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Abstract

Single-person human pose estimation facilitates mark-

erless movement analysis in sports, as well as in clin-

ical applications. Still, state-of-the-art models for hu-

man pose estimation generally do not meet the require-

ments of real-life applications. The proliferation of deep

learning techniques has resulted in the development

of many advanced approaches. However, with the pro-

gresses in the field, more complex and inefficient models

have also been introduced, which have caused tremen-

dous increases in computational demands. To cope with

these complexity and inefficiency challenges, we pro-

pose a novel convolutional neural network architecture,

called EfficientPose, which exploits recently proposed

EfficientNets in order to deliver efficient and scalable

single-person pose estimation. EfficientPose is a fam-
ily of models harnessing an effective multi-scale feature

extractor and computationally efficient detection blocks

using mobile inverted bottleneck convolutions, while at

the same time ensuring that the precision of the pose

configurations is still improved. Due to its low com-

plexity and efficiency, EfficientPose enables real-world
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applications on edge devices by limiting the memory

footprint and computational cost. The results from our

experiments, using the challenging MPII single-person

benchmark, show that the proposed EfficientPose mod-

els substantially outperform the widely-used OpenPose

model both in terms of accuracy and computational effi-

ciency. In particular, our top-performing model achieves

state-of-the-art accuracy on single-person MPII, with

low-complexity ConvNets.

Keywords Human pose estimation · Model scalabil-

ity · High precision · Computational efficiency · Openly

available

1 Introduction

Single-person human pose estimation (HPE) refers to

the computer vision task of localizing human skeletal

keypoints of a person from an image or video frames.

Single-person HPE has many real-world applications,

ranging from outdoor activity recognition and computer

animation to clinical assessments of motor repertoire

and skill practice among professional athletes. The pro-

liferation of deep convolutional neural networks (Con-

vNets) has advanced HPE and further widen its ap-

plication areas. ConvNet-based HPE with its increas-

ingly complex network structures, combined with trans-

fer learning, is a very challenging task. However, the

availability of high-performing ImageNet [9] backbones,

together with large tailor-made datasets, such as MPII

for 2D pose estimation [1], has facilitated the develop-

ment of new improved methods to address the chal-

lenges.

An increasing trend in computer vision has driven

towards more efficient models [11,38,46]. Recently, Effi-

cientNet [47] was released as a scalable ConvNet archi-
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tecture, setting benchmark record on ImageNet with a

more computationally efficient architecture. However,

within human pose estimation, there is still a lack of

architectures that are both accurate and computation-

ally efficient at the same time. In general, current state-

of-the-art architectures are computationally expensive

and highly complex, thus making them hard to repli-

cate, cumbersome to optimize, and impractical to em-

bed into real-world applications.

The OpenPose network [6] (OpenPose for short) has

been one of the most applied HPE methods in real-

world applications. It is also the first open-source real-

time system for HPE. OpenPose was originally devel-

oped for multi-person HPE, but has in recent years been

frequently applied to various single-person applications

within clinical research and sport sciences [15, 32, 34].

The main drawback with OpenPose is that the level

of detail in keypoint estimates is limited due to its

low-resolution outputs. This makes OpenPose less suit-

able for precision-demanding applications, such as elite

sports and medical assessments, which all depend on

high degree of precision in the assessment of movement

kinematics. Moreover, by spending 160 billion floating-

point operations (GFLOPs) per inference, OpenPose

is considered highly inefficient. Despite these issues,

OpenPose seems to remain a commonly applied net-

work for single-person HPE performing markerless mo-

tion capture from which critical decisions are based

upon [2, 56].

In this paper, we stress the lack of publicly available

methods for single-person HPE that are both compu-

tationally efficient and effective in terms of estimation

precision. To this end, we exploit recent advances in

ConvNets and propose an improved approach called Ef-

ficientPose. Our main idea is to modify OpenPose into

a family of scalable ConvNets for high-precision and

computationally efficient single-person pose estimation

from 2D images. To assess the performance of our ap-

proach, we perform two separate comparative studies.

First, we evaluate the EfficientPose model by compar-

ing it against the original OpenPose model on single-

person HPE. Second, we compare it against the current

state-of-the-art single-person HPE methods on the offi-

cial MPII challenge, focusing on accuracy as a function

of the number of parameters. The proposed Efficient-

Pose models aim to elicit high computational efficiency,

while bridging the gap in availability of high-precision

HPE networks.

In summary, the main contributions of this paper

are the following:

– We propose an improvement of OpenPose, called

EfficientPose, that can overcome the shortcomings

of the popular OpenPose network on single-person

HPE with improved level of precision, rapid conver-

gence during optimization, low number of parame-

ters, and low computational cost.

– With EfficientPose, we suggest an approach provid-

ing scalable models that can suit various demands,

enabling a trade-off between accuracy and efficiency

across diverse application constraints and limited

computational budgets.

– We propose a new way to incorporate mobile Con-

vNet components, which can address the need for

computationally efficient architectures for HPE, thus

facilitating real-time HPE on the edge.

– We perform an extensive comparative study to eval-

uate our approach. Our experimental results show

that the proposed method achieves significantly higher

efficiency and accuracy in comparison to the base-

line method, OpenPose. In addition, compared to

existing state-of-the-art methods, it achieves com-

petitive results, with a much smaller number of pa-

rameters.

The remainder of this paper is organized as fol-

lows: Section 2 describes the architecture of OpenPose

and highlights research which it can be improved from.

Based on this, Section 3 presents our proposed ConvNet-

based approach, EfficientPose. Section 4 describes our

experiments and presents the results from comparing

EfficientPose with OpenPose and other existing approaches.

Section 5 discusses our findings and suggests potential

future studies. Finally, Section 6 summarizes and con-

cludes the paper.

For the sake of reproducibility, we will make the Ef-

ficientPose models available at https://github.com/

daniegr/EfficientPose.

