itemset X and a transaction Td, the
utility of X in Td is a positive number defined as u(X,Td) =

∑
i∈X u(i, Td).

For instance, consider the utility of itemset ac in transaction T3 for the database of Table 1. The
utility of ac in T3 is calculated as u(ac, T3) = 1× 5 + 2× 2 = 9. Similarly, the utility of bc in transaction
T2 is calculated as u(bc, T2) = 4× 2+ 1× 3 = 11.

Definition 3 (Transaction utility and total utility) The utility of a transaction Td is the sum of
the utilities of items appearing in that transaction, that is TU(Td) = u(Td, Td). The total utility of a
database D is the sum of the utilities of all transactions, that is TUD(D) =

∑
Td∈D TU(Td, Td).

For example, in Table 1, TU(T1) = 8, TU(T2) = 27, TU(T3) = 30, TU(T4) = 20, TU(T5) = 11. The
total utility of database D is TUD(D) = (TU(T1) + TU(T2) + TU(T3) + TU(T4) + TU(T5)) = 8 + 27
+ 30 + 20 + 11 = 96.

Definition 4 (Utility and relative utility of an itemset) Let there be a database D and an itemset
X. The utility of X in D is defined as u(X) =

∑
X⊆Td∧Td∈D u(X,Td). The relative utility of X in D is

defined as ru(X) = u(X)/TUD(D).

For instance, the utility of the itemset ac in the database of Table 1 is u(ac) = u(ac, T1)+u(ac, T2)+
u(ac, T3) = 6 + 16 + 6 = 28, while the relative utility of ac in that database is ru(ac) = 28/96 = 0.29.

Definition 5 (Low utility itemset and high utility itemset) Let the minimum utility threshold
(abbreviated as minutil) be a positive number specified by the user such that 0 < minutil < TUD(D).
Consider an itemset X. It is said to be a high utility itemset (HUI) if its utility is no less than minutil.
Otherwise, X is said to be a low utility itemset.

Definition 6 (High utility itemset mining) Given a minimum utility threshold minutil and a database
D, the problem of high utility itemset mining is to enumerate all high utility itemsets appearing in D.

Note that the problem of high utility itemset mining can also be defined in terms of the relative
utility of itemsets. Given a relative minimum utility threshold r minutil = minutil/TUD(D), an itemset
X is a high utility itemset if and only if ru(X) ≥ r minutil.

In FIM, the powerful downward closure property is employed for reducing the search space. However,
this property does not hold with the utility measure in HUIM. To restore this property, the TWU
measure was introduced and used as an upper-bound on the utility. The TWU measure is defined as
follows and has the following important properties [23].

Definition 7 (Transaction-weighted Utilization) Let there be an itemset X and a database D.
The Transaction-weighted Utilization(TWU) [23] of X in D is denoted as TWU(X) and defined as
TWU(X) =

∑
Td∈D∧X⊆Td

TU(Td).

Property 1 (Overestimation [23]) The utility of an itemset X is less than or equal to its TWU, that is
TWU(X) ≥ u(X).

For instance, consider the transactions T1, T2, and T3 in the database of the running example. Their
TWU values are 8, 27, and 30, respectively. The TWU of the item a is calculated as TWU(a) =
TU(T1)+TU(T2)+TU(T3) = 8 + 27 + 30 = 65. The following property has been used by several HUIM
algorithms to reduce the search space.

Property 2 (Search space reduction using the TWU [23]) For an itemset X, if TWU(X) < minutil, it follows
that X and its supersets are low utility itemsets.

For example, the transaction-weighted utilization of item f is TWU(f) = TU(T3) = 5 + 4 + 1 + 12
+ 3 + 5 = 30. Table 3 shows the transaction utilities of all transactions in D and the TWU values of
each item.

The proposed algorithm relies on the novel utility-list buffer structure inspired by the utility-list
structure [22] to mine high utility itemsets in a single phase. The next paragraphs present definition of
the utility-list structure and its key properties [22].

6 Q-H. Duong et al.

Table 3 The TU and TWU values of transactions for the running example

Item Name a b c d e f g
TWU 65 61 96 58 88 30 38

TID T1 T2 T3 T4 T5

TU 8 27 30 20 11

Definition 8 (Utility-list) Let � be a total order on items from I, and X be an itemset appearing
in a database D. The utility-list of X is denoted as ul(X). It contains a tuple (tid, iutil, rutil) for each
transaction Ttid where X appears (X ⊆ Ttid). The iutil element of a tuple for a transaction Ttid stores
the utility of X in the transaction Ttid, i.e., u(X,Ttid). The rutil element of a tuple stores the value∑

i∈Ttid∧i�x∀x∈X u(i, Ttid), which is called the remaining utility of X [22].

Example 2 In the running example, the utility-list of the item a is {(T1, 5, 3)(T2, 10, 17)(T3, 5, 25)}.
The utility-list of the item e is {(T2, 6, 5)(T3, 3, 5)(T4, 3, 0)}. The utility-list of the itemset ae is {(T2,
16, 5),(T3, 8, 5)}.

Two important properties of utility-lists have been proposed to determine the utility of an itemset
and to reduce the search space, respectively [22].

Property 3 (Calculating the utility using the sum of iutil values [22]) The utility of an itemset X (denoted
as u(X)) can be calculated by performing the sum of the iutil values in the utility-list ul(X). If that sum
is less than the minutil threshold, X is a low utility itemset. Otherwise, it is a high utility itemset [22].

Property 4 (Pruning using an utility list’s iutil and rutil values [22]) Let X and Y be two itemsets. It is
said that Y is an extension of X if Y can be obtained by adding an item c to X, where c � i, ∀i ∈ X.
The sum of the iutil and rutil values in the utility-list ul(X) is an upper-bound on the utility of Y and
any other transitive extension of X. As a consequence, if this sum is less than the minutil threshold, it
follows that any itemset that is a transitive extension of X must be a low utility itemset, and thus be
pruned.

4 The proposed utility-list buffer method

As proposed in the HUI-Miner algorithm [22], the utility-list of an itemset Pxy can be constructed
without accessing the database by joining the utility-lists of some subsets of Pxy. For instance, consider
some itemsets Px, Py, and Pxy, where Px and Py are extensions of an itemset P obtained by appending
an item x and an item y, respectively. To build the utility-list of the itemset Pxy, Algorithm 1 [22] is
applied. The algorithm first considers each element in the utility-list ul(x). For each such element, the
algorithm verifies if there exists an element having the same transaction identifier in ul(y). If such an
element is found, the algorithm applies a binary search on the utility-list of the itemset P to check
if an element in the utility-list of P has the same transaction identifier. The time complexity of this
comparison of utility-lists is O(m log nz), where m, n, and z are the number of entries in ul(x), ul(y),
and ul(P), respectively. In terms of space complexity, a utility-list has a size proportional to O(n) in the
worst case, where n is the number of transactions. The worst case occurs when a utility-list has an entry
for each transaction of the database. The overall worst-case time complexity is thus roughly O(n3).

