
Noname manuscript No.
(will be inserted by the editor)

Applying Temporal Dependence to Detect Changes in
Streaming Data

Quang-Huy Duong · Heri Ramampiaro · Kjetil Nørv̊ag

Received: date / Accepted: 2018-07-11

Abstract Detection of changes in streaming data is an

important mining task, with a wide range of real-life ap-

plications. Numerous algorithms have been proposed to

efficiently detect changes in streaming data. However,

the limitation of existing algorithms is that they as-

sume that data are generated independently. In partic-

ular, temporal dependencies of data in a stream are still

not thoroughly studied. Motivated by this, in this work

we propose a new efficient method to detect changes in

streaming data by exploring the temporal dependencies

of data in the stream. As part of this, we introduce a

new statistical model called the candidate change point

(CCP) model, with which the main idea is to compute

the probabilities of finding change points in the stream.

The computed probabilities are used to generate a dis-

tribution, which is, in turn, used in statistical hypoth-

esis tests to determine the candidate changes. We use

the CCP model to develop a new algorithm called Can-

didate Change Point Detector (CCPD), which detects

change points in linear time, and is thus applicable for

real-time applications. Our extensive experimental eval-

uation demonstrates the efficiency and the feasibility of

our approach.

Keywords Data Streams, Change Detection, Tempo-

ral Dependence, Adaptive Estimation

Quang-Huy Duong
huydqyb@gmail.com

Heri Ramampiaro
heri@ntnu.no

Kjetil Nørv̊ag
noervaag@ntnu.no

Department of Computer Science, Norwegian Univer-
sity of Science and Technology, Norway

1 Introduction

The availability of modern technology and the prolifer-

ation of mobile devices and sensors have resulted in a

tremendous amount of streaming data. Due to its broad

real-life applications, including consumption data (elec-

tricity, food, oil), finance and stock exchanges, health-

care, and intrusion/fraud detection, detection of changes

in streaming data is an important data mining task. A

main challenge with mining streaming data is that data

in a stream is inherently dynamic, and its underlying

distribution can change and evolve over time, leading

to what is referred to as concept drift [40]. As an ex-

ample, in consumption data, we might have data about

customer purchasing behavior over time that could be

influenced by the strength of the economy. In this case,

the concept is the strength of the economy, which can

drift. A concept drift can be either a real or virtual

concept drift, where changes in the distribution can,

in turn, have four different forms [21] namely abrupt,

reoccurring, incremental, and gradual, as illustrated in

Fig. 1. In addition, we can have mixtures of these forms

in streaming data.

What can be inferred from this is that a method

developed for mining changes in streaming data has to

take into account the different characteristics of con-

cept drifts. In particular, the learning model has to be

trained and adapted to the changes, and model param-

eters should be able to adapt themselves following the

changes in the streams. Numerous algorithms have been

proposed to detect changes in streaming data [19, 20].

Still, most existing algorithms have been built based on

the assumption that streaming data have stable flows,

and that they are arriving in the same distribution. In

addition, they assume the data to be identically and

independently distributed (i.i.d.). However, such an as-

2 Q-H. Duong et al.

3. Incremental

2. Re-Occurring

4. Gradual

Time

Estimate

1. Abrupt/Sudden

Estimate

Estimate

Time

Time

Estimate

Time

Fig. 1 Illustration of the four different types of concept
drift [21].

sumption hardly holds in real-life streaming environ-

ments.

Focusing on non-stationary environments, several

learning algorithms have been proposed to overcome

the limitation of the i.i.d. assumption [27,29]. The ma-

jority of existing approaches have, however, assumed

that data in a stream are independently but not identi-

cally distributed [10,45]. Adaptive estimation is among

the proposed techniques for handling temporal depen-

dencies of data. For example, in [3, 11, 32, 37], the ap-

proaches employed adaptive estimation methodology

by considering a so-called forgetting factor. Here, ac-

cording to a decay function of the forgetting factor, the

underlying assumption is that the importance of a data

in a stream is inversely proportional to its age. As part

of this, cumulative measures of the underlying distribu-

tion and estimators are maintained and monitored to

detect changes, while new data continuously arrive.

Despite their efficiency with respect to detecting

changes in data streams, the underlying assumption of

the above methods is that data are generated indepen-

dent of other data in the same stream. Meanwhile, sev-

eral empirical experiments, e.g., [6,45], have shown that
there are important temporal dependencies among data

points in a stream of data, thus making it crucial for

further studies, especially focusing on change detection.

Motivated by this, the main goal of this work is to in-

vestigate the temporal dependencies of data points in

a data stream, and use this to develop a novel method

that enables monitoring changes in the stream while

continuously estimating the underlying data distribu-

tion.

To summarize the principle behind the proposed

method, Fig. 2 shows a block diagram of the impor-

tant steps of the method. As shown in this figure, our

approach takes a stream of data as input, and the main

output is the list of candidate change points. In order

to generate this list, the stream is processed in three

main steps. The first step is to extract the distribu-

tion and determine the dependency information. To do

this, we use the Euclidean projection method to gen-

erate projections of given data points in a stream onto

k previously seen/processed data points. This produces

a set of (probabilistic) paths between pairs of observed

data points, called trails. In the second step, the mean

values of the trails are estimated and used as inputs for

the third and final step, in which the change detection

is carried out through statistical hypothesis tests. Note

that due to the dynamic nature of streaming data, each

of the steps has to be efficient and be able to adapt to

changes in the stream.

In this work, we make the following main contribu-

tions:

1. We introduce a new model named Candidate Change

Point (CCP) that we use to model high-order tem-

poral dependencies and data distribution in stream-

ing data.

2. We develop a new concept called CCP trail, which is

the path from a given observed data to another spe-

cific data in the observation history. Our approach

uses the mean value of the CCP trail as a measure

of data distribution, and to capture the temporal

dependencies among observed data in the stream.

3. We develop a method that is able to handle the

fact that data arrives in a high-velocity stream by

providing continuously updating estimation factors

as part of the CCP model.

4. We propose an efficient real-time algorithm, based

on pivotal statistic tests for change detection named

Candidate Change Point Detector (CCPD).

5. In order to demonstrate the feasibility, efficiency,

and generality of our method, we conduct a thor-

ough evaluation based on several real-life datasets

and comparison with related approaches.

The remainder of this paper is organized as follows.

Section 2 briefly reviews the related work. Section 3

introduces the problem of change detection. Section 4

presents the proposed model and the adaptive estima-

tion method for detecting changes in evolving stream-

ing data. Section 5 describes and discusses the results

from our experimental evaluation. Finally, Section 6

concludes the paper and outlines possible topics for fu-

ture work.

2 Related work

Change detection in streaming data has a wide-range

of applications in many domains and has attracted lots

of interests from the research community. To tackle the

problem of change detection in streaming data, numer-

ous methods and algorithms have been proposed [1, 2,

20, 22, 23]. In the context of event detection in stream-

ing data, due to the large volume of data, and that

the data is dynamic and continuously arrives at a high

Applying Temporal Dependence to Detect Changes in Streaming Data 3

Projection
 Euclidean on
L1 constraints

 Candidate Change Point Detector (CCPD)

Streaming data
 Estimation

 Estimation of
trail means

Trails Hypothesis Test
Pivotal truncated

Gaussian

P-value
Change Points

Fig. 2 Overview of the proposed method

speed, online learning approaches are necessary to be

able to meet the induced challenges. As a result, several

online learning algorithms have been proposed [17,18].

However, an important requirement of online methods

is to minimize the computational cost, and that ap-

proaches for online event/change detection must have

constant time and space computational complexity for

them to be feasible.

The algorithms for concept drift detection can be

categorized into four main categories [21] (see also Ta-

ble 1 for a summary). The first category consists of

detectors that are based on sequential analysis. Cu-

mulative Sum (CUSUM) and its variant, Page-Hinkley

(PH) [32], are the representative algorithms in this cat-

egory. Their main idea is to estimate the probability

distribution value and update the value when new data

comes. A concept drift occurs if there is significant

change in the value of the estimated parameters. The

main advantage with sequential analysis-based algorithms

is that they generally have low memory consumption.

One of the disadvantages, on the other hand, is that the

performance depends on the choice of parameters. The

second category includes detectors that are based on

statistical process control, with which the idea is to esti-

mate statistical information (such as error and standard

deviation). Monitoring this error rate, the detectors

determine a concept drift if the error increases above

a pre-specified threshold value. Examples of methods

in this group are DDM [19], EDDM [4], ECDD [39],

AFF [11], and RDDM [5]. The main advantage with the

methods in this category is that in addition of being effi-

cient and having low memory consumption, they work

generally well on streams with abrupt changes. How-

ever, slow gradual change detection is a one of the main

weaknesses of the algorithms in this category. The third

category comprises detectors that monitor distributions

on two different time windows, i.e., applying statistical

tests on the distributions of two windows in a stream.

Here, the first window is a fixed reference window used

to summarize the information from past data; whereas

the second window is a sliding window summarizing the

information of the most recent data. Examples of rep-

resentative algorithms in this category are ADWIN [7],

HDDM [18], SEQDRIFT2 [33], and MDDM [34]. The

main advantage with the window-based methods are

that they are able to provide more precise localization

of change points. The disadvantages are the high mem-

ory cost and the space requirements for processing the

aforementioned two windows. The fourth and final cate-

gory consists of detectors that are contextual-based. The

approaches in this category keep the balance of incre-

mental learning and forgetting in detecting a concept

drift with respect to the time of an estimated window.

An example of contextual approaches is SPLICE [24].

The main advantage of methods in this category is that

they can detect gradual and abrupt drifts, in addition

to the ability to control the number of errors. How-

ever, contextual-based methods are generally complex

and have long execution time, thus making them less

suitable for mining of streaming data.