2 Related work

The proliferation of ConvNets for HPE following the

success of DeepPose [54] has set the path for accurate

HPE. With OpenPose, Cao et al. [6] made HPE avail-

able to the public. As depicted by Figure 1, OpenPose

comprises a multi-stage architecture performing a se-

ries of detection passes. Provided an input image of

368 × 368 pixels, OpenPose utilizes an ImageNet pre-

trained VGG-19 backbone [41] to extract basic features

(step 1 in Figure 1). The features are supplied to a

DenseNet-inspired detection block (step 2) arranged

as five dense blocks [23], each containing three 3 × 3

convolutions with PReLU activations [20]. The detec-

tion blocks are stacked in a sequence. First, four passes

(step 3a-d in Figure 1) of part affinity fields [7] map

the associations between body keypoints. Subsequently,

two detection passes (step 3e and 3f) predict keypoint
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heatmaps [53] to obtain refined keypoint coordinate es-

timates. In terms of level of detail in the keypoint coor-

dinates, OpenPose is restricted by its output resolution

of 46× 46 pixels.

The OpenPose architecture can be improved by re-

cent advancements in ConvNets, as follows: First, au-

tomated network architecture search has found back-

bones [47, 48, 62] that are more precise and efficient in

image classification than VGG and ResNets [21,41]. In

particular, Tan and Le [47] proposed compound model

scaling to balance the image resolution, width (number

of network channels), and depth (number of network

layers). This resulted in scalable convolutional neural

networks, called EfficientNets [47], with which the main

goal was to provide lightweight models with a sensi-

ble trade-off between model complexity and accuracy

across various computational budgets. For each model

variant EfficientNet-Bφ, from the least computationally

expensive one being EfficientNet-B0 to the most accu-

rate model, EfficientNet-B7 (φ ∈ [0, 7] ∈ Z≥), the total

number of FLOPs increases by a factor of 2, given by

(α · β2 · γ2)φ ≈ 2φ. (1)

Here, α, β and γ denote the coefficients for depth,

width, and resolution, respectively, and are set as

α = 1.2, β = 1.1, γ = 1.15. (2)

Second, parallel multi-scale feature extraction has im-

proved the precision levels in HPE [25, 33, 44, 57], em-

phasizing both high spatial resolution and low-scale se-

mantics. However, existing multi-scale approaches in

HPE are computationally expensive, both due to their

large size and high computational requirements. For
example, a typical multi-scale HPE approach has of-

ten a size of 16 − 58 million parameters and requires

10 − 128 GFLOPS [8, 33, 36, 44, 49, 57, 61]. To cope

with this, we propose cross-resolution features, oper-

ating on high- and low-resolution input images, to inte-

grate features from multiple abstraction levels with low

overhead in network complexity and with high com-

putational efficiency. Existing works on Siamese Con-

vNets have been promising in utilizing parallel net-

work backbones [17,18]. Third, mobile inverted bottle-

neck convolution (MBConv) [38] with built-in squeeze-

and-excitation (SE) [22] and Swish activation [37] in-

tegrated in EfficientNets has proven more accurate in

image classification tasks [47,48] than regular convolu-

tions [21, 23, 45], while substantially reducing the com-

putational costs [47]. The efficiency of MBConv mod-

ules stem from the depthwise convolutions operating

in a channel-wise manner [40]. With this approach, it

is possible to reduce the computational cost by a fac-

tor proportional to the number of channels [48]. Hence,

by replacing the regular 3 × 3 convolutions with up to

384 input channels in the detection blocks of OpenPose

with MBConvs, we can obtain more computationally

efficient detection blocks. Further, SE selectively em-

phasizes discriminative image features [22], which may

reduce the required number of convolutions and detec-

tion passes by providing a global perspective on the

estimation task at all times. Using MBConv with SE

may have the potential to decrease the number of dense

blocks in OpenPose. Fourth, transposed convolutions

with bilinear kernel [30] scale up the low-resolution fea-

ture maps, thus enabling a higher level of detail in the

output confidence maps.

By building upon the work of Tan and Le [47], we

present a pool of scalable models for single-person HPE

that is able to overcome the shortcomings of the com-

monly adopted OpenPose architecture. This enables trad-

ing off between accuracy and efficiency across different

computational budgets in real-world applications. The

main advantage of this is that we can use ConvNets that

are small and computationally efficient enough to run

on edge devices with little memory and low processing

power, which is impossible with OpenPose.

3 The EfficientPose approach

In this section, we explain in details the EfficientPose

approach. This includes a detailed description of the Ef-

ficientPose architecture in light of the OpenPose archi-

tecture, and a brief introduction to the proposed vari-

ants of EfficientPose.

3.1 Architecture

Figure 1 and Figure 2 depict the architectures of Open-

Pose and EfficientPose, respectively. As can be observed

in these two figures, although being based on Open-

Pose, the EfficientPose architecture is different from the

OpenPose architecture in several aspects, including 1)

both high and low-resolution input images, 2) scalable

EfficientNet backbones, 3) cross-resolution features, 4)

and 5) scalable Mobile DenseNet detection blocks in

fewer detection passes, and 6) bilinear upscaling. For a

more thorough component analysis of EfficientPose, see

Appendix A.

The input of the network consists of high and low-

resolution images (1a and 1b in Figure 2). To get the

low-resolution image, the high-resolution image is down-

sampled into half of its pixel height and width, through

an initial average pooling layer.