The proposed method is based on the following observations. Joining utility-lists is costly both in
terms of runtime and memory consumption. In utility-list-based algorithms, memory has to be allocated
to store each utility-list. Since millions of itemsets are often considered by HUI (High Utility Itemset)
mining algorithms, the memory used for storing utility-lists can be quite large. Moreover, because utility-
lists can contain many entries, the time requires for allocating and reusing memory for utility-lists can
be quite important. In addition, a related issue is that a utility-list can be kept in memory during a
long period of time by utility-list-based algorithms, even if the corresponding itemset is identified as
not being a HUI and/or is not extended by the search procedure to find HUIs. This can lead to high
peaks of memory usage. In conclusion, there is an important issue with how memory is managed by the
state-of-the-art utility-list-based algorithms. Our experimental evaluation in Section 5 will also show
this in more details.

To address this issue, this section proposes a data structure named utility-list buffer, designed to
both quickly access information stored in utility-lists and more efficiently manage the memory used for
storing the information of utility-lists. The proposed utility-list buffer structure is designed for replacing

Efficient High Utility Itemset Mining using Buffered Utility-Lists 7

Algorithm 1 The traditional utility-list construction procedure
Input:

ul(P) : the utility-list of itemset P ;
ul(Px): the utility-list of itemset Px ;
ul(Py): the utility-list of itemset Py;

Output:
ul(Pxy): the utility-list of itemset Pxy;

1: ul(Pxy) = NULL;
2: for each (tuple ex ∈ ul(Px)) do
3: if (∃ey ∈ ul(Py) and ex.tid==ey.tid) then
4: if (ul(P) is not empty) then
5: Search element e ∈ ul(P) such that e.tid = ex.tid ;
6: exy ←− (ex.tid; ex.iutil + ey.iutil - e.iutil; ey.rutil);
7: else
8: exy ←− (ex.tid; ex.iutil + ey.iutil; ey.rutil);
9: end if

10: ul(Pxy) ←− ul(Pxy) ∪ exy;
11: end if
12: end for
13: return ul(Pxy);

traditional utility-lists in any utility-list-based algorithms. As it will be shown in the experimental
evaluation, using the utility-list buffer structure leads to considerably lower memory usage and faster
execution times for utility-list-based algorithms.

This section first introduces the utility-list buffer structure. Then, the next subsection explains how
it is employed to mine high utility itemsets. In particular, an efficient ULB-Miner algorithm is presented
based on the designed utility-list buffer structure.

4.1 The utility-list buffer structure

The utility-list buffer structure is proposed to tackle the aforementioned limitations of one-phase utility-
list-based algorithms for mining high utility itemsets. The utility-list buffer structure is introduced by
the following definitions and properties. Then, an example will be given to illustrate the definitions.

Definition 9 (Utility-list buffer structure) Let I be the set of items in a database D. Let T idD be
the set of transaction identifiers in the database D. The utility-list buffer structure for the database
D is denoted as UTLBuf. The structure is designed like a memory pipeline to store information about
itemsets that would be normally stored in their utility-lists. The utility-list buffer of a database stores a
set of tuples of the form (tid ∈ T idD, iutil ∈ R, rutil ∈ R). These tuples called data segments, which store
the tuples normally contained in traditional utility-lists. To quickly access the information stored in the
utility-list buffer, a set of index segments are created, where an index segment SUL(X) indicates where
the information about an itemset X is stored in the utility-buffer. Index segments allow fast accessibility
of the data stored in the utility-buffer and are described next.

Definition 10 (Summary of Utility-list) The index segment of an itemset X in a database D, also
called the summary of utility-list of itemset X, is denoted as SUL(X). It is defined as a tuple having the
form (X, StartPos, EndPos, SumIutil, SumRutil). The SumIutil element stores the sum of the iutil values
in ul(X), that is

∑
ul(X).iutil. The SumRutil element stores the sum of rutil values in the utility-list of

X, that is
∑

ul(X).rutil. The StartPos and EndPos elements respectively indicate the start index and
end index of the data segments in the utility-list buffer structure UTLBuf, where the information that
would be normally contained in the utility-list of X is stored.

Definition 11 (Summary List) Let I be the set of items in a database D. A structure called Sum-

mary List is further defined. It is a memory pipeline denoted as SULsD, and defined as SULsD =
{SUL(X), X ⊆ I}.

The proposed utility-list buffer structure is used as follows by the proposed algorithm. When the
algorithm considers an itemset X from the search space as a potential HUI and as an itemset that
could be extended to find other HUIs, the algorithm stores the utility-list of X in the UTLBuf structure
by temporally inserting its information in the data segments of UTLBuf from the StartPos to EndPos

positions. Then, when needed, the algorithm accesses this information by reading the values in the
UTLBuf from the StartPos to EndPos positions. Thanks to the utility-buffer structure, data can be

8 Q-H. Duong et al.

quickly accessed. For efficient memory management, the temporary memory that is allocated for an
itemset X in the UTLBuf structure is reused for storing the utility-lists of other itemsets when it is
found that the utility-list of the itemset X is not needed anymore by the search process. In this case, the
memory is recalled and reused for other candidate itemsets (this idea will be described in more details
in subsection 4.4).

In terms of implementation, we implement the proposed structures as follows. Four array lists are
created, named TIDs, Iutils, Rutils and SULs. The three first lists store the information of the UTLBuf

structure, and the fourth list is the SULs structure. These lists are initialized as empty and their size
is increased when they are full and more space is needed. Lists are used for storing the utility-lists
of itemsets, and when the utility-list of an itemset is not needed, the memory is reused to store other
utility-lists. This reduces the time for allocating memory and the overall memory usage for mining HUIs.

The proposed algorithm first creates the utility-list of all single items according to the total order �
by performing a database scan. For example, consider the utility-list of the item f . In transaction T3,
we have that u(f, T3) = 5 and ru(f, T3) = 25. The item f only appears in the transaction T3. Hence,
the summary of f is stored in the SULs list and contains the following information: the item is f , its
start position index in the lists is 0, its information ends at position index 1, the sum of its utilities is
5, and the sum of its remaining utilities is 25. The state of the utility-list buffer after inserting the item
f is depicted in Fig. 1. Thereafter, the other items are inserted in the same manner. The resulting state
of the utility-list buffer is depicted in Fig. 2. In this figure, it can be seen that a utility-list segment
is used for each item. Accessing a utility-list stored in the utility-buffer is efficient thanks to the SULs

structure. For example, assume that the algorithm is currently processing the itemset X = {a}. To
access its utility-list, the summary information of {a} is obtained from the SULs. After the summary
information of {a} is obtained, its utility-list UL({a}) is read in UTLBuf from the SULs({a}).StartPos

to SULs({a}).EndPos positions (in red color in Fig. 2).