Hoeffding’s Inequality [25] is one of the most well-

known inequalities. It has been used to design several

upper bounds for drift detection [18]. These upper bounds

have been used in algorithms such as the Drift Detec-

tion Method Based on Hoeffding’s Bounds (HDDM) [18],

the Fast Hoeffding Drift Detection Method for Evolv-

ing Data Streams (FHDDM) [36], Hoeffding Adaptive

Tree (HAT) [8], and the HAT + DDM + ADWIN [2] al-

gorithm which extends the ADaptive sliding WINdow

(ADWIN) algorithm [7], the Drift Detection Method

(DDM) [19], and the Reactive Drift Detection Method

(RDDM) [5], which is a recent drift detection algo-

rithm based on DDM. Nevertheless, Hoeffding inequal-

ities have the disadvantage of dropping the dependence

on the underlying distribution [43]. Although these al-

gorithms are useful to detect changes in streaming data,

most of them assume that data is identically and in-

dependently distributed. However, as mentioned ear-

lier, in real-life streaming data, data is inherently dy-

namic, and is not identically and independently dis-

tributed [10, 45]. Also, temporal dependencies are very

common in data streams [45]. Thus, to address this is-

sue, temporal dependencies in the streams should be

considered.

Regarding temporal dependencies in data streams,

adaptive models for detecting changes in the underlying

data distribution have been proposed and extensively

studied. The main idea of these approaches has been

to estimate, maintain some interesting targets in the

stream, and then compute the data distributions. The

4 Q-H. Duong et al.

Table 1 Summary of the related change detection methods

Category Algorithms Advantages Disadvantages

Sequential analysis CUSUM [32],
PAGE-HINKLEY [32]

Low memory consumption. Depends on the choice of
parameters.

Statistical process control DDM [19], EDDM [4],
ECDD [39], AFF [11],
RDDM [5]

Low memory consumption,
work well on abrupt
changes, and fast execution
time.

Slow gradual changes.

Windows-based methods Kifer et al. [26], ADWIN [7],
HDDM [18],
SEQDRIFT2 [33],
FHDDM [36], ACWM [41],
FHDDMs [35], MDDM [34]

Precise localization of
change points.

Memory and space
requirements for
processing two windows.

Contextual approaches SPLICE [24] Gradual and abrupt drift,
and control of the number of
errors.

Complex and difficult to
implement and long
execution time.

main method used has been based on statistical hypoth-

esis tests, where the hypothesis H1 means change has

been discovered, whereas the null hypothesis H0 means

no change. An example of such an approach has been

suggested by Bodenham et al. [11]. They adopted a so-

called forgetting factor, originally suggested by Anag-

nostopoulos et al. [3], to develop a new approach for

continuously monitoring changes in a data stream, us-

ing adaptive estimation. They proposed an exponential

forgetting factor method to decrease the importance of

a data according to a decay function, which is inversely

proportional to the age of the observed data.

Although Bodenham’s approach enables monitoring

changes in data streams by applying so-called Adap-

tive Forgetting Factor (AFF) [11], it does not address

the challenges with temporal dependencies of data. Fur-

ther, while AFF enables detecting multiple data point

changes with adaptive estimation, the approach pre-

sented in this paper focuses on temporal dependencies

of data, in addition to supporting online change detec-

tion in a data stream.

In conclusion, different from previous approaches,

the proposed method in this paper generalizes the con-

cept of temporal dependency in streaming data, by sup-

porting both the first-order and the higher-order of de-

pendencies. To achieve this, as discussed later in this

paper, we propose a probabilistic method that can be

used to analyze the differences between a data point

at a given observation point and k previously observed

points in the stream.

3 Problem Definition

Formally, we define the problem of change detection in

streaming data by the following definition. Let there be

a data stream S, which is an open-ended sequence of

values {v1, v2, . . . , vi, . . . }. Assume that our observation

Vi of vi in the data stream is drawn from a Gaussian

model with an unknown distribution, Vi ∼ N (µ, σ2I),

where µ is the (unknown) mean and is the interest mea-

sure in our change detection method, and σ2 is the error

variance. At each observation time i, the observed mean

is µi. Hence, for a data stream S, we have a sequence

of observed mean µ1, µ2, . . . , µi, . . . corresponding to

observation times 1, 2, . . . , i, Our change detec-

tion method considers the difference between adjacent

means µi and µi+1, where not all adjacent means are

not necessarily equal. The change detection method

is designed to detect all change points i between two

observed adjacent means µi and µi+1, for any i and

µi 6= µi+1. Assume that t1, t2, . . . tj , . . . are the true

change points in a distribution of means. Then, the

change detector verifies a change point tj by testing

the following statistical hypotheses:

H0 : µtj−1
' · · · ' µtj−1 ' µtj ' µtj+1 ' · · · ' µtj+1−1

against

H1 : µtj−1
' · · · ' µtj−1 6= µtj ' µtj+1 ' · · · ' µtj+1−1

Given a significance confidence ρ, the rule to accept

the H1 hypothesis is if an objective interest measure of

mean, i.e., f(.), satisfies:

f(µtj) /∈ [v ρ
2
, v1− ρ2], (1)

where v ρ
2

and v1− ρ2 are values such that Pr(f(µtj) <

v ρ
2
) = ρ

2 and Pr(f(µtj) > v1− ρ2) = 1 − ρ
2 , and f(.) is

an objective function. A change point is said to occur

at an observation time tj if H0 is rejected. This means

that the task of detecting change points is to find all the

observation times where there are significant differences

in the data distribution for a given measure.

Applying Temporal Dependence to Detect Changes in Streaming Data 5

1 20 40 60 80 Time
30

70

110

E
le

m
en

t v
al

ue

Change point

Change point

Fig. 3 An example a stream of data with two change points.

To illustrate, consider a stream of data shown in

Fig. 3, which can be modeled using a piece-wise function

with different values depending on the time intervals,

[1, 50], [51, 80] and after 81. The estimated mean values

are controlled/computed by the function to be 50 in

the first interval, 100 in the second and then 80. In

conclusion, as also can be observed, significant changes

in the stream appear at timestamps 51 and 81.

To automatically detect change points, we propose

an approach called Candidate Change Point (CCP) de-

tection, which can be summarized as follows. First, we

investigate the temporal dependence of each data to

its k previous data points. We project a vector of that

k data onto a `1 constraints to optimize the minimum

difference between k previous observations and the cur-

rent observation. The noisy or decay factor that weighs

the importance of previous data on the current observa-

tion is inversely proportional to its age. Moreover, our

approach employs truncated form of the geometric dis-

tribution to simulate the decaying probability of look-

ing back into the history. Second, an adaptive estimator

on CCP trail and CCP propagation is maintained on-

line during the monitoring process of the stream (to

be described in more detail in Subsection 4.2). Finally,

our approach uses a statistic test on interest measure
of mean values to determine if there is a change point

at a given observation time. Specifically, a p-value of a

mean and a pivotal statistic function are used to map

the problem into a uniform Gaussian model on the in-

terval [0, 1]. Then we use this to perform the truncated

Gaussian statistic to test the hypotheses in order to

decide change point occurrences in real-time.

4 The Candidate Change Point (Detection)

Approach

In this section, we propose a new model to represent the

temporal dependency of the current observation to its

history in the data stream to detect changes. As men-

tioned in Section 1, most existing work has assumed

the streaming data to be identically and independently

distributed (i.i.d.). However, focusing on real-life ap-

plications, this assumption is too restrictive. In fact,

the probability of the current observation is largely de-

pended on previous data and the history of the stream.

With this in mind, we consider Markov chain [31] as

the natural choice for modelling streaming data, since a

Markov process can be used to represent the probability

of transitions between states of data in a stream. How-

ever, note that the space requirement for maintaining

parameters with a higher-order Markov process grows

exponentially as functions of the number of parameters.

Thus, approaches employing higher-order Markov pro-

cesses have a cubic space complexity, and are for this

reason inefficient. To cope with this issue, more efficient

parameterization approaches, such as the Linear Addi-

tive Markov Process (LAMP [28]) and the Retrospec-

tive Higher-Order Markov Process (RHOMP [44]), have

been proposed. In contrast to the higher-order Markov

process, the number of maintained parameters in the

LAMP model and the RHOMP model grow linearly,

which makes them more suitable for streaming data.

In this work, we build on the ideas of these linear

Markov process models to develop an efficient model

for temporal dependency in evolving data streams, and

use the developed model for detecting concept drifts.

We do this based on the fact that the probability of a

data to appear in a stream at a specific time is not de-

pendent on the first-order data only. This means that

the appearance of data in specific observations can be

assumed to be a cause of k previous observations. To be

more specific, we propose a novel model, called the can-

didate change point (CCP) model, for detecting concept

drifts. This is done by using the temporal dependency

information from previously observed data in the cur-

rent observation to compute the probability of finding

changes in the given observation. What this implies is

that with a first-order CCP model, any data that is ob-

served at a specific time has only temporal dependency

from the most recent previously observed data in the

stream. On the other hand, if the current data point

depends on its k previous data points and is a mix of

these k data points, then it has a CCP from k -order an-

cestors. In such a case, the model that we apply is the

k -order Candidate Change Point (CCP) model, defined

as follows.

Definition 1 (k-order Candidate Change Point)

Given a stream of observations with an open end x1,

x2, . . . , xn, . . . , the k -order Candidate Change Point

is denoted as CCPk, and at observation time t, the CCP

model is presented as CCPk(xt) = (C1, C2, . . . , Ck),

where 0 ≤ Ci ≤ 1 for i = 1, 2, . . . , k,
∑k
i=1 Ci = 1. We

call Ci is the probability proportion of CCP in current

descendant obtained from i -th order in its k ancestors.

Definition 2 (k-order Fading Candidate Change

Point) Given a stream of observations with an open

6 Q-H. Duong et al.

end x1, x2, . . . , xn, . . . , the k -order Fading Candidate

Change Point is the k -order Candidate Change Point

considering forgetting factor α of ancestors by order

denoted as CCPk,α. At observation time t, the CCP

model is presented as CCPk,α(xt) = (α1×C1, α2×C2,

. . . , αk × Ck), where 0 ≤ αi ≤ 1 for i = 1, 2, . . . , k,∑k
i=1 αi = 1, 0 ≤ Ci ≤ 1 for i = 1, 2, . . . , k,

∑k
i=1 Ci =

1.

We call αi a decaying probability of CCP in current

descendant from i -th ancestor in its k ancestors into

the history context. Given a scalar x, we denote −−−−→xCCPk
as a vector of x projected on its k -order ancestors. We

have −−−−→xCCPk = (C1, C2, . . . , Ck), it is the k -order Can-

didate Change Point of the scalar. In the rest of the

paper, we use a bold face letters (x) to present the vec-

tor for short (−−−−→xCCPk). Suppose L be a cost function, the

value and option of cost function L will be discussed in

the next section. In this paper, our purpose is to solve

the minimum of cost function subject to conditions `1-

norm constraint on k -order Candidate Change Point.