The feature extractor of EfficientPose is composed

of the initial blocks of EfficientNets [47] pretrained on
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Fig. 1 OpenPose architecture utilizing 1) VGG-19 feature extractor, and 2) 4+2 passes of detection blocks performing 4+2
passes of estimating part affinity fields (3a-d) and confidence maps (3e and 3f)

Fig. 2 Proposed architecture comprising 1a) high-resolution and 1b) low-resolution inputs, 2a) high-level and 2b) low-level Ef-
ficientNet backbones combined into 3) cross-resolution features, 4) Mobile DenseNet detection blocks, 1+2 passes for estimation
of part affinity fields (5a) and confidence maps (5b and 5c), and 6) bilinear upscaling

ImageNet (step 2a and 2b in Figure 2). High-level se-

mantic information is obtained from the high-resolution

image using the initial three blocks of a high-scale Effi-

cientNet with φ ∈ [2, 7] (see Equation 1), outputting C

feature maps (2a in Figure 2). Low-level local informa-

tion is extracted from the low-resolution image by the

first two blocks of a lower-scale EfficientNet-backbone

(2b in Figure 2) in the range φ ∈ [0, 3]. Table 1 provides

an overview of the composition of EfficientNet back-

bones, from low-scale B0 to high-scale B7. The first

block of EfficientNets utilizes the MBConvs shown in

Figure 3a and 3b, whereas the second and third blocks

comprise the MBConv layers in Figure 3c and 3d.

The features generated by the low-level and high-

level EfficientNet backbones are concatenated to yield

cross-resolution features (step 3 in Figure 2). This en-

ables the EfficientPose architecture to selectively em-

phasize important local factors from the image of inter-
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Table 1 The architecture of the initial three blocks of relevant EfficientNet backbones. For Conv(K × K,N, S), K × K
denotes filter size, N is number of output feature maps, and S is stride. BN denotes batch normalization. I defines input size,
corresponding with image resolution on ImageNet, whereas αφ refers to the depth factor as determined by Equation 1

Block B0 B1 B2 B3 B4 B5 B7

1
Conv(3× 3, 32, 2)

BN
Swish

Conv(3× 3, 40, 2)
BN
Swish

Conv(3× 3, 48, 2)
BN
Swish

Conv(3× 3, 64, 2)
BN
Swish

MBConv1
(3× 3, 16, 1)

MBConv1
(3× 3, 24, 1)

MBConv1
(3× 3, 32, 1)

− MBConv1∗

(3× 3, 16, 1)
MBConv1∗

(3× 3, 24, 1)

[
MBConv1∗

(3× 3, 24, 1)

]
× 2

[
MBConv1∗

(3× 3, 32, 1)

]
× 3

2
MBConv6

(3× 3, 24, 2)
MBConv6

(3× 3, 32, 2)
MBConv6

(3× 3, 40, 2)
MBConv6

(3× 3, 48, 2)
MBConv6∗

(3× 3, 24, 1)

[
MBConv6∗

(3× 3, 24, 1)

]
× 2

[
MBConv6∗

(3× 3, 32, 1)

]
× 2

[
MBConv6∗

(3× 3, 32, 1)

]
× 3

[
MBConv6∗

(3× 3, 40, 1)

]
× 4

[
MBConv6∗

(3× 3, 48, 1)

]
× 6

3
MBConv6

(5× 5, 40, 2)
MBConv6

(5× 5, 48, 2)
MBConv6

(5× 5, 56, 2)
MBConv6

(5× 5, 64, 2)
MBConv6

(5× 5, 80, 2)
MBConv6∗

(5× 5, 40, 1)

[
MBConv6∗

(5× 5, 40, 1)

]
× 2

[
MBConv6∗

(5× 5, 48, 1)

]
× 2

[
MBConv6∗

(5× 5, 56, 1)

]
× 3

[
MBConv6∗

(5× 5, 64, 1)

]
× 4

[
MBConv6∗

(5× 5, 80, 1)

]
× 6

I 224× 224 240× 240 260× 260 300× 300 380× 380 456× 456 600× 600
C 40 48 56 64 80
αφ 1.20 = 1.0 1.21 = 1.2 1.22 = 1.4 1.23 = 1.7 1.24 = 2.1 1.25 = 2.5 1.27 = 3.6

Fig. 3 The composition of MBConvs. From left: a-d) MBConv(K×K,B, S) in EfficientNets performs depthwise convolution
with filter size K×K and stride S, and outputs B feature maps. MBConv∗ (b and d) extends regular MBConvs by including
dropout layer and skip connection. e) E-MBConv6(K × K,B, S) in Mobile DenseNets adjusts MBConv6 with E-swish
activation and number of feature maps in expansion phase as 6B. All MBConvs take as input M feature maps with spatial
height and width of h and w, respectively. R is the reduction ratio of SE
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est and the overall structures that guide high-quality

pose estimation. In this way, we enable an alternative

simultaneous handling of different features at multiple

abstraction levels.

From the extracted features, the desired keypoints

are localized through an iterative detection process, where

each detection pass performs supervised prediction of

output maps. Each detection pass comprises a detection

block and a single 1× 1 convolution for output predic-

tion. The detection blocks across all detection passes

elicit the same basic architecture, comprising Mobile

DenseNets (see step 4 in Figure 2). Data from Mobile

DenseNets are forwarded to subsequent layers of the

detection block using residual connections. The Mo-

bile DenseNet is inspired by DenseNets [23] supporting

reuse of features, avoiding redundant layers, and MB-

Conv with SE, thus enabling low memory footprint. In

our adaptation of the MBConv operation (E-MBConv6(K×
K,B, S) in Figure 3e), we consistently utilize the high-

est performing combination from [46], i.e., a kernel size

(K ×K) of 5× 5 and an expansion ratio of 6. We also

avoid downsampling (i.e., S = 1) and scale the width

of Mobile DenseNets by outputting number of channels

relative to the high-level backbone (B = C). We mod-

ify the original MBConv6 operation by incorporating

E-swish as activation function with β value of 1.25 [16].

This has a tendency to accelerate progression during

training compared to the regular Swish activation [37].

We also adjust the first 1× 1 convolution to generate a

number of feature maps relative to the output feature

maps B rather than the input channels M . This reduces

the memory consumption and computational latency

since B ≤ M , with C ≤ M ≤ 3C. With each Mobile

DenseNet consisting of three consecutive E-MBConv6

operations, the module outputs 3C feature maps.