TIDs = 3
Iutils = 5
Rutils = 25

SULs =

Item = f
StartPos = 0
EndPos = 1
SumIutil = 5
SumRutil = 25

Fig. 1 The utility-list buffer after inserting the item f

TIDs = 3 2 5 1 3 4 3 4 5 1 2 3 2 3 4 5 1 2 3 4 5

Iutils = 5 5 2 2 6 6 10 8 4 5 10 5 6 3 3 3 1 6 1 3 2

Rutils = 25 22 9 6 19 14 9 6 5 1 12 4 6 1 3 2 0 0 0 0 0

SULs =

Item=f Item=g Item=d Item=b Item=a Item=e Item=c

StartPos=0 StartPos=1 StartPos=3 StartPos=6 StartPos=9 StartPos=12 StartPos=16

EndPos=1 EndPos=3 EndPos=6 EndPos=9 EndPos=12 EndPos=16 EndPos=21

SumIutil=5 SumIutil=7 SumIutil=14 SumIutil=22 SumIutil=20 SumIutil=15 SumIutil=13

SumRutil=25 SumRutil=31 SumRutil=39 SumRutil=20 SumRutil=17 SumRutil=12 SumRutil=0

Fig. 2 The utility-list buffer after inserting all single items

4.2 An efficient utility-list segment construction method

The previous subsection has explained how the proposed data structures are used to store the utility-
lists of itemsets containing a single item. This subsection explains the more general case where itemsets
can have two or more items.

As it has been pointed out in traditional utility-list-based algorithms [12, 22], the utility-list of a
2-itemset xy can be constructed without scanning the database by joining (intersecting) the utility-lists
of its items x and y. Moreover, the utility-list of any k-itemset {i1 . . . ik−1ik} (k ≥ 3) can be obtained by

Efficient High Utility Itemset Mining using Buffered Utility-Lists 9

intersecting the utility-lists of three itemsets: {i1 . . . ik−2ik−1}, {i1 . . . ik−2} and {i1 . . . ik−2ik}. The basic
procedure for intersecting utility-lists was proposed in the HUI-Miner algorithm [22]. This procedure
is given in Algorithm 1, where the utility-list of an itemset Pxy is built by intersecting the utility-lists
of the itemsets Px, Py, and P . P is the prefix itemset, x and y are items. For each element in the
utility list ul(x), the procedure checks if an element has the same transaction identifier in the utility-list
ul(y). If yes, then a binary search is performed on the utility-list of P to find an element with the same
transaction identifier. Hence, the time complexity of this procedure is O(sxlog(sy)), where sx and sy

are respectively the number of entries in ul(x) and ul(y).

Although this algorithm is useful for constructing utility-lists, it cannot be directly applied to utility-
lists stored in the proposed utility-buffer structure. Thus, an adapted utility-list segment construction
procedure is proposed and depicted in Algorithm 2. This procedure constructs a utility-list in the next
free data segments of the utility-list buffer and updates the Summary List SULs structure to allow the
quick retrieval of the utility-list from the buffer when needed.

Algorithm 2 The basic utility-list segment construction procedure
Input:

PPosition : the StartPos of itemset P ;
PxPosition: the StartPos of itemset Px ;
PyPosition: the StartPos of itemset Py;

Output:
PxyPosition: the StartPos of itemset Pxy;

1: PxyPosition = NULL;
2: countX = SULs(Px).EndPos - SULs(Px).StartPos;
3: for (i = 0; i < countX ; i++) do
4: if (∃j ∈ [SULs(Py).StartPos, SULs(Py).EndPos] and TIDs[SULs(Px).StartPos+i]=TIDs[j]) then
5: if (PPosition ≥ 0) then
6: Search index p ∈ [SULs(P).StartPos, SULs(P).EndPos] such that TIDs[p] = TIDs[SULs(Px).StartPos+i];

7: TIDs[PxyPosition + p] = TIDs[PxPosition + i];
8: Iutils[PxyPosition + p] = Iutils[PxPostion + i] + Iutils[PyPostion + j] - Iutils[PPosition + p];
9: Rutils[PxyPosition + p] = Rutils[PyPostion + j];

10: else
11: TIDs[PxyPosition + p] = TIDs[PxPosition + i];
12: Iutils[PxyPosition + p] = Iutils[PxPostion + i] + Iutils[PyPostion + j];
13: Rutils[PxyPosition + p] = Rutils[PyPostion + j];
14: end if
15: end if
16: end for
17: Update SULs of Pxy;
18: return PxyPosition;

Since transaction identifiers (Tids) in utility-lists are ordered in ascending order, an efficient way
of identifying transactions that are common to two utility-lists ul(x) and ul(y) are to read the two
utility-lists at the same time by reading the Tids sequentially in each utility-list. The complexity of this
search method is O(m + n), which is less than O(mlogn) for the basic utility-list construction method.
Based on this observation, we introduce an improved construction procedure named ULB-Construct,
and it is presented in Algorithm 3.

4.3 High utility itemset miner employing the Utility-list buffer

Having presented the proposed utility-buffer structure and how utility-lists are constructed and stored
in that structure, this subsection proposes a novel algorithm named ULB-Miner for discovering all high
utility itemsets using that structure.

After constructing the initial utility-list buffer from an input database, the algorithm can efficiently
mine all high utility itemsets by employing the utility-list buffer. The proposed approach for mining
HUIs is inspired by the HUI-Miner [22] and FHM [12] algorithms, but adapted to work with the novel
utility-buffer structure. In particular, it integrates the novel ULB-construct procedure, described in the
previous subsection, that constructs utility-list segments in linear time. The main procedure of ULB-
Miner is shown in Algorithm 4. The input is a transaction database D and the minutil threshold, and
the output is the high utility-itemsets. The main procedure performs the following steps. The algorithm

10 Q-H. Duong et al.

Algorithm 3 ULB-Construct: the efficient utility-list segment construction procedure
Input:
UTLBuf, SULs;
Itemsets P, Px ; Py;
Output:
Updated UTLBuf, SULs with itemset Pxy

1: Let PPnt, PxPnt, PyPnt are three pointers that initially point to UTLBuf at positions SULs(P).StartPos,
SULs(Px).StartPos, and SULs(Py).StartPos, respectively.

2: while (PxPnt not reach SULs(Px).EndPos and PyPnt not reach SULs(Py).EndPos) do
3: if (TIDs[PxPnt] < TIDs[PyPnt]) then
4: shift PxPnt to the right by 1;
5: else if (TIDs[posX] > TIDs[posY]) then
6: shift PyPnt to the right by 1;
7: else
8: if (SULs[P] is not NULL) then
9: while (PPnt not reach SULs(P).EndPos and TIDs[PPnt] 6= TIDs[PxPnt]) do

10: shift PPnt to the right by 1;
11: end while
12: end if
13: UTLBuf.TIDs[TIDs.count++] = TIDs[PxPnt];
14: UTLBuf.Iutils[Iutils.count++] = Iutils[PxPnt] + Iutils[PyPnt] - Iutils[PPnt];
15: UTLBuf.Rutils[Rutils.count++] = Rutils[PyPnt];
16: shift both PxPnt and PyPnt to the right by 1;
17: end if
18: end while
19: Update SULs[Pxy];

first scans the database to calculate the TWU of all items (line 1). Then, based on these TWU values, the
set I∗ is created, which contains all items having a TWU greater than or equal to the minutil threshold
(line 2). The TWU values of items are used to build a total order � on items, which is the ascending
order of TWU values (line 3). The algorithm then scans the database again (line 4) to reorder items
in transactions according to that total order. At the same time, the utility-list buffer of all single items
i ∈ I and the Estimated Utility Co-occurrence Structure (EUCS) [12] are built. The EUCS stores the
TWU values of all pairs of items. It will be discussed in more details in the next subsection. After that
the algorithm starts a recursive depth-first search by invoking the Search procedure (line 5).