The problem is described as:

minimize
CCPk

(L(CCPk)), (2)

subject to 0 ≤ Ci ≤ 1,∀i = 1, 2, . . . , k,
∑k
i=1 Ci = 1.

Projected (sub)gradient methods minimize an ob-

jective function f(x) subject to the constraint that x

belongs to a convex set CS. The constrained convex op-

timization problem is minimizef(x) subject to x ∈ CS.

The projected (sub)gradient method is given by gen-

erating the sequence x(t) via:

x(t+1) =
∏
CS

(x(t) − γt × g(t)), (3)

where
∏
CS is a projection on CS, γt is step size, x(t) is

the t-th iteration, and g(t) is any (sub)gradient of f at

x(t), and will be denoted as ∂f(x)/∂x(t).

4.1 Evolving Data and CCP Parameter Selection

Given a data stream where data evolves over time,

i.e., its population distribution or its structure changes

over time, the goal is to maximize the probability pro-

portion of CCP for current observation in the set of

the k last/previously observed data by solving an opti-

mal problem, using the projected (sub)gradient method

with an optimal function to minimize the divergence of

the currently observed data when it is projected onto

`1-norm constraints of k previous ancestors. Here, the

cost function f(x) on Euclidean projections can be cho-

sen as Euclidean norm (`2 norm) L(x) = 1
2 ‖ x− v ‖

2.

The Euclidean projection in this paper is to project

a streaming data xt onto a set of k previously observed

data, defined as:∏
CCPk

(xt) = arg min
x∈CCPk

1

2
‖ x− xt ‖2, (4)

subject to ‖ x ‖1=
∑k
i=1 Ci = 1. The optimal solu-

tion for this problem can be solved in linear time as in

[14,16,30]. The Lagrangian of Equation 4 with Karush

Kuhn Tucker (KKT) multiplier ζ and µ is:

L(x, ζ) =
1

2
‖ x− xt ‖2 +ζ(‖ x ‖1 −1)− µx (5)

Derivation of Lagrangian function at xi with optimal

solution x∗ by dimension i is ∂L
∂xi

(x∗) = (x∗i−xti)+ζ−µi.
Because x∗ is an optimal point then ∂L

∂xi
(x∗) = 0 →

x∗i = xti − ζ + µi. The KKT inequalities in the problem

is that xi ≥ 0, then by the complementary slackness,

we have µi = 0, hence x∗i = max (xti − ζ, 0). Moreover,

we project our vector using a fast and linear method as

in [14]. In particular, we consider a vector of the last k

data points as the vector of current observation with k

elements. This k elements vector will be projected onto

`1 ball constraints by using (sub)gradient method.

Definition 3 (CCP Heritage) Given a k -order Can-

didate Change Point with forgetting factor α, the CCP

model is CCPk,α(xt) = (α1×C1, α2×C2, . . . , αk×Ck),

where 0 ≤ αi ≤ 1 for i = 1, 2, . . . , k,
∑k
i=1 αi = 1,

0 ≤ Ci ≤ 1 for i = 1, 2, . . . , k, and
∑k
i=1 Ci = 1. The

CCP Heritage of the model at time t is denoted as

CHk,α(xt) and computed as CHk,α(xt) =
∑k
i=1 αi×Ci.

This value of the scalar can be used to present the tem-
poral dependency proportion of the scalar to history.

For the sake of brevity, the notation cht will be used to

refer to the CCP heritage value at observation time t

in the rest of this paper. The sequence of CCP heritage

of the stream is denoted ch1, ch2, . . . , cht,

In this work, the key idea is to investigate how to ex-

ploit the temporal dependencies of data for detection of

changes in a stream. The method we propose is inspired

by the ideas behind linear Markov process models with

which the main principle is to estimate the probability

of transition between states, i.e., to determine the like-

lihood of each state transition. Nevertheless, the main

difference between our approach and previous Markov-

based approaches is that our approach considers the

temporal dependencies based on several prior observa-

tions. In addition, the proposed model enables estimat-

ing the dependency measures in a data stream in an on-

line fashion, thus making it possible to detect changes

in the stream in real time.

Applying Temporal Dependence to Detect Changes in Streaming Data 7

4.2 Adaptive Estimation of Data in Streaming

Adaptive estimation approaches were previously pro-

posed to handle issues with the uncertainty of data.

In streaming data, the importance of historical data is

weighted using a forgetting function with a decay fac-

tor [3,11,41]. This means that, in the stream, the most

recent data is more important than the older ones. A

decay function is also useful to flush any noise when

detecting concept drifts.

There are several approaches to select the decay

factor α. Once the value can be set to constant, then

we can conduct trial experiments and obtain the op-

timal value for individual application. The factor can

be any function of exponential family of distribution.

In [11], the authors proposed adaptive forgetting factor

to weigh the importance of historical data by solving an

optimal problem in movement of mean. The estimator

is continuously monitored when new data arrives to de-

tect changes in the data stream. The principle behind

building forgetting factor is to build an exponential de-

cay function of observation time such that the impor-

tance of a data in a stream is inversely proportional to

its age, and the temporal dependencies can be seen is

just 1-order dependency, which is a special case, with

k=1 and α = 1. In the proposed method, we introduce

an adaptive estimation for detecting changes, we use

CCP heritage of the CCP model to estimate the CCP

mean distribution of streaming data. This method can

be compared to the linear high order of states based on

Markov chain [28,44].

To adapt the evolving factor in streaming data, we

introduce CCP trail to denote the CCP path from a

given observation to another previous observation in the

streaming data. Hence, a CCP trail can be considered

as the probability of finding the heritage from a data

stream. This is formally defined as follows.

Definition 4 (CCP Trail) Given two different obser-

vation times t1 and t2, 0 < t1 ≤ t2, of a streaming data

S, which is an open-ended sequence of values {v1, v2,

. . . , vi, . . . }. The CCP trail between two given obser-

vations is the probability of finding the heritage of the

data at observation time t1 in the data at observation

time t2. A CCP trail is denoted as ct(t2, t1), and is for-

mally defined as:

ct(t2, t1) =

1 if t2 = t1

cht2 if t2 = t1 + 1

ct(t2, t2 − 1)× ct(t2 − 1, t1) otherwise.

(6)

Property 1 The CCP trail can be computed by as the

product of CCP heritages for all t1 ≤ t2 as follows:

ct(t2, t1) =

t2∏
t=t1

(1{t 6=t1} × cht + 1{t=t1}), (7)

where 1{x} is binary indicator function. In other words,

1{x} is equal to 1 if x is TRUE, otherwise 1{x} is equal

to 0.

1{x} =

{
1 if x is TRUE

0 otherwise.
(8)

Proof The detailed proof is provided in Appendix A.1

CCP trail mean at observation time t in the data stream

is then defined by:

CCP (t) =
1∑t

i=1 ct(t, i)

t∑
i=1

vi × ct(t, i) =
cp(t)

ctsum(t)
,

(9)

where cp(t) =
∑t
i=1 vi×ct(t, i), ctsum(t) =

∑t
i=1 ct(t, i).

cp(t) is the CCP propagation at observation time t

looking back into its history in the data stream. ctsum(t)

is the coefficient presenting sum of the CCP trail at time

t.

Proposition 1 Given a data stream, ctsum(t) can be

computed by the following equation:

ctsum(t) = ctsum(t− 1)× cht + ct(t, t). (10)

Proof The detailed proof is provided in Appendix A.2

Proposition 2 Similar to the coefficient estimation,

the CCP propagation can be estimated by the following

sequential updating:

cp(t) = cp(t− 1)× cht + vt. (11)

Proof The detailed proof is provided in Appendix A.3

Equations 10-11 show that we can sequentially update

the CCP model, CCP coefficient, and CCP propagation

in the stream at each observation time, while new data

arrives. Hence, the CCP trail mean at the next obser-

vation, CCP (t+ 1), is easily estimated in linear time

by Equation 9.

8 Q-H. Duong et al.

4.3 Change Detection

Change point detection relies on the null hypothesis H0

and the alternative hypothesis H1. The null hypothesis

H0 is a hypothesis that assumes the population means

are drawn from the same distribution while the alterna-

tive hypothesis H1 supposes the observations are from

the different distribution. The change detector defines

a rule to accept H1 and reject H0. When H0 is rejected,

it means that there is a significant movement in under-

lying distribution of data, and change point occurs. In

our approach, the detector monitors the movement in

CCP trail mean in an online manner.

Given a random variable v, we consider the Gaus-

sian model with mean θ, variance σ2, and assume that

v ∼ N (θ, τ2 = σ2I). The cumulative distribution func-

tion [42] for a linear contrast pT θ of mean θ is as follows:

D[v1,v2]

pT θ,τ2(pT v)|Gaussian ∼ Uniform(0, 1), (12)

where [v1, v2] is the boundary interval of the Gaussian

model and D is pivotal statistic function. The pivotal

statistic function D is defined and computed as:

D[v1,v2]
µ,τ2 (x) =

CDF ((x−µ)
τ)− CDF ((v1−µ)

τ)

CDF ((v2−µ)
τ)− CDF ((v1−µ)

τ)
, (13)

where CDF(.) is a standard normal cumulative distri-

bution function, and in our proposed method we use the

standard normal right tail probabilities as in [12] due

to its simple form, and it has a very small error. We use

the truncated Gaussian pivot [42] to test hypothesis H0

with an assumption that the population distribution is

equal to zero, H0 : pT θ = 0. The alternative positive

hypothesis is H1+ : pT θ > 0. The truncated Gaussian

statistic then is computed by: T = 1 − D[v1,v2]
0,τ2 (pT v).

Given a confidence value 0 ≤ ρ ≤ 1, in our change

detector, we find the vρ satisfying 1 − D[v1,v2]
vρ,τ2 (pT v) =

ρ→ P(pT θ ≥ vρ) = 1−ρ. Similar to the two-sided test,

we compute the confidence interval [v ρ
2
, v1− ρ2]. v ρ

2
and

v1− ρ2 are computed based on conditions such that:

1−D[v1,v2]
v ρ

2
,τ2 (pT v) =

ρ

2
, (14)

1−D[v1,v2]
v1− ρ

2
,τ2(pT v) = 1− ρ

2
. (15)

Then we have P(v ρ
2
≤ pT θ ≤ v1− ρ2) = 1− ρ. Change is

identified with a confidence ρ if the pivotal population

mean does not lie in the interval [v ρ
2
, v1− ρ2].