EfficientPose performs detection in two rounds (step

5a-c in Figure 2). First, the overall pose of the person

is anticipated through a single pass of skeleton estima-

tion (5a). This aims to facilitate the detection of feasible

poses and to avoid confusion in case of several persons

being present in an image. Skeleton estimation is per-

formed utilizing part affinity fields as proposed in [7].

Following skeleton estimation, two detection passes are

performed to estimate heatmaps for keypoints of inter-

est. The former of these acts as a coarse detector (5b

in Figure 2), whereas the latter (5c in Figure 2) refines

localization to yield more accurate outputs.

Note that in OpenPose, the heatmaps of the final

detection pass are constrained to a low spatial resolu-

tion, which are incapable of achieving the amount of de-

tails that are normally inherent in the high-resolution

input [6]. To improve this limitation of OpenPose, a

series of three transposed convolutions performing bi-

linear upsampling are added for 8× upscaling of the

low-resolution heatmaps (step 6 in Figure 1). Thus, we

project the low-resolution output onto a space of higher

resolution in order to allow an increased level of detail.

To achieve the proper level of interpolation while oper-

ating efficiently, each transposed convolution increases

the map size by a factor of 2, using a stride of 2 with a

4× 4 kernel.

3.2 Variants

Following the same principle as suggested in the original

EfficientNet [47], we scale the EfficientPose network ar-

chitecture by adjusting the three main dimensions, i.e.,

input resolution, network width, and network depth,

using the coefficients of Equation 2. The results from

this scaling are five different architecture variants that

are given in Table 2, referred to as EfficientPose I to IV

and RT). As can be observed in this table, the input

resolution, defined by the spatial dimensions of the im-

age (H ×W ), is scaled utilizing the high and low-level

EfficientNet backbones that best match the resolution

of high and low-resolution inputs (see Table 1). Here,

the network width refers to the number of feature maps

that are generated by each E-MBConv6. As described

in Section 3.1, width scaling is achieved using the same

width as the high-level backbone (i.e., C). The scaling

of network depth is achieved in the number of Mobile

DenseNets (i.e., MD(C) in Table 2) in the detection

blocks. Also, this ensures that receptive fields across

different models and spatial resolutions have similar rel-

ative sizes. For each model variant, we select the num-

ber (D) of Mobile DenseNets that best approximates

the original depth factor αφ in the high-level Efficient-

Net backbone (Table 1). More specifically, the number

of Mobile DenseNets are determined by Equation 3,

rounding to the closest integer. In addition to Efficient-

Pose I to IV, the single-resolution model EfficientPose

RT is formed to match the scale of the smallest Ef-

ficientNet model, providing HPE in extremely low la-

tency applications.

D =
⌊
αφ + 0.5

⌋
(3)

3.3 Summary of proposed framework

As can be inferred from the discussion above, the Ef-

ficientPose framework comprises a family of five Con-

vNets (i.e., EfficientPose I-IV and RT) that are con-

structed by compound scaling [47]. With this, Efficient-

Pose exploits the advances in computationally efficient
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Table 2 Variants of EfficientPose obtained by scaling resolution, width, and depth. Mobile DenseNets MD(C) computes 3C
feature maps. P and Q denotes the number of 2D part affinity fields and confidence maps, respectively. ConvT (K ×K,O, S)
defines transposed convolutions with kernel size K ×K, output maps O, and stride S

Stage EfficientPose RT EfficientPose I EfficientPose II EfficientPose III EfficientPose IV
High-resolution input 224× 224 256× 256 368× 368 480× 480 600× 600
High-level backbone B0 (Block 1-3) B2 (Block 1-3) B4 (Block 1-3) B5 (Block 1-3) B7 (Block 1-3)
Low-resolution input − 128× 128 184× 184 240× 240 300× 300
Low-level backbone − B0 (Block 1-2) B0 (Block 1-2) B1 (Block 1-2) B3 (Block 1-2)

Detection block MD(40) MD(48) [MD(56)]× 2 [MD(64)]× 3 [MD(80)]× 4
Prediction pass 1 Conv(1× 1, 2P, 1)

Prediction pass 2-3 Conv(1× 1, Q, 1)
Upscaling [ConvT (4× 4, Q, 2)]× 3

ConvNets for image recognition to construct a scal-

able network architecture that is capable of performing

single-person HPE across different computational con-

straints. More specifically, EfficientPose utilizes both

high and low-resolution images to provide two separate

viewpoints that are processed independently through

high and low-level backbones, respectively. The result-

ing features are concatenated to produce cross-resolution

features, enabling selective emphasis on global and lo-

cal image information. The detection stage employs a

scalable mobile detection block to perform detection in

three passes. The first pass estimates person skeletons

through part affinity fields [7] to yield feasible pose con-

figurations. The second and third passes estimate key-

point locations with progressive improvement in preci-

sion. Finally, the low-resolution prediction of the third

pass is scaled up through bilinear interpolation to fur-

ther improve the precision level.

4 Experiments and results

4.1 Experimental setup

We evaluate EfficientPose and compare it with Open-

Pose on the single-person MPII dataset [1], containing

images of mainly healthy adults in a wide range of dif-

ferent outdoor and indoor everyday activities and situ-

ations, such as sports, fitness exercises, housekeeping

activities, and public events (Figure 4a). All models

are optimized on MPII using stochastic gradient de-

scent (SGD) on the mean squared error (MSE) of the

model predictions relative to the target coordinates.

