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Abstract

Media sharing applications, such as Flickr and Panoramio, contain a large
amount of pictures related to real life events. For this reason, the development of
effective methods to retrieve these pictures is important, but still a challenging
task. Recognizing this importance, and to improve the retrieval effectiveness of
tag-based event retrieval systems, we propose a new method to extract a set of
geographical tag features from raw geo-spatial profiles of user tags. The main
idea is to use these features to select the best expansion terms in a machine
learning-based query expansion approach. Specifically, we apply rigorous sta-
tistical exploratory analysis of spatial point patterns to extract the geo-spatial
features. We use the features both to summarize the spatial characteristics of
the spatial distribution of a single term, and to determine the similarity be-
tween the spatial profiles of two terms – i.e., term-to-term spatial similarity.
To further improve our approach, we investigate the effect of combining our
geo-spatial features with temporal features on choosing the expansion terms.
To evaluate our method, we perform several experiments, including well-known
feature analyses. Such analyses show how much our proposed geo-spatial fea-
tures contribute to improve the overall retrieval performance. The results from
our experiments demonstrate the effectiveness and viability of our method.

Keywords: Information Retrieval, Spatial Profile, Tag Relatedness, Query
Expansion, Event Retrieval, Social Media Retrieval

1. Introduction

The proliferation of web and social media-based photo sharing has not only
opened many possibilities but also resulted in new needs and new challenges.
Despite recent developments and technological advances within – e.g., web-based
media sharing applications, the continuously increasing amount of available in-
formation has made the access to these photos still a demanding task. In general,
we can address this challenge by allowing the photo collections to be organized
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and browsed through the concept of event [1, 2]. Also, most users are gen-
erally familiar with searching photo collections using events as starting points.
Thus, aiming at supporting the detection and search of event-related photos, we
propose an event retrieval framework to improve the state-of-the-art in real-life
event retrieval systems in term of retrieval effectiveness.

Focusing on media sharing applications, an event refers to ”something hap-
pening in a specific place at a specific time, and tagged with a specific term” [2].
With an event-retrieval system, we can assume two types of scenarios: (1) A user
directly retrieves media resources related to a particular event; and (2) a user
uses a given tagged photo representing an event to retrieve other photos related
to any similar events from a large image collection. In this work, we mainly
focus on scenario (2). Due to their characteristics, pictures in photo sharing
applications such as Flickr1 and Panoramio2 are particularly interesting. For
example, most of such pictures are accompanied with contextual metadata and
other related information added by users, such as Title, Tags, Description, tem-
poral information represented by the picture capture and upload times, and
geolocation. Hence, with photo sharing applications in mind, we study how we
can exploit contextual metadata to retrieve event-related pictures.

The main goals of this work are (1) to build a framework to extract a set of
geographical features from geographical raw data of documents or pictures, and
(2) to develop an approach to allow effective retrieval of event-based images.
Specifically, we develop a set of geographical features that can capture the char-
acteristics of the geographical distributions of social (or user) tags. Further, we
investigate how we can combine these features with the state-of-the-art temporal
features to improve the retrieval performance of an event-based image retrieval
system. Finally, we explore integrating a machine-learning-based approach with
our retrieval system. We study how these features can be used in a query ex-
pansion framework. Here, we are especially interested in the contributions of
the features on the selection of expansion terms from feedback documents.

To this end, we propose a novel framework that improves the retrieval ef-
fectiveness of tag-based image search by including the geographical profile of
terms. We have developed a new method for extracting spatial features us-
ing information about the geographical distribution of tags. Our main idea is
to use such features to characterize the clustering tendency of tag terms and
the geographical correlation between two geographical distributions of two tags.
Spatio-temporal information retrieval is an established field already. However,
existing approaches have mainly been concerned with point-of-interests (POI)
extraction [3] and trajectory mining [4]. With the constantly increasing number
of geotagged pictures – e.g., in Flickr3, exploring the raw geographical metadata
has become increasingly important.