4.4 Choosing Decay Factor

In our method, we consider forgetting factor α of k pre-

vious ancestors by order to the current model. The

meaning of α is similar to the decaying probability

of looking back into the history in [44]. To select the

parameter α, we use truncated form of the geometric

distribution [13]. The truncated form of the geomet-

ric distribution is presented by parameter η, subject to

0 < η ≤ 1, and k terms (ancestors). The probability

density function at term i, 1 ≤ i ≤ k, is defined by

P (i) = η(1−η)i−1

1−(1−η)k . We set this probability density at

term i as our forgetting factor αi of the i -th ancestor,

α1 = η
1−(1−η)k , α2 = η(1−η)

1−(1−η)k , . . . , αk = η(1−η)k−1

1−(1−η)k .

Observe that the truncated form of the geometric dis-

tribution subjects to the condition that sum of proba-

bility of k terms equals to 1. In other words, it subjects

to
∑k
i=1 αi = 1.

k∑
i=1

αi =
η

1− (1− η)k
+

η(1− η)

1− (1− η)k
+ · · ·+ η(1− η)k−1

1− (1− η)k

=
η

1− (1− η)k
(1 + (1− η) + · · ·+ (1− η)k−1)

=
(1− (1− η))(1 + (1− η) + · · ·+ (1− η)k−1)

1− (1− η)k

=
1− (1− η)k

1− (1− η)k
= 1.

Furthermore, the condition 0 ≤ αi ≤ 1 is also satisfied.

The value of η is application-specific and can be chosen

either by a procedure of polynomial interpolation or

using a heuristic optimal as in [44].

4.5 The Online Change Detection Algorithm

Fig. 4 gives an overview of the CCPD algorithm, and

our method for change detection is presented in Algo-

rithm 1. The input of the algorithm is a sequence of

open end values v1, v2, . . . , vi, . . . , and a confidence

value ρ. When a new value vi is read from the stream,

a linear projection onto `1 ball constraints is performed

to project a vector of the k last data values to get CCPk
of the current observation in line 3 (see [14] for more de-

tailed information about the projection method). Line

4 computes chi using the truncated form of the geomet-

ric distribution. Line 5 is executed to estimate ctsum(i)

and cp(i). Then CCP trail mean CCP (i) is computed

by line 6. In line 7, the boundary interval with confi-

dence ρ is calculated using the pivotal statistic function.

The pivotal truncated Gaussian value of the current

data is specified in line 8. A check is performed in line

9 to determine there is a change or not. If a change oc-

curs, the estimators are reset and the algorithm outputs

that change.

Applying Temporal Dependence to Detect Changes in Streaming Data 9

v(1) v(t)

CH
Ck C2 C1…

v(t-k) v(t-2) v(t-k)

Projection – Euclidean

L1 constraints

k previously observed data

……
CCP mean

ctsum cp
Estimators

CCPD
Detector

Change?

Output

t1 t-k t-2 t-1 t

Obesrvation time

Fig. 4 Flow diagram of the CCPD algorithm

Algorithm 1 CCPD: Online change detector

Input: Streaming data and a confidence ρ.
Output: Changes in the stream.

1: Init() Initialize all variables
2: for (each data point vi arriving on a stream v1, v2, . . . ,

vi, . . .) do

3: Project the k last data points on `1 constraints Projec-

tion(vi−1, . . . , vi−k) → CCPk(vi) as in [14]

4: Compute chi = CHk,α(vi) =
∑k
i=1 αi × Ci

5: Update estimators ctsum(i) and cp(i) by Equations 10
and 11

6: Update CCP trail mean CCP (i) by Equation 9
7: Compute the confidence interval tailarea = [v ρ

2
, v1− ρ

2
]

such that 14 - 15 satisfy
8: Compute truncated Gaussian pivot of the current ob-

servation pval(i)
9: if (pval(i) /∈ tailarea)) then

10: Output change
11: Reset Estimator
12: end if

13: end for

An illustrative example. Let us consider a sample syn-

thetic data stream presented in Fig. 3. The stream con-

tains 100 elements with significant changes appearing at

timestamps 51 and 81. Assume our parameter k = 3.

In this example, we include the last data in the pro-

jection. Considering the observation at timestamp 50,

the values of estimated parameters at timestamp 50 are

as follows: ch=0.487, ct(ctsum)=1.493, cp=75.372, and

CCP is computed as cp
ct = 75.372

1.493 = 50.484. Assume

that the incoming element in the stream at timestamp

50 is 50.45 and the three latest elements in the stream

are sequentially 50.45, 50.66, and 50.08. The processing

steps of the proposed method are the following:

Step 1: Project a vector of the last 3 elements (50.45,

50.66, 50.08) on `1 constraints.

The result of this projection is (0.39, 0.59, 0.02).

Step 2: Calculate the value of CCP Heritage, ch.

Assume the parameter η is set to 0.98, the de-

cay factors αi, i = 1, . . . , 3, are computed to be

(0.98, 0.0196, 0.0004), and the new value of ch

is 0.39 ∗ 0.98 + 0.59 ∗ 0.0196 + 0.02 ∗ 0.0004 =

0.394.

Step 3: Calculate values of estimators ct and cp.

cp = 75.372 ∗ 0.394 + 50.45 = 80.147,

ct = 1.493 ∗ 0.394 + 1 = 1.588.

Step 4: Update mean CCP = cp
ct = 80.147

1.588 = 50.470.

Step 5: Compute the pivotal truncated Gaussian of the

new mean, and the confidence interval of the

old mean with a confidence ρ = 0.01.

We have pval(CCP) = 1.0, and tailarea =

[v ρ
2
, v1− ρ2] = [0.0, 1.0].

Step 6: Check condition pval(i) /∈ tailarea.

Because 1.0 ∈ [0.0, 1.0], the detector determines

that there is no change at timestamp 50.

Step 7: A new data in the stream at timestamp 51 can

now be processed. At the timestamp the data

value is 100.56, so the last 3 elements in the

stream are (100.56, 50.45, 50.66). Repeat Step 1
to Step 6 to process the rest of the stream.

When new data comes in the stream, if a change is

detected, the values of the estimators are reset to de-

fault. In our example, with the sample synthetic dataset,

the CCPD detects two change points at timestamps 52

and 82 (1 delay in comparison with two true change

points at timestamps 51 and 81).

Fig. 5 and Fig. 6 depict the visualization of the real

values of the stream and the estimated mean values

by the CCPD method, running on the sample syn-

thetic streaming data shown in Fig. 3. In particular,

Fig. 5 plots the real values and the estimated mean val-

ues computed using the CCPD method with two true

change points at timestamps 51 and 81, and two de-

tected change points at timestamps 52 and 82. Fig. 6

shows the estimated mean values while we vary the

value of η in the decay factor. The importance degree

of the current data is the combination of the projection

vector (on k latest data) and the decay factors, which

10 Q-H. Duong et al.

are, in turn, affected by the choice of η. Because we

chose decay factors in a form of geometric distribution,

the most effect on the importance of current data can

be derived from the most recent data in the stream.

We observe that when the stream is stable, the value

of the estimator is stable with different values of the

decay factor. However, the obtained estimator signifi-

cantly changes around the change point.

1 20 40 60 80 Time
30

70

110

E
le

m
en

t v
al

ue

stream data CCP mean (k=3) CCP mean (k=5)

Change point

Change point

Detected point

Detected point

Fig. 5 A stream of data with two detected change points.

1 20 40 60 80 Time
30

70

110

E
le

m
en

t v
al

ue

Estimated mean: k=3, =0.98
Estimated mean: k=3, =0.8
Estimated mean: k=3, =0.7
Estimated mean: k=5, =0.98
Estimated mean: k=5, =0.8
Estimated mean: k=5, =0.7

Fig. 6 Estimated mean while varying η

Complexity. The procedure of processing each ar-

rival stream data point has three main parts. The first

part is the Euclidean projection of the k last data points

on a `1 ball constraints. This process is a fast projec-

tion [14] and has complexity O(k). Normally, k is small,

thus the process can be performed in constant time. The

second part is the process of calculating values of CCP,

CCP mean, and updating estimators. The complexity

of this process is constant O(1). The last part is a pro-

cess which we calculate tail area and pivotal Gaussian

value. We use a fixed number (100) of steps to search

for the boundary of the tail. Hence, this process also has

constant complexity O(1). In summary, the complexity

of our method is O(k) +O(1) +O(1) = O(k), thus the

proposed algorithm CCPD has a constant complexity

with constant k, O(k).

5 Evaluation

We have performed thorough experiments to evaluate

the performance of our method and compare it to the

state-of-the-art algorithms. To make our experiments

as real and generic as possible, we performed our evalu-

ation on several different real-world datasets, with var-

ious characteristics. Besides that, an extensive experi-

ment was conducted to evaluate the flow rates of the

stream including detection delay, true positive, true neg-

ative, false negative, and accuracy on several artificial

datasets with known ground-truth. We carried out the

experiments on a computer running the Windows 10

operating system, having a 64 bit Intel i7 2.6 GHz pro-

cessor, and 16 GB of RAM. The proposed algorithm

was implemented in Java. All evaluations are performed

using the MOA framework [9]1, with our algorithm in-

tegrated.

5.1 Real-World Datasets

For our experiments, we used eight real-world datasets,

that are widely-used as benchmark datasets for change-

detection methods [7, 18, 36, 45], consisting of Electric-

ity, Poker (Hand), Forest Covertype, Spam, Usenet1,

Usenet2, Nursery, and EEG Eye State.

Electricity is an electricity consumption dataset col-

lected from the Australian New South Wales Electricity

Market. The dataset has 45,312 instances which con-

tains electricity prices from 7 May 1996 to 5 December

1998. The instances were recorded by an interval every

30 minutes.

Poker-Hand is data of a hand consisting of five playing

cards drawn from a standard deck of 52. The dataset

contains 829,201 instances.

Forest Covertype is forest cover type for a given obser-

vation of 30 x 30 meter cells. The dataset was obtained

from US Forest Service (USFS) Region 2 Resource In-

formation System (RIS) data. The dataset is recorded

in the Roosevelt National Forest of northern Colorado,

US. Forest Covertype contains 581,012 instances.