More specifically, we applied SGD with momentum and

cyclical learning rates (see Appendix B for more infor-

mation and further details on the optimization proce-

dure). The learning rate is bounded according to the

model-specific value of which it does not diverge dur-

ing the first cycle (λmax) and λmin = λmax
3000 . The model

backbones (i.e., VGG-19 for OpenPose, and Efficient-

Nets for EfficientPose) are initialized with pretrained

ImageNet weights, whereas the remaining layers employ

random weight initialization. Supported by our experi-

ments on training efficiency (see Appendix A), we train

the models for 200 epochs, except for OpenPose, which

requires a higher number of epochs to converge (see

Figure 5 and Table 5).

The training and validation portion of the dataset

comprises 29K images, and by adopting a standard ran-

dom split, we obtain 26K and 3K instances for training

and validation, respectively. We augment the images

during training using random horizontal flipping, scal-

ing (0.75−1.25), and rotation (+/− 45 degrees). We uti-

lize a batch size of 20, except for the high-resolutional

EfficientPose III and IV, which both require a smaller

batch size to fit into the GPU memory, 10 and 5, respec-

tively. The experiments are carried out on an NVIDIA

Tesla V100 GPU.

The evaluation of model accuracy is performed us-

ing the PCKh@τ metric. PCKh@τ is defined as the

fraction of predictions residing within a distance τ l from

the ground truth location (see Figure 4b). l is 60%

of the diagonal d of the head bounding box, and τ

the accepted percentage of misjudgment relative to l.

PCKh@50 is the standard performance metric for MPII

but we also include the stricter PCKh@10 metric for

assessing models’ ability to yield highly precise key-

point estimates. As commonly done in the field, the

final model predictions are obtained by applying multi-

scale testing procedure [44, 49, 57]. Due to the restric-

tion in the number of attempts for official evaluation on

MPII, we only used the test metrics on the OpenPose

baseline, and the most efficient and most accurate mod-

els, EfficientPose RT and EfficientPose IV, respectively.

To measure model efficiency, both FLOPs and number

of parameters are supplied.

4.2 Results

Table 3 shows the results of our experiments with Open-

Pose and EfficientPose on the MPII validation dataset.
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Fig. 4 The MPII single-person pose estimation challenge. From left: a) 10 images from the MPII test set displaying some
of the variation and difficulties inherent in this challenge. b) The evaluation metrics PCKh@50 and PCKh@10 define the
average of predictions within τl distance (l = 0.6d) from the ground-truth location (e.g., left elbow), with τ being 50% and
10%, respectively

As can be observed in this table, EfficientPose con-

sistently outperformed OpenPose with regards to effi-

ciency, with 2.2−184× reduction in FLOPs and 4−56×
fewer number of parameters. In addition to this, all the

model variants of EfficientPose achieved better high-

precision localization, with a 0.8− 12.9% gain in

PCKh@10 as compared to OpenPose. In terms of PCKh@50,

the high-end models, i.e., EfficientPose II-IV, managed

to gain 0.6−2.2% improvements against OpenPose. As

Table 4 depicts, EfficientPose IV achieved state-of-the-

art results (a mean PCKh@50 of 91.2) on the official

MPII test dataset for models with number of parame-

ters of a size less than 10 million.

Compared to OpenPose, EffcientPose also exhibited

rapid convergence during training. We optimized both

approaches on similar input resolution, which defaults

to 368× 368 for OpenPose, corresponding to Efficient-

Pose II. The training graph shown in Figure 5 demon-

strates that EfficientPose converges early, whereas Open-

Pose requires up to 400 epochs before achieving proper

convergence. Nevertheless, OpenPose benefited from this

prolonged training in terms of precision, with a 2.6%

improvement in PCKh@50 during the final 200 epochs,

whereas EfficientPose II had a minor gain of 0.4% (see

Table 5).

5 Discussion

In this section, we discuss several aspects of our findings

and possible avenues for further research.

5.1 Improvements over OpenPose

The precision of HPE methods is a key success fac-

tor for analyses of movement kinematics, like segment

positions and joint angles, for assessment of sport per-

formance in athletes, or motor disabilities in patients.

Facilitated by cross-resolution features and upscaling

of output (see Appendix A), EfficientPose achieved a

higher precision than OpenPose [6], with a 57% rela-

tive improvement in PCKh@10 on single-person MPII

(Table 3). What this means is that the EfficientPose

architecture is generally more suitable in performing

precision-demanding single-person HPE applications, like

medical assessments and elite sports, than OpenPose.

Another aspect to have in mind is that, for some ap-

plications (e.g., exercise games and baby monitors), we

might be more interested in the latency of the system

and its ability to respond quickly. Hence, the degree of

correctness in keypoint predictions might be less cru-

cial. In such scenarios, with applications that demand

high-speed predictions, the 460K parameter model, Ef-

ficientPose RT, consuming less than one GFLOP, would

be suitable. Nevertheless, it still manages to provide

higher precision level than current approaches in the

high-speed regime, e.g., [5, 50]. Further, the scalability

of EfficientPose enables flexibility in various situations

and across different types of hardware, whereas Open-

Pose suffers from its large number of parameters and

computational costs (FLOPs).

5.2 Strengths of the EfficientPose approach

The use of MBConv in HPE is to the best of our knowl-

edge an unexplored research area. This has also been

partly our main motivation for exploring the use of
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Table 3 Performance of EfficientPose compared to OpenPose on the MPII validation dataset, as evaluated by efficiency
(number of parameters and FLOPs, and relative reduction in parameters and FLOPs compared to OpenPose) and accuracy
(mean PCKh@50 and mean PCKh@10)

Model Parameters Parameter reduction FLOPs FLOP reduction PCKh@50 PCKh@10

OpenPose [6] 25.94M 1× 160.36G 1× 87.60 22.76
EfficientPose RT 0.46M 56× 0.87G 184× 82.88 23.56
EfficientPose I 0.72M 36× 1.67G 96× 85.18 26.49
EfficientPose II 1.73M 15× 7.70G 21× 88.18 30.17
EfficientPose III 3.23M 8.0× 23.35G 6.9× 89.51 30.90
EfficientPose IV 6.56M 4.0× 72.89G 2.2× 89.75 35.63