Algorithm 4 The ULB-Miner algorithm
Input:

D : a transaction database;
minutil : a user-defined threshold;

Output:
The set of high utility itemsets;

1: Scan D to calculate the TWU of single items;
2: Let I∗ be the list of single items i such that TWU(i) ≥ minutil ;
3: Let � be the total order of TWU ascending values on I∗;
4: Scan D again to build the initial utility-list buffer UTLBuf, and SULs of item i ∈ I∗ and build the EUCS ;
5: Search (∅, I∗, minutil, EUCS, UTLBuf, SULs);

The Search procedure is presented in Algorithm 5. It performs the following operations. For each
extension Px of P , if the sum of the iutil values of Px is no less than minutil, then Px is a high
utility itemset based on Property 3. Hence, the itemset Px is output (lines 2-4). Then, if the sum of
the SumIutil and SumRutil values of Px is greater than or equal to minutil, the extensions of Px are
considered for further exploration (line 5), based on Property 4. This process is done by combining Px

with each extension Py of P such that y � x to produce a larger itemset itemset Pxy (line 9). The
utility-list segment of Pxy is then constructed by calling an improved version of the ULB-Construct
procedure, which will be presented in the next subsection (Algorithm 6). This procedure joins the
utility-list segments of P , Px and Py (line 10). Then, a recursive call to the Search procedure with Pxy

is done to calculate the utility of that itemset and recursively explore its extensions (line 15).

As other utility-list based algorithms for mining high utility itemsets [12, 22], the Search procedure
starts from single items and then recursively explores the search space of itemsets by appending single
items, while reducing the search space using Properties 3 and 4. It thus can be easily seen that this
process is correct and complete to discover all high utility itemsets.

Efficient High Utility Itemset Mining using Buffered Utility-Lists 11

Algorithm 5 The Search Procedure
Input:

P : an itemset;
ExtensionsOfP : a set of extensions of P ;
minutil : the user-specified utility threshold;
EUCS : the EUCS structure;
utility-list buffer UTLBuf : the utility-list buffer structure;
SULs: The summary list ;

Output:
The set of high utility itemsets;

1: for each itemset Px ∈ ExtensionsOfP do
2: if (SULs(Px).SumIutil ≥ minutil) then
3: output Px;
4: end if
5: if (SULs(Px).SumIutil + SULs(Px).SumRutil ≥ minutil) then
6: ExtensionsOfPx ← ∅;
7: for each itemset Py ∈ ExtensionsOfP such that y � x do
8: if (∃(x, y, c) ∈ EUCS such that c ≥ minutil) then
9: Pxy ← Px ∪ Py;

10: if (ULBReusingMemory-Construct(UTLBuf, SULs, P , Px, Py) then
11: ExtensionsOfPx ← ExtensionsOfPx ∪Pxy;
12: end if
13: end if
14: end for
15: Search (Px, ExtensionsOfPx, minutil, EUCS, UTLBuf, SULs);
16: end if
17: end for

4.4 Implementation optimizations

The Estimated Utility Co-Occurrence Structure (EUCS) [12] is a very useful structure for pruning the
search space. The EUCS has been designed to avoid performing join operations to construct utility-lists
of itemsets when some specific conditions are met. It was demonstrated that this structure and the
corresponding Estimated Utility Co-occurrence Pruning (EUCP) strategy can considerably reduce the
number of join operations for HUI mining using utility-lists. Hence in the proposed framework, this
structure and its search space pruning strategy are also used to reduce the search space and increase
the performance of the proposed algorithm. This structure is used in line 8 of Algorithm 5.

Moreover, to obtain better performance for utility-list construction, an approach is proposed in [9]
for abandoning utility-list construction early named EA (Early Abandoning) strategy. This strategy
and its stopping criterion are designed and employed during the construction of utility-lists of all can-
didate itemsets to avoid completely constructing utility-lists. The utility-list construction process is
immediately stopped if a specific condition is met. This strategy can reduce the runtime and memory
consumption of the algorithms considerably. Therefore, EA is also implemented in the UTLBuf frame-
work. Detail of how the EA strategy is implemented in the UTLBuf framework is shown in Algorithm 6
using the variable EACriterion.

Finally, a novel optimization is proposed to reuse memory in the utility-buffer. It is based on the
following observation. In utility-list based algorithms, the utility-list of an itemset containing more than
one item is constructed by intersecting the utility-lists of some of its subsets. For instance, the utility-list
of an itemset Pxy, ul(Pxy), can be obtained by intersecting the utility-lists of itemsets P , Px and Py.
However, after constructing the utility-list of Pxy, it is possible that Pxy is considered to not be a HUI
according to Property 3, and also to not be useful for generating larger HUIs according to Property 4.
Hence, the memory allocated for storing the utility-list of Pxy is wasted and could be reused for storing
other utility-list(s). This is a serious problem because the construction of utility-lists is a process that
is repeatedly performed by the search procedure. To save memory, this paper proposes the following
strategy for memory reutilization. If an itemset Pxy is not a candidate for exploring the search space,
then the memory allocated for storing its utility-list will be recalled and reused for the next potential
candidates that will be considered by the search procedure. All the memory used for Pxy will be reused
and new memory is only allocated when the utility-buffer is full. The pseudo-code of the improved
ULB-Construct procedure integrating this strategy is shown in Algorithm 6.

12 Q-H. Duong et al.

Algorithm 6 ULBReusingMemory-Construct: Construction procedure for reusing memory
Input:
UTLBuf, SULs;
Itemsets P, Px ; Py;
Output:
Updated UTLBuf, SULs with itemset Pxy

1: Let PPnt, PxPnt, PyPnt are three pointers that initially point to UTLBuf at positions SULs(P).StartPos,
SULs(Px).StartPos, and SULs(Py).StartPos, respectively.