Spam is a dataset based on the Spam Assassin collec-

tion and contains both spam and legitimate messages.

The Spam dataset has 9,324 instances.

1 Version 4.0.0, June 2017.

Applying Temporal Dependence to Detect Changes in Streaming Data 11

Usenet1 and Usenet2 are based on the twenty news-

groups data set, which consists of 20,000 messages taken

from twenty newsgroups. Each of Usenet1 and Usenet2

contains 1,500 instances obtained from twenty news-

groups data set to present a stream of messages of a

user.

Nursery was derived from a hierarchical decision model

originally developed to rank applications for nursery

schools in Ljubljana, Slovenia. The dataset contains

12,960 instances.

EEG Eye State was originally used to predict eye states

by measuring brain waves with an electroencephalo-

graphic (EEG), i.e., finding the correlation between eye

states and brain activities [38]. It consists of 14,980 in-

stances with 14 EEG values, where each value indicates

the eye state.

Electricity, Forest Covertype and Poker-Hand were ob-

tained from the most popular open source framework

for data stream mining MOA2, while the remaining

datasets were obtained from the UCI Machine Learning

Repository3 (University of California, Irvine)

5.2 Performance

This section presents the experimental results of the

proposed method compared to the state-of-the-art al-

gorithms. We performed empirical experiments to eval-

uate our proposed algorithm and compared it against

HDDMW , HDDMA [18], DDM [19], EDDM [4], Seq-

Drift2 [33], FHDDM [36]4, and RDDM5 [5]. These algo-

rithms were chosen because they are the state-of-the art

algorithms in drift detection (see also Section 2). Imple-

mentation of the algorithms are provided by the MOA

framework. In all our experiments we used Naẗıve Bayes

(NB) and Hoeffding Tree (HT) classifiers as the base

learners, which are frequently used in the literature [7,

18, 33, 36]. In addition, we performed comparison with

a baseline method, called “No Change Detection”, that

detects changes with base learners only. The confidence

value is set to 0.001, η is set to 0.99. The λ in HDDMW

is set to 0.05 as recommendation by the authors. The

sliding window size is set to 25 in FHDDM. Accord-

ing to the authors, it is the optimal value providing the

2 https://moa.cms.waikato.ac.nz/datasets/
3 http://archive.ics.uci.edu/ml/datasets.html
4 Source code of the FHDDM is provided by the authors of

the algorithm
5 Source code of the RDDM is obtained from the authors

personal website

best classification accuracy. With the other algorithms,

in all the tests we use the default parameters and con-

figuration values as recommended by the authors of the

original work. Accuracy evaluator is computed base on

a window with size 100. Frequency of sampling process

is every 100 samples. Furthermore, we prepare two ver-

sions, named CCPDk=5 and CCPDk=3. CCPDk=5 is

our proposed method running with a projection on the

last five data points in the stream, while CCPDk=3

runs with a projection on the last three data points in

the stream.

Table 2-3 show the average (a) and standard devia-

tion (std) accuracy of the change detection algorithms

with NB and HT classifiers as base learner, respectively.

In case of same accuracy result, we consider the al-

gorithm with the lowest standard deviation to be the

best. The results show that CCPD wins 5 times on to-

tal 8 datasets with NB classifiers and 4 times on total

8 datasets with HT classifiers. Further, Table 4 shows

that our proposed method obtains the best accuracy

scores with the majority of the datasets (five out of

eight datasets), including Electricity, Spam, Usenet1,

Corvertype, and Poker datasets; while on EEG Eye,

Nursery, and Usenet2, the accuracy ranks are 2, 4, and

6.5 (the same rank with FHDDM), respectively. An-

other observation from the experiments is that, while

varying the order of temporal dependency k, the accu-

racy scores on Nursery and Usernet2 change abruptly.

This can be explained as follows. On the Usernet2 dataset,

the reason is that the concept drift is moderate and the

topic shift on the dataset is blunt and blurred. More-

over, the number of samples in the dataset is small for

the training. On Nursery, on the other hand, the change

behavior may be due to the large number of distinct

values of attributes in the dataset. Thus, the tempo-

ral dependency is loose, which has in turn an impact

on detecting the changes. Nevertheless, the difference

from the best accuracy is not significant. Overall, the

empirical results show that CCPD has the best perfor-

mance in all cases of combinations with NB and HT

classifier.

To further evaluate the performance of the proposed

method, and in order to get a fair comparison among

the algorithms, we performed statistical significance tests

based on the average rank of accuracy of the algo-

rithms [15]. Firstly, we select the best accuracy of the

algorithms with NB classifier and HT classifier and then

report rank of accuracy of the algorithms. Secondly, we

use Friedman test because it is a nonparametric ana-

logue of the parametric two-way analysis of variance by

ranks. Table 4 shows statistical test results using the

methodology proposed in [15]. The number in paren-

theses at each cell is the rank of accuracy. The bold

12 Q-H. Duong et al.

Table 2 Accuracy results (%) with Naẗıve Bayes (NB) classifier

Algorithm Factor Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye
(%) (%) (%) (%) (%) (%) (%) (%)

CCPDk=5 a 85.19 92.65 75.67 61.20 88.98 83.46 79.96 99.45
std 5.93 8.60 10.30 19.87 9.39 14.69 9.33 1.62

CCPDk=3 a 86.20 92.88 78.27 63.00 89.18 91.85 80.42 99.43
std 5.45 7.98 11.67 21.81 8.46 9.20 8.36 1.68

HDDMW−test(0.05) a 84.47 91.51 75.07 70.93 86.23 91.71 77.11 97.60
std 6.57 7.39 11.91 13.79 8.07 7.61 8.80 5.13

HDDMA−test a 85.09 90.67 75.20 71.00 87.44 92.51 76.48 98.33
std 6.33 9.31 11.59 13.29 7.97 6.50 9.82 3.73

DDM a 82.70 89.50 73.73 72.93 88.03 91.72 61.97 99.57

std 8.70 13.89 12.69 12.09 8.35 7.11 21.36 1.19
EDDM a 84.93 90.66 75.13 73.27 86.09 92.02 77.48 96.85

std 6.23 8.60 12.32 12.76 8.66 6.77 8.40 7.26
SeqDrift2 a 79.83 89.87 65.80 72.13 82.45 87.18 72.25 93.04

std 11.50 13.38 23.51 11.54 12.31 8.84 14.29 17.05
RDDM a 84.88 91.45 74.73 73.07 86.87 92.70 76.67 99.06

std 6.36 7.44 11.87 12.10 8.32 6.10 9.11 2.88
FHDDM a 83.32 91.36 74.73 71.20 85.10 89.09 76.68 97.28

std 7.29 6.99 11.86 12.43 9.07 10.82 9.12 5.96
No Change Detection a 74.17 90.63 63.33 72.13 60.53 83.35 59.55 47.35

std 14.69 10.93 23.64 11.54 21.76 14.94 21.96 46.67

Table 3 Accuracy results (%) with Hoeffding Tree (HT) classifier

Algorithm Factor Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye
(%) (%) (%) (%) (%) (%) (%) (%)

CCPDk=5 a 83.49 92.67 74.47 57.20 89.44 72.22 79.15 99.62
std 6.56 8.45 11.22 23.14 9.49 13.26 9.75 1.04

CCPDk=3 a 84.26 92.98 75.53 71.20 89.51 86.35 79.53 99.62
std 6.21 7.78 6.80 12.31 8.67 14.82 8.98 1.04

HDDMW−test(0.05) a 85.46 91.48 74.73 70.00 85.98 90.48 77.12 97.49
std 6.91 7.85 8.41 9.00 8.23 6.66 8.93 4.94

HDDMA−test a 86.11 91.66 74.60 68.87 87.27 90.93 76.40 98.89
std 6.45 7.22 8.14 8.24 8.02 6.02 9.93 2.62

DDM a 85.83 91.94 73.00 69.80 82.58 91.31 72.74 99.64

std 7.17 7.22 10.03 9.34 12.95 6.41 15.14 1.04

EDDM a 85.26 91.68 73.93 72.00 86.02 90.17 77.31 96.64
std 6.66 7.88 8.96 10.44 8.46 6.79 8.68 7.33

SeqDrift2 a 82.30 91.55 69.67 72.00 82.86 89.01 72.51 93.63
std 11.12 9.23 20.38 11.01 12.09 6.83 13.89 16.42

RDDM a 85.83 92.09 74.27 69.60 86.43 91.75 76.70 99.06
std 6.64 7.45 8.39 8.57 8.53 5.68 9.21 4.34

FHDDM a 84.93 92.38 74.40 69.93 85.07 89.85 76.72 97.02
std 7.74 7.11 8.31 9.12 9.14 7.82 9.15 6.15

No Change Detection a 78.87 90.17 63.13 72.00 80.58 89.85 76.07 75.35
std 12.40 12.84 21.78 11.01 13.28 7.82 16.19 28.62

Table 4 Rank of accuracy of the algorithms and significance tests

Datasets FHDDM HDDMW HDDMA DDM EDDM SeqDrift2 RDDM NoChange CCPDk=3

Electricity 84.93(7) 85.46(5) 86.11(2) 85.83(3.5) 85.26(6) 82.23(8) 85.83(3.5) 78.87(9) 86.20(1)
Spam 92.38(2) 91.51(8) 91.66(6) 91.94(4) 91.68(5) 91.55(7) 92.09(3) 90.63(9) 92.98(1)

Usenet1 74.73 (5.5) 75.07(4) 75.20(2) 73.73(7) 75.13(3) 69.67(8) 74.73(5.5) 63.33(9) 78.27(1)

Usenet2 71.20(6.5) 70.93(9) 71.00(8) 72.93(3) 73.27(1) 72.13(4.5) 73.07(2) 72.13(4.5) 71.20(6.5)
Covertype 85.10(7) 86.23(5) 87.44(3) 88.03(2) 86.09(6) 82.86(8) 86.87(4) 80.58(9) 89.51(1)

Nursery 89.85(7.5) 91.71(6) 92.51(2) 91.72(5) 92.02(3) 89.01(9) 92.70(1) 89.85(7.5) 91.85(4)
Poker 76.72(4) 77.11(3) 76.48(6) 72.74(8) 77.48(2) 72.51(9) 76.70(5) 76.07(7) 80.42(1)

EEG Eye 97.28(6) 97.60(5) 98.89(4) 99.64(1) 96.85(7) 93.63(8) 99.06 (3) 75.35(9) 99.62(2)
average rank 5.69 5.63 4.13 4.19 4.13 7.69 3.38 8.0 2.19

mean rank Value of χ2 FF Critical F-value

5.0 31.8167 6.9202 2.1782

Applying Temporal Dependence to Detect Changes in Streaming Data 13

values indicate the best results per dataset. Based on

the methodology, we reject the null-hypothesis because

FF > Critical F-value. This means that there are sig-

nificant differences between the algorithms. Finally, we

use the Nemenyi post-hoc test to present these differ-

ences. We set the significance level at 5%. The critical

value for 9 algorithms is 3.10. The critical difference at

level 5% is CD = 4.24. Fig. 7 shows the results of the

Nemenyi test of the data from Table 4. On the figure,

the methods on the right side have lower average rank

of accuracy and are better than the methods on the

left.