Table 4 State-of-the-art results in PCKh@50 (both for individual body parts and overall mean value) on the official MPII
test dataset [1] compared to the number of parameters

Model Parameters Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Pishchulin et al., ICCV’13 [35] − 74.3 49.0 40.8 32.1 36.5 34.4 35.2 44.1
Tompson et al., NIPS’14 [53] − 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
Lifshitz et al., ECCV’16 [28] 76M 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Tang et al., BMVC’18 [50] 10M 97.4 96.2 91.8 87.3 90.0 87.0 83.3 90.8
Newell et al., ECCV’16 [33] 26M 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Zhang et al., CVPR’19 [60] 3M 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1
Bulat et al., FG’20 [5] 9M 98.5 96.4 91.5 87.2 90.7 86.9 83.6 91.1
Yang et al., ICCV’17 [57] 27M 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Tang et al., ECCV’18 [49] 16M 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
Sun et al., CVPR’19 [44] 29M 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Zhang et al., arXiv’19 [61] 24M 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5

OpenPose [6] 25.94M 97.7 94.7 89.5 84.7 88.4 83.6 79.3 88.8
EfficientPose RT 0.46M 97.0 93.3 85.0 79.2 85.9 77.0 71.0 84.8
EfficientPose IV 6.56M 98.2 96.0 91.7 87.9 90.3 87.5 83.9 91.2

Fig. 5 The progression of the mean error of EfficientPose II and OpenPose on the MPII validation set during the course of
training
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Table 5 Model accuracy on the MPII validation dataset in relation to the number of training epochs

Model Epochs PCKh@50

OpenPose [6] 100 80.47
OpenPose [6] 200 85.00
OpenPose [6] 400 87.60
EfficientPose II 100 87.05
EfficientPose II 200 88.18
EfficientPose II 400 88.56

MBConv in our EfficientPose approach, recognizing its

success in image classification [47]. Our experimental

results showed that EfficientPose approached state-of-

the-art performance on the single-person MPII bench-

mark despite a large reduction in the number of param-

eters (Table 4). This means that the parameter-efficient

MBConvs provide value in HPE as with other computer

vision tasks, such as image classification and object de-

tection. This, in turns, makes MBConv a very suitable

component for HPE networks. For this reason, it would

be interesting to investigate the effect of combining it

with other novel HPE architectures, such as Hourglass

and HRNet [33,44].

Further, the use of EfficientNet as a backbone, and

the proposed cross-resolution feature extractor combin-

ing several EfficientNets for improved handling of basic

features, are also interesting avenues to explore further.

From the present study, it is reasonable to assume that

EfficientNets could replace commonly used backbones

for HPE, such as VGG and ResNets, which would re-

duce the computational overheads associated with these

approaches [21, 41]. Also, a cross-resolution feature ex-

tractor could be useful for precision-demanding applica-

tions by providing an improved performance on PCKh@10

(Table 6).

We also observed that EfficientPose benefited from

compound model scaling across resolution, width and

depth. This benefit was reflected by the increasing im-

provements in PCKh@50 and PCKh@10 from Effi-

cientPose RT through EfficientPose I to EfficientPose

IV (Table 3). To conclude, we can exploit this to fur-

ther examine scalable ConvNets for HPE, and thus ob-

tain insights into appropriate sizes of HPE models (i.e.,

number of parameters), required number of FLOPs,

and obtainable precision levels.

In this study, OpenPose and EfficientPose were opti-

mized on the general-purpose MPII Human Pose Dataset.

For many applications (e.g., action recognition and video

surveillance) the variability in MPII may be sufficient

for directly applying the models on real-world prob-

lems. Nonetheless, there are other particular scenarios

that deviate from the setting addressed in this paper.

The MPII dataset comprises mostly healthy adults in

a variety of every day indoor and outdoor activities [1].

In less natural environments (e.g., movement science

laboratories or hospital settings) and with humans of

different anatomical proportions such as children and

infants [39], careful consideration must be taken. This

could include a need for fine-tuning of the MPII mod-

els on more specific datasets related to the problem at

hand. As mentioned earlier, our experiments showed

that EfficientPose was more easily trainable than Open-

Pose (Figure 5 and Table 5). This trait of rapid conver-

gence suggests that exploring the use of transfer learn-

ing on the EfficientPose models on other HPE data

could provide interesting results.

5.3 Avenues for further research

The precision level of pose configurations provided by

EfficientPose in the context of target applications is a

topic considered beyond the scope of this paper and

has for this reason been left for further studies. We can

establish the validity of EfficientPose for robust single-

person pose estimation already by examining whether

the movement information supplied by the proposed

framework is of sufficiently good quality for tackling

challenging problems, such as complex human behav-

ior recognition [12, 29]. To assess this, we could, for

example, compare the precision level of the keypoint

estimates supplied by EfficientPose with the movement

information provided by body-worn movement sensors.

Moreover, we could combine the proposed image-based

EfficientPose models with body-worn sensors, such as

inertial measurement unit (IMU) [27], or physiologi-

cal signals, like electrical cardiac activity and electrical

brain activity [14], to potentially achieve improved pre-

cision levels and an increased robustness. Our hypoth-

esis is that using body-worn sensors or physiological

instruments could be useful in situations where body

parts are extensively occluded, such that camera-based

recognition alone may not be sufficient for accurate pose

estimation.

Another path for further study and validation is

the capability of EfficientPose to perform multi-person

HPE. The improved computational efficiency of Effi-
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cientPose compared to OpenPose has the potential to

also benefit multi-person HPE. State-of-the-art meth-

ods for multi-person HPE are dominated by top-down

approaches, which require computation that is normally

proportional to the number of individuals in the im-

age [13, 59]. In crowded scenes, top-down approaches

are highly resource demanding. Similar to the original

OpenPose [6], and few other recent works on multi-

person HPE [19,24], EfficientPose incorporates part affin-

ity fields, which would enable the grouping of keypoints

into persons, and thus allowing to perform multi-person

HPE in a bottom-up manner. This would reduce the

computational overhead into a single network inference

per image, and hence yield more computationally effi-

cient multi-person HPE.