2: Let EACriterion = SULs[Px].SumIutil + SULs[Py].SumIutil + SULs[Px].SumRutil + SULs[Py].SumRutil
3: Let insertionPosition = SULs.Last.endPos;
4: while (PxPnt not reach SULs(Px).EndPos and PyPnt not reach SULs(Py).EndPos) do
5: if (TIDs[PxPnt] < TIDs[PyPnt]) then
6: shift PxPnt to the right by 1;
7: Substract EACriterion by (Iutils[PxPnt] + Rutils[PxPnt])
8: else if (TIDs[posX] > TIDs[posY]) then
9: shift PyPnt to the right by 1;

10: Substract EACriterion by (Iutils[PyPnt] + Rutils[PyPnt])
11: else
12: if (SULs[P] is not NULL) then
13: while (PPnt not reach SULs(P).EndPos and TIDs[PPnt] 6= TIDs[PxPnt]) do
14: shift PPnt to the right by 1;
15: end while
16: end if
17: if (insertionPosition ≥ UTLBuf.TIDs.size()) then
18: UTLBuf.TIDs[TIDs.count++] = TIDs[PxPnt];
19: UTLBuf.Iutils[Iutils.count++] = Iutils[PxPnt] + Iutils[PyPnt] - Iutils[PPnt];
20: UTLBuf.Rutils[Rutils.count++] = Rutils[PyPnt];
21: else
22: insertionPosition++ //Reused Memory ;
23: UTLBuf.TIDs[insertionPosition] = TIDs[PxPnt];
24: UTLBuf.Iutils[insertionPosition] = Iutils[PxPnt] + Iutils[PyPnt] - Iutils[PPnt];
25: UTLBuf.Rutils[insertionPosition] = Rutils[PyPnt];
26: end if
27: shift both PxPnt and PyPnt to the right by 1;
28: end if
29: end while
30: if (EACriterion < minutil) then
31: return false;
32: end if
33: Update SULs[Pxy];
34: return true;

4.5 An illustrative example

To give a better understanding of how the proposed ULB-Miner algorithm works, and at the same
time show the benefits of the designed utility-list buffer structure, this subsection provides a detailed
example. In this example, ULB-Miner is applied on the database D shown in Table 1 with minutil =
35 and the external utilities of items are shown in Table 2.

Step 1. The database D is scanned to calculate the TWU of single items. The resulting TWU values
of items are shown in Table 3. The set of single items I∗ sorted by ascending TWU values and
having TWU ≥ 35 is {g, d, b, a, e, c}. Item f is dismissed because TWU (f) = 30 < 35 = minutil.

Step 2. The initial UTLBuf and SULs structures for items in I∗ are constructed. The result is shown
in Fig. 3.

Step 3. The Search procedure is invoked to perform the recursive search.
(a) The procedure explores the search space starting from item g. Because SULs(g).SumIutil =

7 < minutil = 35, g is not a high utility itemset. But SULs(g).SumIutil + SULs(g).SumRutil

= 7 + 31 = 38 > minutil. Thus, extensions of g should be considered as potential high utility
itemsets.

(b) The algorithm appends each item y to g such that y � g and y ∈ I∗ to form larger itemsets.
The algorithm first considers appending d to g to form the larger itemset gd. Because g and
d never appear together (an empty utility-list is constructed), the itemset gd is not further
considered.

(c) Then, the algorithm considers appending b to g to create the itemset gb. The utility-list of
bd is inserted into the utility-buffer UTLBuf as shown in Fig. 4 (cells filled with white color).
The sum of the Iutils and RUtils values of gb is 6 + 5 = 11 < minutil. Hence, the itemset gb

Efficient High Utility Itemset Mining using Buffered Utility-Lists 13

is not considered as a candidate by the search procedure. Note that at this point, previous
utility-list-based algorithms would allocate new memory for storing the utility-lists of the
following candidates. The proposed method will instead reuse the memory allocated for the
utility-list of gb for storing the utility-lists of the following candidates.

(d) The algorithm next considers the itemset ga. The state of the utility-list buffer UTLBuf after
inserting the utility-list of ga is shown in Fig. 5. The sum of the Iutils and RUtils values of
ga is 15 + 12 = 27 < minutil. Thus, ga will not be considered by the search procedure to
generate further extensions. This memory will be reused for storing the utility-lists of the
following candidates.

(e) The following item e is appended to itemset g to form the itemset ge. The algorithm inserts
the utility-list of ge into the utility-buffer. The resulting state of the buffer is shown in Fig. 6.
The itemset ge is not extended by the search procedure because the sum of the Iutils and
RUtils values of ge is 11 + 5 + 6 + 2 = 24 < minutil. This memory will thus be reused to
store the utility-lists of the following candidates.

(f) Then, the item c is appended to g to create the itemset gc. The state of the utility-list buffer
after inserting the utility-list of gc is shown in Fig. 7. The itemset gc is also not a high utility
itemset due to its low utility.

Step 4. The search for high utility itemsets is then continued with other items until no more itemsets
can be generated. The result is the set of all high utility itemsets found in the dataset D. This
set is {dbec : 40, dbe : 36}, where the number besides each itemset indicates its utility.

TIDs = 2 5 1 3 4 3 4 5 1 2 3 2 3 4 5 1 2 3 4 5

Iutils = 5 2 2 6 6 10 8 4 5 10 5 6 3 3 3 1 6 1 3 2

Rutils = 22 9 6 19 14 9 6 5 1 12 4 6 1 3 2 0 0 0 0 0

SULs =

Item=g Item=d Item=b Item=a Item=e Item=c

StartPos=0 StartPos=2 StartPos=5 StartPos=8 StartPos=11 StartPos=15

EndPos=2 EndPos=5 EndPos=8 EndPos=11 EndPos=15 EndPos=20

SumIutil=7 SumIutil=14 SumIutil=22 SumIutil=20 SumIutil=15 SumIutil=13

SumRutil=31 SumRutil=39 SumRutil=20 SumRutil=17 SumRutil=12 SumRutil=0

Fig. 3 The initial utility-list buffer

TIDs = 2 5 1 3 4 3 4 5 1 2 3 2 3 4 5 1 2 3 4 5 5

Iutils = 5 2 2 6 6 10 8 4 5 10 5 6 3 3 3 1 6 1 3 2 6

Rutils = 22 9 6 19 14 9 6 5 1 12 4 6 1 3 2 0 0 0 0 0 5

Fig. 4 The utility-list buffer after inserting the utility-list of gb

TIDs = 2 5 1 3 4 3 4 5 1 2 3 2 3 4 5 1 2 3 4 5 2

Iutils = 5 2 2 6 6 10 8 4 5 10 5 6 3 3 3 1 6 1 3 2 15

Rutils = 22 9 6 19 14 9 6 5 1 12 4 6 1 3 2 0 0 0 0 0 12

Fig. 5 The utility-list buffer after inserting the utility-list of ga

TIDs = 2 5 1 3 4 3 4 5 1 2 3 2 3 4 5 1 2 3 4 5 2 5

Iutils = 5 2 2 6 6 10 8 4 5 10 5 6 3 3 3 1 6 1 3 2 11 5

Rutils = 22 9 6 19 14 9 6 5 1 12 4 6 1 3 2 0 0 0 0 0 6 2

Fig. 6 The utility-list buffer after inserting the utility-list of ge

14 Q-H. Duong et al.

TIDs = 2 5 1 3 4 3 4 5 1 2 3 2 3 4 5 1 2 3 4 5 2 5

Iutils = 5 2 2 6 6 10 8 4 5 10 5 6 3 3 3 1 6 1 3 2 11 0

Rutils = 22 9 6 19 14 9 6 5 1 12 4 6 1 3 2 0 0 0 0 0 4 0

Fig. 7 The utility-list buffer after inserting the utility-list of gc

In the above example, the proposed algorithm relying on the novel utility-list buffer allocates only 2
entries in the utility-buffer for storing the utility-lists of extensions of the item g. Previous utility-list-
based algorithms such as HUI-Miner and FHM would utilize 6 entries to store the utility-lists, due to the
lack of a mechanism for reusing memory. If we consider the full search space for the previous example,
the proposed algorithm only needs 33 entries in the utility-buffer and reuses 39 times some existing
entries to store utility-lists. This simple example shows that the proposed utility-list buffer structure is
useful for mining high utility itemsets while reusing memory.