5.3 Impact of the k-Order

In this section, we run tests to evaluate the depen-

dencies of data points in the streams in the Electric-

ity, Poker, Forest Covertype, Spam, Usenet1, Usenet2,

Nursery, and EEG Eye State datasets. We record av-

erage accuracy and standard deviation of the CCPD

on the datasets with NB classifier while varying the

parameter k from 2 to 7. Table 5 shows the average

accuracy and standard deviation of the CCPD method

while varying k from 2 to 7. From the results, we can

observe that the different values of k will affect to the

accuracy of the algorithm. The best accuracy is almost

obtained at order k=2 or k=3. On Electricity, Usenet2,

and Covertype datasets, the best performance is ob-

tained when we project on k=2 data, while on the re-

maining datasets, the best performance is at k=3. On

the EEG Eye State dataset, when the value of k in-

creases from 2 to 7, the accuracy also slightly increases.

For the sake of comparison, the table only shows k ∈
[2, 7]. Since we observed that the values were still in-

creasing, we decided to vary k, until k = 20 to find

the optimal value. The optimal accuracy of 99.55% was

found at k = 13. The best accuracy at different order

k also depends on characteristic of the input dataset.

Furthermore, the results show that change in accuracy,

abrupt or slight, is dataset-dependent. On Electricity,

Spam, Covertype, and Poker datasets, when we vary

value of order k, the accuracy changes slightly. In con-

trast, the accuracy varies abruptly on Usenet1, Usenet2,

and Nursery datasets.

As shown in the results in Table 5, the best results

are usually in 2 or 3 orders of dependency. The reason

can be explained as that the proposed method uses the

fixed length for projection of temporal dependencies.

In real life datasets, the order of dependencies may not

be fixed length, which means that each data point in

a stream may have temporal dependencies from differ-

ent number of its previous data points. For this reason,

our further research will include studying higher-order

temporal dependencies.

5.4 True Change Point and Delay

One of the disadvantages of some real-world datasets in

change detection problem is that the ground truth of

the datasets is unknown. On the other hand, the perfor-

mance of a detection method is evaluated base on the

accuracy and delay of detected change points to the

real change points in the data. In the above section, we

have presented the efficiency of our proposed method

with high accuracy detection. In this section, for a fur-

ther evaluation of the algorithm, we describe the tests

we performed with CCPD on a real-world dataset for

which its ground truth has been known. This is the

Electricity dataset, which is also widely-used in many

methods [10, 45] for change detection. In this dataset,

data are heavily autocorrelated with frequency peaks

in every 48 instances [45].

In this experiment, we performed tests on the first

1,000 instances of the dataset. We then record change

points detected by CCPD and other state-of-the-art al-

gorithms with respect to true change points that are

known as ground truth. Specifically, we did experiments

employing CCPD, HDDMW , HDDMA, CUSUM, and

PAGE-HINKLEY algorithms. CCPD, HDDMW , and

HDDMA are here online detection algorithms. PAGE-

HINKLEY is a concept drift detection based on the

Page Hinkley Test, while CUSUM is a drift detection

method based on cumulative sum. For the best compet-

itive comparison, CUSUM and PAGE-HINKLEY are

executed in an online manner at every data point in

the stream. Here, we set sample frequency to 1. We

adjust the minimal number of instance to 1, and set

all the other parameters to default values as in MOA

framework according to prior works.

Table 6 shows the change points detected by the

algorithms on Electricity dataset. The CCPD detects

online and at exact change points. CUSUM and PAGE-

HINKLEY have the same result with a short delay de-

tection of change, which is 1 data point. HDDMA−test
produces the largest delay with 15 data points in delay.

And the last algorithm HDDMW−test detects change

with 4 data points in delay.

5.5 Experiments on Synthetic Datasets

This subsection presents experiments to evaluate detec-

tion delay, true positive (TP), true negative (TN), false

negative (FN), and accuracy of our proposed method.

We compared the results with several state-of-the-art

14 Q-H. Duong et al.

Table 5 Accuracy results (%) of CCPD with Naẗıve Bayes classifier

CCPDk Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye
(%) (%) (%) (%) (%) (%) (%) (%)

k=2 86.29±5.35 92.84±7.79 76.07±11.40 70.40±10.63 89.29±8.02 85.35±14.23 80.29±8.12 99.43±1.68
k=3 86.20±5.45 92.88±7.98 78.27±11.67 63.00±21.81 89.18±8.46 91.85±9.20 80.42±8.36 99.43±1.68
k=4 85.78±5.62 92.80±8.18 77.13±10.53 65.07±20.62 89.06±8.94 83.45±14.72 80.29±8.80 99.45±1.68
k=5 85.19±5.93 92.65±8.60 75.67±10.30 61.20±19.87 88.98±9.39 83.46±14.69 79.96±9.33 99.45±1.62
k=6 84.83±6.08 92.74±8.40 71.47±9.89 61.27±19.88 88.95±9.55 52.02±12.51 79.61±9.83 99.46±1.57
k=7 84.39±6.39 92.66±8.57 61.87±10.91 53.00±14.85 88.95±9.65 43.02±5.15 79.29±10.23 99.48±1.45

Table 6 Change points detected, where i =1, 2, . . .

Algorithm Detected Points
CCPD5 (48× i+ 1)± 0
HDDMW−test(0.05) (48× i+ 1)± 4
HDDMA−test (48× i+ 1)± 15
CUSUM (48× i+ 1)± 1
PAGE −HINKLEY (48× i+ 1)± 1

1234567

CD = 4.24

CCPD

RDDM

EDDM

HDDM_A
DDM

SeqDrift2

No Change

8

HDDM_W

9

FHDDM

Fig. 7 Nemenyi test with confidence level α = 0.05

drift detectors, including EDDM [4], ECDD [39], Seq-

Drift2 [33], and RDDM [5], on four widely-used syn-

thetic data streams in the literature [18, 36]: Mixed,

Sine, Circles, and LED. Each dataset contains 100,000

instances, and 10% noise in class of instances. In brief,

the characteristics of these datasets are as follows:

– Mixed : This dataset contains four attributes, in-

cluding two Boolean attributes and two numeric at-

tributes in the [0, 1] interval. The Mixed dataset

contains abrupt concept drifts. The drifts occur at

every 20,000 instances with a transition length ξ =

50.

– Sine1 : In this dataset there are two attributes that

are uniformly distributed in the [0, 1] interval. The

Sine1 dataset contains abrupt concept drifts. The

drifts occur at every 20,000 instances with a transi-

tion length ξ = 50.

– Circles: This dataset uses four circles to simulate

concept drifts. Each instance has two numeric at-

tributes on the [0, 1] interval. The Circles dataset

contains gradual concept drifts. The drifts occur at

every 25,000 instances with a transition length ξ =

500.

– LED : This dataset is a seven-segment display of

digit dataset. The LED dataset contains gradual

concept drifts. The drifts occur at every 25,000 in-

stances with a transition length ξ = 500.

All experiments on the synthetic datasets were per-

formed using the MOA framework with parameters set

to the optimal values for all the compared algorithms

as recommended in the original papers. We adopted

the acceptable delay length metric [36] to evaluate the

performance of the algorithms. Given a threshold, if a

detector can detect a change within a threshold delay

from the true change point, it is considered as a true

positive. In the experiments on the Mixed and Sine1

datasets, the level of temporal dependency k is set to

3 and the acceptable delay is set to 250. While on the

Circles and LED datasets, k is empirically set to 5 and

the acceptable delay is set to 1,000.

Table 7 shows the average and standard deviation of

classification results for the CCPD, EDDM, ECDD, Se-

qDrift2, and RDDM running on 100 samples of datasets.

The results show that, in most cases, ECDD and EDDM

are the worst detectors. On the Circles dataset, Seq-

Drift2 has the best performance, while SeqDrift2 has

the worst performance on the LED dataset. This can

be explained as follows. SeqDrift2 maintains a fixed

size reservoir sampling for concept drift detection. The

reservoir sampling contains 200 instances, and this size

Applying Temporal Dependence to Detect Changes in Streaming Data 15

Table 7 Results with Naẗıve Bayes(NB) and Hoeffding Tree(HT) classifiers on synthetic datasets

Algorithms Delay TP FP FN Accuracy Rank

M
ix

ed
d

a
ta

se
t

N
B

CCPD 62.60 ± 7.74 4.0 ± 0.0 0.01 ± 0.1 0.0 ± 0.0 83.34 ± 0.08 1
RDDM 104.97 ± 12.12 3.99 ± 0.1 1.86 ± 1.66 0.01 ± 0.1 83.24 ± 0.09 2
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.39 ± 0.79 0.0 ± 0.0 82.91 ± 0.08 3
ECDD 38.87 ± 24.65 3.81 ± 0.42 142.29 ± 7.90 0.19 ± 0.42 81.00 ± 0.15 4
EDDM 247.47 ± 8.65 0.11 ± 0.31 20.22 ± 7.70 3.89 ± 0.31 80.30 ± 2.33 5

H
T

CCPD 63.22 ± 9.23 4.0 ± 0.0 0.04 ± 0.20 0.0 ± 0.0 83.37 ± 0.10 1
RDDM 106.68 ± 11.32 3.99 ± 0.1 3.49 ± 2.48 0.01 ± 0.1 83.17 ± 0.12 2
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.98 ± 1.21 0.0 ± 0.0 82.91 ± 0.11 3
ECDD 39.76 ± 26.08 3.79 ± 0.46 138.34 ± 7.95 0.21 ± 0.46 80.95 ± 0.15 4
EDDM 248.46 ± 7.73 0.05 ± 0.22 21.51 ± 7.74 3.95 ± 0.22 80.65 ± 0.82 5