Further, it would be interesting to explore the ex-

tension of the proposed framework to perform 3D pose

estimation as part of our future research. In accordance

with recent studies, 3D pose projection from 2D im-

ages can be achieved, either by employing geometric

relationships between 2D keypoint positions and 3D hu-

man pose models [58], or by leveraging occlusion-robust

pose-maps (ORPM) in combination with annotated 3D

poses [3, 31].

The architecture of EfficientPose and the training

process can be improved in several ways. First, the op-

timization procedure (see Appendix B) was developed

for maximum PCKh@50 accuracy on OpenPose, and

simply reapplied to EfficientPose. Other optimization

procedures might be more appropriate, including alter-

native optimizers (e.g., Adam [26] and RMSProp [52]),

and other learning rate and sigma schedules.

Second, only the backbone of EfficientPose was pre-

trained on ImageNet. This could restrict the level of ac-

curacy on HPE because large-scale pretraining not only

supplies robust basic features but also higher-level se-

mantics. Thus, it would be valuable to assess the effect

of pretraining on model precision in HPE. We could,

for example, pretrain the majority of ConvNet layers

on ImageNet, and retrain these on HPE data.

Third, the proposed compound scaling of Efficient-

Pose assumes that the scaling relationship between res-

olution, width, and depth, as defined by Equation 2,

is identical in HPE and image classification. However,

the optimal compound scaling coefficients might be dif-

ferent for HPE, where the precision level is more de-

pendent on image resolution, than for image classifica-

tion. Based on this, a topic for further studies could be

to conduct neural architecture search across different

combinations of resolution, width, and depth in order

to determine the optimal combination of scaling coef-

ficients for HPE. Regardless of the scaling coefficients,

the scaling of detection blocks in EfficientPose could

be improved. The block depth (i.e., number of Mobile

DenseNets) slightly deviates from the original depth co-

efficient in EfficientNets based on the rigid nature of

the Mobile DenseNets. A carefully designed detection

block could address this challenge by providing more

flexibility with regards to the number of layers and the

receptive field size.

Fourth, the computational efficiency of EfficientPose

could be further improved by the use of teacher-student

network training (i.e., knowledge distillation) [4] to trans-

fer knowledge from a high-scale EfficientPose teacher

network to a low-scale EfficientPose student network.

This technique has already shown promising results in

HPE when paired with the stacked hourglass architec-

ture [33, 60]. Sparse networks, network pruning, and

weight quantization [11, 55] could also be included in

the study to facilitate the development of more accu-

rate and responsive real-life systems for HPE. Finally,

for high performance inference and deployment on edge

devices, further speed-up could be achieved by the use

of specialized libraries such as NVIDIA TensorRT and

TensorFlow Lite [10,51].

In summary, EfficientPose tackles single-person HPE

with an improved degree of precision compared to the

commonly adopted OpenPose network [6]. In addition

to this, the EfficientPose models have the ability to

yield high performance with a large reduction in num-

ber of parameters and FLOPs. This has been achieved

by exploiting the findings from contemporary research

within image recognition on computationally efficient

ConvNet components, most notably MBConvs and Effi-

cientNets [38,47]. Again, for the sake of reproducibility,

we have made the EfficientPose models publicly avail-

able for other researchers to test and possibly further

development.

6 Conclusion

In this work, we have stressed the need for a publicly

accessible method for single-person HPE that suits the

demands for both precision and efficiency across various

applications and computational budgets. To this end,

we have presented a novel method called EfficientPose,

which is a scalable ConvNet architecture leveraging a

computationally efficient multi-scale feature extractor,

novel mobile detection blocks, skeleton estimation, and

bilinear upscaling. In order to have model variants that

are able to flexibly find a sensible trade-off between

accuracy and efficiency, we have exploited model scal-

ability in three dimensions: input resolution, network

width, and network depth. Our experimental results

have demonstrated that the proposed approach has the
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capability to offer computationally efficient models, al-

lowing real-time inference on edge devices. At the same

time, our framework offers flexibility to be scaled up

to deliver more precise keypoint estimates than com-

monly used counterparts, at an order of magnitude less

parameters and computational costs (FLOPs). Taking

into account the efficiency and high precision level of

our proposed framework, there is a reason to believe

that EfficientPose will provide an important foundation

for the next-generation markerless movement analysis.

In our future work, we plan to develop new tech-

niques to further improve the model effectiveness, es-

pecially in terms of precision, by investigating optimal

compound model scaling for HPE. Moreover, we will

deploy EfficientPose on a range of applications to vali-

date its applicability, as well as feasibility, in real-world

scenarios.
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Appendices

A Ablation study

To determine the effect of different design choices in the Ef-
ficientPose architecture, we carried out component analysis.

Training efficiency

We assessed the number of training epochs to determine the
appropriate duration of training, avoiding demanding opti-
mization processes. Figure 5 suggests that the largest im-
provement in model accuracy occurs until around 200 epochs,
after which training saturates. Table 5 supports this obser-
vation with less than 0.4% increase in PCKh@50 with 400
epochs of training. From this, it was decided to perform the
final optimization of the different variants of EfficientPose
over 200 epochs. Table 5 also suggests that most of the learn-
ing progress occurs during the first 100 epochs. Hence, for
the remainder of the ablation study 100 epochs were used to
determine the effect of different design choices.

Cross-resolution features

The value of combining low-level local information with high-
level semantic information through a cross-resolution feature
extractor was evaluated by optimizing the model with and
without the low-level backbone. Experiments were conducted
on two different variants of the EfficientPose model. On coarse
prediction (PCKh@50) there is little to no gain in accuracy
(Table 6), whereas for fine estimation (PCKh@10) some im-
provement (0.6 − 0.7%) is displayed taking into account the
negligible cost of 1.02 − 1.06× more parameters and 1.03 −
1.06× increase in FLOPs.