5 Performance study

We performed a series of large scale experiments to evaluate the performance of the proposed ULB-
Miner algorithm employing the designed utility-list buffer structure. The algorithms were implemented
by extending the SPMF open-source Java data mining library [10]. The source code was compiled
using the J2SDK 1.7.0, and the memory measurements were done using the standard Java API. The
experiments were run on a computer equipped with an Intel core i3 processor 2.4 GHz and 4 GB of
RAM, running the Windows 7 operating system.

Table 4 Characteristics of the datasets

Dataset #Transactions #Distinct items Avg. trans. length

Connect 67,557 129 43
Chainstore 1,112,949 46,086 7.2
Chess 3196 75 37
Foodmart 4141 1559 4.4
Kosarak 990,000 41,270 8.1
Retail 88,162 16,470 10.3

5.1 Experimental setup

Both real and synthetic datasets having varied characteristics were used in the experiments. These
datasets are standard benchmark datasets used to evaluate HUIM algorithms. The characteristics of
these datasets are described in Table 4, where #Transactions, #Distinct items and Avg. trans. length
indicate the number of transactions, the number of distinct items and the average transaction length,
respectively. These datasets were selected because they are standard benchmark datasets and they have
varied characteristics.

We used two real-world customer transaction datasets named Chainstore1 and Foodmart2. Chain-
store is a very large dataset consisting of transactions from a Californian retail store, while Foodmart is a
small dataset of customer transactions obtained from the Microsoft Food-Mart 2000 database. Retail3 is
a sparse dataset containing customer transactions from a Belgian retail store. Kosarak4 is a very sparse
dataset with moderately short transactions. Lastly, two dense datasets named Chess5 and Connect5

were used. Although these two datasets are not retail data, they are often used in the pattern mining
literature as benchmark datasets to evaluate the performance on dense data. Chess is especially a quite
challenging dataset for most mining algorithms because it contains many long itemsets. The Chainstore
and Foodmart datasets already contain real unit profits and purchase quantities. For other datasets,

1 http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html
2 https://www.microsoft.com/en-us/download/details.aspx?id=51958
3 http://fimi.cs.helsinki.fi/data/
4 http://fimi.cs.helsinki.fi/data/
5 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html
https://www.microsoft.com/en-us/download/details.aspx?id=51958
http://fimi.cs.helsinki.fi/data/
http://fimi.cs.helsinki.fi/data/
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

Efficient High Utility Itemset Mining using Buffered Utility-Lists 15

external utilities of items are generated between 1 and 1000 by using a log-normal distribution and
quantities of items are generated randomly between 1 and 5, as the settings of previous studies [12,22].

0

100

200

300

400

500

600

700

800

900

1000

70 60 50 40 30

R
u

n
ti

m
e

(s
)

Minimum Utility Threshold (%)

Connect

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1 0.08 0.06 0.04 0.02 0.01

R
u

n
ti

m
e

(s
)

Minimum Utility Threshold (%)

ChainStore

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(b)

0

500

1000

1500

2000

2500

3000

3500

30 28 26 24 22 20 18 14

R
u

n
ti

m
e

(s
)

Minimum Utility Threshold (%)

Chess

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(c)

0

1

1

2

2

3

3

4

4

0.1 0.08 0.06 0.04 0.02 0.01

R
u

n
ti

m
e

(s
)

Minimum Utility Threshold (%)

Foodmart

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(d)

0

10

20

30

40

50

60

70

80

4 3.5 3 2.5 2 1.5 1

R
u

n
ti

m
e

(s
)

Minimum Utility Threshold (%)

Kosarak

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(e)

0

20

40

60

80

100

120

140

0.1 0.08 0.06 0.04 0.02 0.01

R
u

n
ti

m
e

(s
)

Minimum Utility Threshold (%)

Retail

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(f)

Fig. 8 Runtime comparison on different datasets

16 Q-H. Duong et al.

5.2 Running time

The performance of ULB-Miner is compared with two state-of-the-art HUI mining algorithms, namely
HUI-Miner and FHM. These algorithms were chosen since they are state-of-the art HUIM algorithms.
These algorithms are also based on the traditional utility-list structure. Moreover, we also prepared two
improved versions of HUI-Miner and FHM, named HUI-Miner ULB and FHM ULB, respectively. These
versions employ the proposed utility-list buffer structure and the basic utility-list segment construction
procedure (Algorithm 2).

We rant the compared algorithms on each dataset while decreasing the minutil threshold until the
algorithms became too long to execute, ran out of memory or a clear winner was observed. For each
dataset, we recorded the execution time and memory consumption. The comparison of execution times
is shown in Fig 8. As presented in these figures, the HUI-Miner ULB and FHM ULB versions are faster
than the original implementations of these algorithms on all datasets. Especially, when minutil is de-
creased, there is a big gap between the runtimes of the original and improved versions. The proposed
ULB-Miner algorithm is faster than the compared algorithms when minutil is small on the Kosarak
dataset. For the remaining datasets, the proposed algorithm is the fastest for all minutil values. The
compared algorithms are one-phase algorithms employing the traditional utility-list structure, which per-
form the costly utility-list intersection operation. To reduce this cost, ULB-Miner employs the designed
efficient utility-list segment construction method to quickly search for transactions that are common to
two utility-list segments. This considerably reduces its execution time.

5.3 Memory consumption

Table 5 compares the peak memory usage of the algorithms on the six datasets when the minutil

threshold is set to the smallest values used in the previous experiment. All memory measurements were
done using the standard Java API. By observing these results, it is found that the proposed utility-
list buffer structure reduces the memory consumption of the HUI-Miner and FHM algorithms on all
datasets. The FHM ULB and ULB-Miner algorithms consume almost the same amount of memory on
the experimental datasets because they employ similar strategies. Both FHM ULB and ULB-Miner
consume less memory than FHM. The best results are obtained on the Chess and Connect datasets.
There, the memory consumption is reduced by up to 4 and 6 times, respectively. This can be explained
as follows. These datasets are dense with long transaction and many items. As a result, the algorithms
generate a huge amount of candidates. But the proposed ULB-Miner algorithm reuses most of the
memory for storing utility-lists thanks to its utility-buffer structure, and it thus have a low memory
consumption. Similar results are also obtained when comparing the HUI-Miner and HUI-Miner ULB
algorithms. HUI-Miner ULB consumes less memory than HUI-Miner on all datasets. The best result
is obtained on the Chess dataset. Here, the gap in terms of memory usage is clear and large. The
gap shrinks a bit due to the EUCS structure. But it is an acceptable trade-off when considering the
runtime performance. On overall, the results depicted in Table 5 show that the proposed utility-list
buffer structure is efficient in terms of memory consumption. In some cases, the proposed method can
reduce memory consumption by up to 6 times.