S
in

e1
D

a
ta

se
t

N
B

CCPD 59.54 ± 6.89 4.0 ± 0.0 0.01 ± 0.1 0.0 ± 0.0 86.03 ± 0.25 1
RDDM 89.73 ± 16.54 3.99 ± 0.10 3.93 ± 2.92 0.01 ± 0.1 85.98 ± 0.27 2
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.26 ± 0.0 0.0 ± 0.58 85.60 ± 0.25 3
ECDD 33.30 ± 23.22 3.85 ± 0.39 153 ± 8.34 0.15 ± 0.39 84.38 ± 0.14 4
EDDM 234.28 ± 22.33 0.57 ± 0.64 33.53 ± 11.56 3.43 ± 0.64 83.44 ± 2.88 5

H
T

CCPD 58.45 ± 6.55 4.0 ± 0.0 0.03 ± 0.17 0.0 ± 0.0 87.02 ± 0.15 1
RDDM 93.54 ± 7.82 4.0 ± 0.0 4.72 ± 3.59 0.0 ± 0.0 86.79 ± 0.19 2
SeqDrift2 200.0 ± 0.0 4.0 ± 0.0 4.83 ± 1.16 0.0 ± 0.0 86.53 ± 0.15 3
ECDD 36.58 ± 25.54 3.8 ± 0.43 153.78 ± 7.67 0.2 ± 0.43 84.28 ± 0.14 5
EDDM 243.83 ± 22.33 0.22 ± 0.64 33.77 ± 11.56 3.78 ± 0.64 84.71 ± 2.88 4

C
ir

cl
es

D
a
ta

se
t

N
B

CCPD 621.09 ± 139.12 1.59 ± 0.57 0.50 ± 0.64 1.41 ± 0.57 83.49 ± 0.52 3
RDDM 406.50 ± 69.75 2.99 ± 0.1 2.15 ± 1.95 0.01 ± 0.1 84.05 ± 0.12 2
SeqDrift2 276.67 ± 91.56 2.92 ± 0.27 2.49 ± 0.98 0.08 ± 0.27 84.13 ± 0.14 1
ECDD 194.64 ± 158.13 2.84 ± 0.37 174.53 ± 7.62 0.16 ± 0.37 83.18 ± 0.11 4
EDDM 938.27 ± 107.14 0.35 ± 0.5 31.09 ± 18.23 2.65 ± 0.5 83.12 ± 0.4 5

H
T

CCPD 524.62 ± 144.31 2.02 ± 0.57 0.67 ± 0.78 0.98 ± 0.57 85.94 ± 0.42 3
RDDM 293.80 ± 38.72 2.98 ± 0.14 0.79 ± 1.26 0.02 ± 0.14 86.46 ± 0.16 2
SeqDrift2 202.67 ± 16.19 3.0 ± 0.0 3.08 ± 0.91 0.0 ± 0.0 86.47 ± 0.14 1
ECDD 186.40 ± 151.67 2.86 ± 0.35 175.16 ± 8.39 0.14 ± 0.35 83.21 ± 0.12 5
EDDM 987.75 ± 54.64 0.06 ± 0.24 24.45 ± 14.57 2.94 ± 0.24 84.89 ± 0.29 4

L
E

D
D

a
ta

se
t N
B

CCPD 481.75 ± 129.42 2.77 ± 0.55 13.44 ± 7.75 0.23 ± 0.55 89.15 ± 0.57 2
RDDM 321.80 ± 51.19 2.98 ± 0.14 0.61 ± 0.96 0.02 ± 0.14 89.63 ± 0.04 1
SeqDrift2 445.33 ± 193.24 2.75 ± 0.46 278.82 ± 47.74 0.25 ± 0.46 76.54 ± 2.27 5
ECDD 194.53 ± 139.51 2.86 ± 0.40 60.51 ± 3.58 0.14 ± 0.40 86.41 ± 0.19 4
EDDM 949.61 ± 69.29 0.70 ± 0.73 6.33 ± 1.97 2.3 ± 0.73 88.32 ± 0.53 3

H
T

CCPD 479.84 ± 124.70 2.77 ± 0.55 13.9 ± 7.07 0.23 ± 0.55 89.21 ± 0.31 2
RDDM 321.88 ± 51.20 2.98 ± 0.14 0.61 ± 0.96 0.02 ± 0.14 89.63 ± 0.04 1
SeqDrift2 426.0 ± 174.18 2.78 ± 0.44 277.06 ± 47.71 0.22 ± 0.44 76.51 ± 2.29 5
ECDD 197.07 ± 140.93 2.85 ± 0.41 60.19 ± 3.68 0.15 ± 0.41 86.39 ± 0.19 4
EDDM 954.97 ± 63.30 0.66 ± 0.71 5.97 ± 1.70 2.34 ± 0.71 88.33 ± 0.50 3

Algorithms CCPD RDDM SeqDrift2 ECDD EDDM
Average Rank 1.75 1.75 3.0 4.25 4.25

is suitable for the Circles dataset since it contains grad-

ual concept drifts with a transition length of 500. The

low accuracy of SeqDrift2 on LED is a result of its very

high false positive. On the Mixed and Sine1 datasets, we

observe that, the shortest delay is obtained by ECDD.

The reason is that the number of instances in the esti-

mated window in ECDD is small. However, with ECDD,

both the TP rate and the FP rate are high, thus re-

sulting in a low accuracy. In almost all cases, CCPD

and RDDM have the best accuracy and very good flow

rates of detection delay, TP, FP, and FN. The CCPD

has the most accurate and very low FP, FN rates on the

Mixed and Sine1 datasets; while RDDM has good per-

formance on the LED dataset. This is because RDDM

discards old instances from the stream, while in CCPD,

we weigh the current instance based on a projection on

k latest instances in the stream. Therefore, any concept

drifts can be quickly detected on abrupt concept drift

datasets like Mixed and Sine1. Overall, the CCPD and

RDDM have the same rank (1.75).

5.6 Runtime Performance

In terms of runtime performance, we performed ex-

periments to evaluate the classification time and the

streaming processing speed of our proposed method.

Table 8 presents the evaluations of the method in terms

of running time in streaming on Electricity, Poker, For-

16 Q-H. Duong et al.

Table 8 Evaluations on running time of the CCPD

Metrics Electricity Spam Usenet1 Usenet2 Covertype Nursery Poker EEG Eye

Number of learning
evaluations

454 94 15 15 5,812 130 8,293 150

Average total running
time

3.135(s) 5.401(s) 0.190(s) 0.323(s) 59.513(s) 23.719(s) 40.557(s) 11.220(s)

Average
time/learning

6.90(ms) 57.46(ms) 12.67(ms) 21.53(ms) 10.24(ms) 182.45(ms) 4.89(ms) 74.8(ms)

Number of process-
ing/second

144.8/(s) 17.4/(s) 78.9/(s) 46.5/(s) 97.7/(s) 5.5/(s) 204.5/(s) 13.4/(s)

est Covertype, Spam, Usenet1, Usenet2, Nursery, and

EEG Eye datasets. It shows number of learning evalu-

ations, average total running time in second, average

time using for each learning process and number of

learning can be processed per second. From this table,

we can observe that our detector is capable of process-

ing a streaming at high velocity, up to 204.5 process

per second. Hence, it is feasible to detect changes in an

online setting as in streaming manner.

6 Conclusion

In this paper, we presented a new approach for detect-

ing changes in an open-ended data stream. We pro-

posed a k-order Candidate Change Point (CCP) Model

that builds on linear higher order Markov processes,

in order to exploit the temporal dependency among

data in a stream. The main idea with the model is to

compute the probability of finding change points in a

given observation time window, using the temporal de-

pendency information or factors between different ob-

served data points in a stream. To cope with the dy-

namic nature of the stream, we proposed an approach

that can continuously optimize the temporal depen-

dency factors by using an Euclidean projection on `1
ball constraints. In addition, we introduced a concept

called CCP trail, which refers to the probabilistic path

from a specific observed data point to another previ-

ously observed data point. Our approach adapts the

probability of finding change points to continuously es-

timate the CCP trail means in streaming data. Using

CCP trail mean values, we applied statistical tests to

detect the change points. To evaluate our approach, we

performed extensive experiments using several datasets

and compared our algorithm to the state-of-the-art al-

gorithms. Our evaluation showed that our k-order Can-

didate Change Point Model is effective, and that the

Candidate Change Point Detector (CCPD) algorithm

outperforms the state-of-the-art algorithms on most of

the datasets. In addition, our method has a linear time

performance, which enables it to be deployed online in

real-world stream applications.

There are several directions to extend this work.

First, it is worth investigating how the number of dif-

ferent CCPs in different data points affects the depen-

dency model. Second, in data stream, a large volume of

data arrives at a high speed. Therefore, it is infeasible

to maintain information of all data. Developing sketch-

ing algorithms that combine temporal dependency for

detecting drifts and outliers is an area for further study.

Acknowledgements

This research is funded by the Norwegian University of

Science and Technology (NTNU) through the MUSED

project.