Skeleton estimation

The effect of skeleton estimation through the approximation
of part affinity fields was assessed by comparing the architec-
ture with and without the single pass of skeleton estimation.
Skeleton estimation yields improved accuracy with 1.3−2.4%
gain in PCKh@50 and 0.2 − 1.4% in PCKh@10 (Table 7),
while only introducing an overhead in number of parameters
and computational cost of 1.3− 1.4× and 1.2− 1.3×, respec-
tively.

Number of detection passes

We also determined the appropriate comprehensiveness of de-
tection, represented by number of detection passes. Efficient-
Pose I and II were both optimized on three different variants
(Table 8). Seemingly, the models benefit from intermediate
supervision with a general trend of increased performance
level in accordance with number of detection passes. The ma-
jor benefit in performance is obtained by expanding from one
to two passes of keypoint estimation, reflected by 1.6− 1.7%
increase in PCKh@50 and 1.8− 1.9% in PCKh@10. In com-
parison, a third detection pass yields only 0.5− 0.8% relative
improvement in PCKh@50 compared to two passes, and no
gain in PCKh@10 while increasing number of parameters
and computation by 1.3× and 1.2×, respectively. From these
findings, we decided a beneficial trade-off in accuracy and
efficiency would be the use of two detection passes.

Upscaling

To assess the impact of upscaling, implemented as bilinear
transposed convolutions, we compared the results of the two
respective models. Table 9 reflects that upscaling yields im-
proved precision on keypoint estimates by large gains of 9.2−
12.3% in PCKh@10 and smaller improvements of 0.5− 1.1%
on coarse detection (PCKh@50). As a consequence of in-
creased output resolution upscaling slightly increases number
of FLOPs (1.04− 1.1×) with neglectable increase in number
of parameters.

B Optimization procedure

Most state-of-the-art approaches for single-person pose esti-
mation are extensively pretrained on ImageNet [44, 61], en-
abling rapid convergence for models when adapted to other
tasks, such as HPE. In contrast to these approaches, few mod-
els, including OpenPose [6] and EfficientPose, only utilize the
most basic pretrained features. This facilitates construction
of more efficient network architectures but at the same time
requires careful design of optimization procedures for conver-
gence towards reasonable parameter values.

Training of pose estimation models is complicated due to
the intricate nature of output responses. Overall, optimiza-
tion is performed in a conventional fashion by minimizing the
MSE of the predicted output maps Y with respect to ground
truth values Ŷ across all output responses N .

The predicted output maps should ideally have higher
values at the spatial locations corresponding to body part
positions, while punishing predictions farther away from the
correct location. As a result, the ground truth output maps
must be carefully designed to enable proper convergence dur-
ing training. We achieve this by progressively reducing the
circumference from the true location that should be rewarded,
defined by the σ parameter. Higher probabilities T ∈ [0, 1] are
assigned for positions P closer to the ground truth position
G (Equation 4).

Ti = exp (−
‖Pi −G‖22

σ2
) (4)

The proposed optimization scheme (Figure 6) incorpo-
rates a stepwise σ scheme, and utilizes SGD with momentum
of 0.9 and a decaying triangular cyclical learning rate (CLR)
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Table 6 Model accuracy on the MPII validation dataset in relation to the use of cross-resolution features

Model Cross-resolution features Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I 0.72M 1.67G 83.56 26.35
EfficientPose I 0.68M 1.58G 83.64 25.79

EfficientPose II 1.73M 7.70G 87.05 29.87
EfficientPose II 1.69M 7.50G 86.93 29.16

Table 7 Model accuracy on the MPII validation dataset in relation to the use of skeleton estimation

Model Skeleton estimation Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I 0.72M 1.67G 83.56 26.35
EfficientPose I 0.54M 1.37G 81.13 25.00

EfficientPose II 1.73M 7.70G 87.05 29.87
EfficientPose II 1.27M 6.03G 85.75 29.67

Table 8 Model accuracy on the MPII validation dataset in relation to the number of detection passes

Model Detection passes Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I 1 0.52M 1.33G 81.85 24.51
EfficientPose I 2 0.72M 1.67G 83.56 26.35
EfficientPose I 3 0.92M 2.02G 84.35 26.42
EfficientPose II 1 1.24M 5.92G 85.42 28.01
EfficientPose II 2 1.73M 7.70G 87.05 29.87
EfficientPose II 3 2.22M 9.49G 87.55 29.61

policy [42]. The σ parameter is normalized according to the
output resolution. As suggested by Smith and Topin [43], the
large learning rates in CLR provides regularization in net-
work optimization. This makes training more stable and may
even increase training efficiency. This is valuable for network
architectures, such as OpenPose and EfficientPose, less heav-
ily concerned with pretraining (i.e., having larger portions of
randomized weights). In our adoption of CLR, we utilize a
cycle length of 3 epochs. The learning rate (λ) converges to-
wards λ∞ (Equation 5), where λmax is the highest learning
rate for which the model does not diverge during the first
cycle and λmin = λmax

3000
, whereas σ0 and σ∞ are the initial

and final sigma values, respectively.

λ∞ = 10
log (λmax)+log (λmin)

2 · 2σ0−σ∞ (5)
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Table 9 Model accuracy on the MPII validation dataset in relation to the use of upscaling

Model Upscaling Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I 0.72M 1.67G 83.56 26.35
EfficientPose I 0.71M 1.52G 82.42 14.02

EfficientPose II 1.73M 7.70G 87.05 29.87
EfficientPose II 1.73M 7.37G 86.56 20.66

Fig. 6 Optimization scheme displaying learning rates λ and σ values corresponding to the training of EfficientPose II over
100 epochs