Table 5 Comparison of peak memory usage (MB)

Dataset HUI-Miner HUI-Miner ULB FHM FHM ULB ULB-Miner
Connect 452.6 399.9 1516.9 398.1 368.6
Chainstore 1367.3 1021.1 2792.7 2396.9 2402.7
Chess 752.4 140.1 1319.7 209.7 208.3
Foodmart 423.4 257.2 68.3 40.1 41.3
Kosarak 1060.2 910.1 1270 1030 1015.7
Retail 803.53 442.1 670.22 544.7 544.6

5.4 Comparison on the number of utility-lists

To analyze in more details the memory consumption of the proposed algorithm, we performed an
experiment to compare the number of utility-lists created by allocating new memory when using the

Efficient High Utility Itemset Mining using Buffered Utility-Lists 17

designed utility-list buffer structure and when not using that structure. For this experiment, a version
of the proposed ULB-Miner that employ the traditional utility-list structure [22] was prepared (i.e.,
that does not use the novel utility-list buffer structure). Then, the number of utility-lists generated by
allocating new memory was measured for both versions of the algorithm on each dataset. Fig 9 shows
the comparison.

0

0

0

0

0

0

1

10

100

1000

10000

70 60 50 40 30

N
u

m
b

er
 o

f
u

ti
lit

y-
lis

ts
(M

ill
io

n
s)

Minimum Utility Threshold (%)

Connect

use_UTLBuf not_Use_UTLBuf

(a)

0

5

10

15

20

25

30

35

0.1 0.08 0.06 0.04 0.02 0.01

N
u

m
b

er
 o

f
u

ti
lit

y-
lis

ts
(M

ill
io

n
s)

Minimum Utility Threshold (%)

ChainStore

use_UTLBuf not_Use_UTLBuf

(b)

0

0

0

0

0

0

1

10

100

1000

10000

30 28 26 24 22 20 18 16

N
u

m
b

er
 o

f
u

ti
lit

y-
lis

ts
(M

ill
io

n
s)

Minimum Utility Threshold (%)

Chess

use_UTLBuf not_Use_UTLBuf

(c)

0

100

200

300

400

500

600

0.1 0.08 0.06 0.04 0.02 0.01

N
u

m
b

er
 o

f
u

ti
lit

y-
lis

ts
(M

ill
io

n
s)

Minimum Utility Threshold (%)

Foodmart

use_UTLBuf not_Use_UTLBuf

(d)

0

5

10

15

20

25

30

35

40

4 3.5 3 2.5 2 1.5 1

N
u

m
b

er
 o

f
u

ti
lit

y-
lis

ts
(M

ill
io

n
s)

Minimum Utility Threshold (%)

Kosarak

use_UTLBuf not_Use_UTLBuf

(e)

0

2

4

6

8

10

12

0.1 0.08 0.06 0.04 0.02 0.01

N
u

m
b

er
 o

f
u

ti
lit

y-
lis

ts
(M

ill
io

n
s)

Minimum Utility Threshold (%)

Retail

use_UTLBuf not_Use_UTLBuf

(f)

Fig. 9 Comparison of the number of utility-lists created by allocating new memory when using or not using the
utility-list buffer structure

As presented in this figure, employing the designed utility-list buffer structure can greatly reduce
the number of utility-lists created by allocating new memory during the mining process, especially for
dense and long transaction datasets such as Chess. When the minsup threshold is set to small values,

18 Q-H. Duong et al.

the difference in terms of number of generated utility-lists becomes clear and large. The reason is that
for these datasets, there are many extensions for each considered itemsets. Hence, the number of utility-
lists generated during the process of itemset extension is huge if the traditional utility-list structure is
used. Fortunately, using the proposed utility-list buffer reduces the need to allocate new memory for
utility-lists during the search by reusing the memory used for storing previously generated utility-lists.

5.5 Scalability evaluation

Lastly, we performed experiments to evaluate the scalability of the proposed algorithm on a synthetic
dataset named T10I4NXKDYK, where the number of transactions Y and the number of items X were
varied. The dataset was generated using the IBM Quest synthetic data generator [2], where the numbers
after T, I, N, and D represent the average transaction size, average size of maximal potentially frequent
patterns, number of items, and the number of transactions, respectively. For this experiment, the minutil

threshold was set to 0.05%, the number of items was varied from 2K to 10K, and the number of
transactions was varied from 100K to 500K. Results are shown in Fig. 10(a) and Fig. 10(b), respectively.
As can be observed from these figures, the proposed algorithm has almost constant scalability when the
number of items increases, and it has linear scalability when the number of transactions increases.

0

20

40

60

80

100

120

140

2K 4K 6K 8K 10K

R
u

n
ti

m
e

(s
)

Number of distinct items

T10I4NXKD100K

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(a) Varied number of items

0

20

40

60

80

100

120

140

160

100K 200K 300K 400K 500K

R
u

n
ti

m
e

(s
)

Number of transactions

T10I4DXK

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(b) Varied number of transactions

Fig. 10 Scalability of the compared algorithms for different parameter values

6 Conclusion

In recent years, utility-list-based algorithms for discovering high utility itemsets have become widely
used because of their efficiency and simplicity to implement. However, it can be observed that the
amount of memory required by utility-lists can be quite large. To address this issue, this paper has
presented a novel structure named utility-list buffer for reusing the memory for storing utility-lists. We
have proposed an algorithm for high utility itemset mining named ULB-Miner. This algorithm integrates
the utility-list buffer structure with an efficient method for constructing utility-list segments to reduce
the time and the memory usage required for mining high utility itemsets.

We have performed an extensive experimental study on six real-life datasets to compare the per-
formance of ULB-Miner with the state-of-the-art algorithms HUI-Miner and FHM, which both employ
traditional utility-lists. Our results show that the proposed utility-list buffer structure and its construc-
tion method increase the effectiveness of HUI mining both in terms of execution time and memory
consumption. The peak memory usage was reduced by up to six times, and execution times was reduced
by up to 10 times. In addition to this, the important contribution of this work is that the proposed
utility-list buffer structure can be adapted to other utility-list-based algorithms for variations of the
HUI mining problem, including closed high utility itemset mining, top-k high utility itemset mining,

Efficient High Utility Itemset Mining using Buffered Utility-Lists 19

high utility itemset mining in uncertain databases, high utility sequential pattern mining, and on-shelf
high utility itemset mining.

Since data stream has become widespread in many fields such as sensor network monitoring, trade
management, and medical data analysis, methods for mining patterns in data stream have attracted a
lot of attention in recent years. In future work, we plan to adapt the proposed utility-list buffer structure
for streams, and investigate other optimization approaches involving itemset mining for mining patterns
in data streams.