References

1. Adä, I., Berthold, M.R.: EVE: a framework for event de-
tection. Evolving Systems 4(1), 61–70 (2013)

2. Adhikari, U., Morris, T., Pan, S.: Applying Hoeffding
Adaptive Trees for Real-Time Cyber-Power Event and
Intrusion Classification. IEEE Transactions on Smart
Grid PP(99), 1–12 (2017)

3. Anagnostopoulos, C., Tasoulis, D.K., Adams, N.M.,
Pavlidis, N.G., Hand, D.J.: Online Linear and Quadratic
Discriminant Analysis with Adaptive Forgetting for
Streaming Classification. Statistical Analysis and Data
Mining 5(2), 139–166 (2012)

4. Baena-Garćıa, M., del Campo-Ávila, J., Fidalgo, R.,
Bifet, A., Gavaldá, R., Morales-Bueno, R.: Early drift
detection method. In: The 4th International Workshop
on Knowledge Discovery from Data Streams (2006)

5. Barros, R.S., Cabral, D.R., Gonalves, P.M., Santos, S.G.:
RDDM: Reactive drift detection method. Expert Systems
with Applications 90(Supplement C), 344–355 (2017)

6. Bifet, A.: Classifier Concept Drift Detection and the Illu-
sion of Progress. In: Artificial Intelligence and Soft Com-
puting, pp. 715–725. Springer International Publishing,
Cham (2017)

7. Bifet, A., Gavaldà, R.: Learning from Time-Changing
Data with Adaptive Windowing. In: Proceedings of the
2007 SIAM International Conference on Data Mining, pp.
443–448 (2007)

Applying Temporal Dependence to Detect Changes in Streaming Data 17

8. Bifet, A., Gavaldà, R.: Adaptive Learning from Evolv-
ing Data Streams. In: Proceedings of the 8th Interna-
tional Symposium on Intelligent Data Analysis, pp. 249–
260 (2009)

9. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA:
Massive Online Analysis. The Journal of Machine Learn-
ing Research 11, 1601–1604 (2010)

10. Bifet, A., Read, J., Žliobaitė, I., Pfahringer, B., Holmes,
G.: Pitfalls in Benchmarking Data Stream Classifica-
tion and How to Avoid Them. In: Proceedings of the
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, ECML PKDD, pp. 465–479
(2013)

11. Bodenham, D.A., Adams, N.M.: Continuous monitoring
for changepoints in data streams using adaptive estima-
tion. Statistics and Computing 27(5), 1257–1270 (2017)

12. Bryc, W.: A uniform approximation to the right nor-
mal tail integral. Applied Mathematics and Computation
127(2), 365–374 (2002)

13. Chattopadhyay, S., Murthy, C., Pal, S.K.: Fitting trun-
cated geometric distributions in large scale real world net-
works. Theoretical Computer Science 551, 22–38 (2014)

14. Condat, L.: Fast projection onto the simplex and the and
the `1 ball. Mathematical Programming 158(1), 575–585
(2016)

15. Demšar, J.: Statistical Comparisons of Classifiers over
Multiple Data Sets. The Journal of Machine Learning
Research 7, 1–30 (2006)

16. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.:
Efficient projections onto the `1-ball for learning in high
dimensions. In: Proceedings of the 25th International
Conference on Machine Learning, ICML, pp. 272–279
(2008)

17. Fŕıas-Blanco, I.I., del Campo-Ávila, J., Ramos-Jiménez,
G., Carvalho, A.C.P.L.F., Dı́az, A.A.O., Morales-Bueno,
R.: Online adaptive decision trees based on concentra-
tion inequalities. Knowledge-Based Systems 104, 179–
194 (2016)

18. Fŕıas-Blanco, I.I., del Campo-Ávila, J., Ramos-Jiménez,
G., Morales-Bueno, R., Ortiz-Dı́az, A.A., Caballero-
Mota, Y.: Online and Non-Parametric Drift Detection
Methods Based on Hoeffding’s Bounds. IEEE Transac-
tions on Knowledge and Data Engineering 27(3), 810–823
(2015)

19. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learn-
ing with Drift Detection. In: Proceedings of Brazilian
Symposium on Artificial Intelligence, pp. 286–295 (2004)

20. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluat-
ing stream learning algorithms. Machine Learning 90(3),
317–346 (2013)

21. Gama, J.a., Žliobaitė, I., Bifet, A., Pechenizkiy, M.,
Bouchachia, A.: A Survey on Concept Drift Adaptation.
ACM Computing Surveys 46(4), 1–37 (2014)

22. Gomes, H.M., Barddal, J.P., Enembreck, F., Bifet, A.:
A Survey on Ensemble Learning for Data Stream Clas-
sification. ACM Computing Surveys 50(2), 23:1–23:36
(2017)

23. Gomes, H.M., Bifet, A., Read, J., Barddal, J.P., Enem-
breck, F., Pfharinger, B., Holmes, G., Abdessalem, T.:
Adaptive random forests for evolving data stream classi-
fication. Machine Learning 106(9), 1469–1495 (2017)

24. Harries, M.B., Sammut, C., Horn, K.: Extracting Hidden
Context. Machine Learning 32(2), 101–126 (1998)

25. Hoeffding, W.: Probability Inequalities for Sums of
Bounded Random Variables. Journal of the American
Statistical Association 58(301), 13–30 (1963)

26. Kifer, D., Ben-David, S., Gehrke, J.: Detecting Change
in Data Streams. In: Proceedings of the 13th Interna-
tional Conference on Very Large Data Bases - Volume
30, VLDB, pp. 180–191 (2004)

27. Kolter, J.Z., Maloof, M.A.: Dynamic Weighted Majority:
An Ensemble Method for Drifting Concepts. The Journal
of Machine Learning Research 8, 2755–2790 (2007)

28. Kumar, R., Raghu, M., Sarlós, T., Tomkins, A.: Linear
additive markov processes. In: Proceedings of the 26th
International Conference on World Wide Web, pp. 411–
419 (2017)

29. Li, P., Wu, X., Hu, X.: Mining recurring concept drifts
with limited labeled streaming data. In: Proceedings of
the 2nd Asian Conference on Machine Learning, PMLR,
vol. 13, pp. 241–252 (2010)

30. Liu, J., Ye, J.: Efficient euclidean projections in linear
time. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ICML, pp. 657–664
(2009)

31. Markov, A.: Extension of the Limit Theorems of Proba-
bility Theory to a Sum of Variables Connected in a Chain.
In: Appendix B, Dynamic Probabilistic Systems (Volume
I: Markov Models), pp. 552–577 (1971)

32. Page, E.S.: Continuous Inspection Schemes. Biometrika
41(1/2), 100–115 (1954)

33. Pears, R., Sakthithasan, S., Koh, Y.S.: Detecting con-
cept change in dynamic data streams. Machine Learning
97(3), 259–293 (2014)

34. Pesaranghader, A., Viktor, H., Paquet, E.: McDiarmid
Drift Detection Methods for Evolving Data Streams.
CoRR abs/1710.02030 (2017)

35. Pesaranghader, A., Viktor, H., Paquet, E.: Reservoir of
Diverse Adaptive Learners and Stacking Fast Hoeffd-
ing Drift Detection Methods for Evolving Data Streams.
CoRR abs/1709.02457 (2017)

36. Pesaranghader, A., Viktor, H.L.: Fast Hoeffding Drift De-
tection Method for Evolving Data Streams. In: Proceed-
ings of the 2016 Machine Learning and Knowledge Dis-
covery in Databases, ECML PKDD, pp. 96–111 (2016)

37. Roberts, S.W.: Control Chart Tests Based on Geometric
Moving Averages. Technometrics 1(3), 239–250 (1959)

38. Rösler, O., Suendermann, D.: A first step towards eye
state prediction using EEG. In: Proceedings of the Inter-
national Conference on Applied Informatics for Health
and Life Sciences (AIHLS 2013) (2013)

39. Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Ex-
ponentially weighted moving average charts for detecting
concept drift. Pattern Recognition Letters 33(2), 191–
198 (2012)

40. Schlimmer, J.C., Granger, R.H.: Incremental learning
from noisy data. Machine learning 1(3), 317–354 (1986)

41. Sebastião, R., Gama, J., Mendonça, T.: Fading his-
tograms in detecting distribution and concept changes.
International Journal of Data Science and Analytics 3(3),
183–212 (2017)

42. Tibshirani, R.J., Taylor, J., Lockhart, R., Tibshirani, R.:
Exact Post-Selection Inference for Sequential Regression
Procedures. Journal of the American Statistical Associ-
ation 111(514), 600–620 (2016)

43. Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S.,
Weinberger, M.J.: Inequalities for the `1 Deviation of
the Empirical Distribution. Technical report, Hewlett-
Packard Labs (2003)

44. Wu, T., Gleich, D.F.: Retrospective higher-order markov
processes for user trails. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD, pp. 1185–1194 (2017)

18 Q-H. Duong et al.

45. Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., Holmes,
G.: Evaluation methods and decision theory for classifi-
cation of streaming data with temporal dependence. Ma-
chine Learning 98(3), 455–482 (2015)

Appendix A PROOF

A.1 Proof of Property 1

Proof Equation 7 can be easily proved by induction.

When t2 = t1, we have:

t2∏
t=t1

(1{t 6=t1} × cht + 1{t=t1}) = 1{t1 6=t1} × cht1 + 1{t1=t1}

= 0× cht1 + 1 = 1

= ct(t1, t1) = ct(t2, t1).

When t2 = t1 + 1, we have:

t2∏
t=t1

1{t 6=t1} × cht + 1{t=t1} =

t1+1∏
t=t1

1{t 6=t1} × cht + 1{t=t1}

= cht1+1 = ct(t1 + 1, t1)

= ct(t2, t1).

Assume that Equation 7 is satisfied when t2 = t1 +m,

with m ∈ N,m > 0. We prove that Equation 7 is also

satisfied with t2 = t1 +m+ 1. We have:

ct(t2, t1) = ct(t1 +m+ 1, t1)

= ct(t1 +m+ 1, t1 +m)× ct(t1 +m, t1)

= cht1+m+1 ×
t1+m∏
t=t1

(1{t6=t1} × cht + 1{t=t1})

=

t1+m+1∏
t=t1

(1{t 6=t1} × cht + 1{t=t1}).

A.2 Proof of Proposition 1

Proof We have:

ctsum(t− 1)× cht + ct(t, t)

= ct(t, t) + cht ×
t−1∑
i=1

ct(t− 1, i)

= ct(t, t) +

t−1∑
i=1

cht × ct(t− 1, i)

= ct(t, t) +

t−1∑
i=1

ct(t, t− 1)× ct(t− 1, i)

= ct(t, t) +

t−1∑
i=1

ct(t, i) =

t∑
i=1

ct(t, i) = ctsum(t).

A.3 Proof of Proposition 2

Proof We have:

cp(t) =

t∑
i=1

vi × ct(t, i) =

t∑
i=1

vi

t∏
j=i

(1{j 6=i} × chj + 1{j=i})

=

t−1∑
i=1

vi

t∏
j=i

(1{j 6=i} × chj + 1{j=i})

+vt

t∏
j=t

(1{j 6=t} × chj + 1{j=t})

= vt +

t−1∑
i=1

vi(1{t6=i} × cht + 1{t=i})

×
t−1∏
j=i

(1{j 6=i} × chj + 1{j=i})

= vt + cht

t−1∑
i=1

vi

t−1∏
j=i

(1{j 6=i} × chj + 1{j=i})

= vt + cht × cp(t− 1).