Acknowledgements

This research was partly supported by the Youth 1000 funding of Prof. Philippe Fournier-Viger and
partly funded by the NTNU through the MUSED project.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. VLDB pp. 487–499 (1994)
2. Agrawal, R., Srikant, R.: Quest Synthetic Data Generator. Available at. (<http://www.almaden.ibm.com/cs/

quest/syndata.html>) (1994)
3. Ahmed, C., Tanbeer, S., Jeong, B.S., Lee, Y.K.: Efficient tree structures for high utility pattern mining in incre-

mental databases. IEEE Transactions on Knowledge and Data Engineering 21(12), 1708–1721 (2009)
4. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: Efficient mining of utility-based web path traversal patterns. In:

Proceedings of the 11th International Conference on Advanced Communication Technology - Volume 3, ICACT’09,
pp. 2215–2218 (2009)

5. Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Third IEEE International Conference on Data
Mining (ICDM 2003), pp. 19–26 (2003)

6. Dam, T.L., Li, K., Fournier-Viger, P., Duong, Q.H.: An efficient algorithm for mining top-rank-k frequent patterns.
Applied Intelligence 45(1), 96–111 (2016)

7. Dam, T.L., Li, K., Fournier-Viger, P., Duong, Q.H.: CLS-Miner: efficient and effective closed high utility itemset
mining. Frontiers of Computer Science pp. 1–27 (2017)

8. Dam, T.L., Li, K., Fournier-Viger, P., Duong, Q.H.: An efficient algorithm for mining top-k on-shelf high utility
itemsets. Knowledge and Information Systems pp. 1–35 (2017)

9. Duong, Q.H., Liao, B., Fournier-Viger, P., Dam, T.L.: An efficient algorithm for mining the top-k high utility
itemsets, using novel threshold raising and pruning strategies. Knowledge-Based Systems 104, 106–122 (2016)

10. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: A java open-source
pattern mining library. Journal of Machine Learning Research 15, 3569–3573 (2014)

11. Fournier-Viger, P., Lin, J.C.W., Duong, Q.H., Dam, T.L.: PHM: Mining Periodic High-Utility Itemsets. In: Lecture
Notes in Computer Science, ICDM 2016, pp. 64–79. Springer (2016)

12. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.: FHM: Faster High-Utility Itemset Mining Using Estimated
Utility Co-occurrence Pruning. In: Foundations of Intelligent Systems, Lecture Notes in Computer Science, vol.
8502, pp. 83–92. Springer International Publishing (2014)

13. Fournier-Viger, P., Zida, S.: FOSHU: Faster On-shelf High Utility Itemset Mining – with or Without Negative Unit
Profit. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC ’15, pp. 857–864 (2015)

14. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using fp-trees. IEEE Transactions on Knowledge
and Data Engineering 17(10), 1347–1362 (2005)

15. Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns without minimum support. In: Data
Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, pp. 211–218 (2002)

16. Han, J.W., Pei, J., Yin, Y.W.: Mining frequent patterns without candidate generation: A frequent-pattern tree
approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004)

17. Joshi, M., Bhalodia, D.: Mining High Utility Itemset Using Graphics Processor, pp. 665–674. Springer International
Publishing, Intelligent Systems Technologies and Applications ISTA, 2016 (2016)

18. Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Systems with Applications 42(5),
2371 – 2381 (2015)

19. Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach for mining high utility itemsets.
Knowledge and Information Systems 38(1), 85–107 (2014)

20. Lee, S., Park, J.S.: Top-k high utility itemset mining based on utility-list structures. In: 2016 International Con-
ference on Big Data and Smart Computing (BigComp), pp. 101–108 (2016)

21. Lin, J.C.W., Gan, W., Fournier-Viger, P., Hong, T.P., Tseng, V.S.: Efficient algorithms for mining high-utility
itemsets in uncertain databases. Knowledge-Based Systems 96, 171 – 187 (2016)

22. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM
International Conference on Information and Knowledge Management, CIKM ’12, pp. 55–64 (2012)

23. Liu, Y., Liao, W.k., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: Advances
in Knowledge Discovery and Data Mining, pp. 689–695. Springer Berlin Heidelberg (2005)

24. Sahoo, J., Das, A.K., Goswami, A.: An efficient fast algorithm for discovering closed+ high utility itemsets. Applied
Intelligence pp. 1–31 (2016)

25. Song, W., Liu, Y., Li, J.: BAHUI: Fast and Memory Efficient Mining of High Utility Itemsets Based on Bitmap.
International Journal of Data Warehousing and Mining 10(1), 1–15 (2014)

26. Song, W., Liu, Y., Li, J.: Mining high utility itemsets by dynamically pruning the tree structure. Applied Intelligence
40(1), 29–43 (2014)

(<http://www.almaden.ibm.com/cs/quest/syndata.html>)
(<http://www.almaden.ibm.com/cs/quest/syndata.html>)

20 Q-H. Duong et al.

27. Song, W., Zhang, Z., Li, J.: A high utility itemset mining algorithm based on subsume index. Knowledge and
Information Systems 49(1), 315–340 (2016)

28. Thilagu, M., Nadarajan, R.: Efficiently mining of effective web traversal patterns with average utility. Procedia
Technology 6, 444 – 451 (2012)

29. Tseng, V., Shie, B.E., Wu, C.W., Yu, P.: Efficient algorithms for mining high utility itemsets from transactional
databases. IEEE Transactions on Knowledge and Data Engineering 25(8), 1772–1786 (2013)

30. Tseng, V., Wu, C.W., Fournier-Viger, P., Yu, P.: Efficient algorithms for mining top-k high utility itemsets. IEEE
Transactions on Knowledge and Data Engineering 28(1), 54–67 (2016)

31. Wang, J.Z., Huang, J.L., Chen, Y.C.: On efficiently mining high utility sequential patterns. Knowledge and
Information Systems 49(2), 597–627 (2016)

32. Wu, C.W., Fournier-Viger, P., Gu, J.Y., Tseng, V.S.: Mining closed+ high utility itemsets without candidate
generation. In: 2015 Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 187–194
(2015)

33. Wu, C.W., Shie, B.E., Tseng, V.S., Yu, P.S.: Mining top-k high utility itemsets. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pp. 78–86 (2012)

34. Y-C, L., C-P, C., VS, T.: Mining differential top-k co-expression patterns from time course comparative gene
expression datasets. BMC Bioinformatics 14(230) (2013)

35. Yun, U., Ryang, H., Lee, G., Fujita, H.: An efficient algorithm for mining high utility patterns from incremental
databases with one database scan. Knowledge-Based Systems pp. 1–19 (2017)

36. Yun, U., Ryang, H., Ryu, K.H.: High utility itemset mining with techniques for reducing overestimated utilities
and pruning candidates. Expert Systems with Applications 41(8), 3861 – 3878 (2014)

37. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 326–335 (2003)

	1 Introduction
	2 Related work
	3 Preliminaries and problem definition
	4 The proposed utility-list buffer method
	5 Performance study
	6 Conclusion