In summary, the main contributions of this paper are as follows. First, we

1See http://www.flickr.com/
2See http://www.panoramio.com/
3Around 220M of Flickr pictures are geotagged. See also http://www.flickr.com/map/
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propose a new robust set of geographical features that can be used (1) to deter-
mine the clustering tendency of tags by analysing the geographical structure of
their geographical distribution, and (2) to analyse the tag-relatedness between
two tags by exploring the correlation between the geographical distributions.
To do this, we have developed new measures derived from a well-founded Ex-
ploratory Analysis theory from Statistics. More specifically, we adapt the Rip-
ley’s K-function and Ripley Cross-K function (K-function and cross-K func-
tion for short) [5] as part of our approach to extract the geographical features.
Second, we show how our features can be incorporated in a machine learning-
based query expansion model to improve the ability to select good expansion
terms. In addition, we demonstrate how these features can be combined with
existing document-based approaches and temporal features to achieve improved
retrieval performance. Third, through our experimental evaluation we show the
effectiveness and practical feasibility of our approach. This includes comparing
with both baseline retrieval models and baseline approaches for geo-temporal
tag-relatedness. Fourth, we perform a thorough analysis to show the effective-
ness of our proposed geographical features – in the afore-mentioned machine
learning-based query expansion process.

The rest of this paper is organized as follows. To put our research in a per-
spective Section 2 provides an overview of approaches related to our work. Sec-
tion 3 gives an overview of the preliminary theory underlying our approach and
defines the problems addressed in this paper. Section 4 presents our proposed
geographical features and explains how we extract them. Section 5 describes our
framework applying these features in a learning-based re-weighting process for
a query expansion model. Section 6 explains our experimental setup. Section 7
presents the results from our experiments. Finally, in Section 8 we conclude the
paper and outline our future work.

2. Related Work

In the past decades, detection of events from textual document streams and
databases has been treated extensively in the literature [6, 7]. However, although
mining and retrieving pictures related to real-life events is an active field, it is
still not a fully mature research domain [2, 8, 9]. Most related approaches have
been aimed at extracting events from different types of datasets. To the best of
our knowledge, only few works have addressed the problems of retrieval of events
in connection to media sharing, and many of these approaches were presented
in the Social Event Detection (SED) task at MediaEval 4 [1], where the main
objective was to propose event retrieval systems for Flickr pictures.

A research area closely related to ours is pseudo-relevance feedback. Gener-
ally speaking, pseudo-relevance feedback refers to techniques to average top-
retrieved documents to automatically expand an initial query. It has been

4http://www.multimediaeval.org/mediaeval2011/
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studied widely in information retrieval both to extend existing retrieval mod-
els [10, 11, 12, 13], and as part of query expansion frameworks [14, 15]. Specifi-
cally, Lavrenko and Croft [10] and Zhai and Lafferty [11] propose two methods –
the Relevance Model and the Mixture Model, respectively – to include feedback
information in the Kullback-Leibler (KL) divergence retrieval model [16]. The
idea is to estimate a new query model using terms in the top-k retrieved doc-
uments, also called pseudo-relevant feedback documents to update an existing
query model. Experiments have shown that these approaches are indeed able to
improve the standard retrieval models with respect to retrieval effectiveness [17].
This has also been the main motivation for including them in our study.

Cao et al. [13] present a classification approach to automatically select good
expansion terms from a set of candidate terms from the pseudo-relevant docu-
ments. To do this, they train a classifier using a set of good and bad candidate
expansion terms represented by feature vectors. Such feature vectors consist of
traditional statistical features based on the distribution of the terms both in
the whole collection, and the set of (pseudo) relevant documents. Lin et al. [18]
propose an extension of this work by applying a learning-to-rank approach for
training and classifying the candidate expansion terms. They show that they
can improve the retrieval effectiveness by using social annotation from external
tagged resources, such as the de.li.cio.us5 social bookmarking web service,
as a source for extracting useful expansion terms. The use of social annotation
as source for improving the retrieval performance has also previously been in-
vestigated by Zhou et al. [19]. These approaches are related to ours in that we
also use classification to select good expansion terms. Their main differences
with our approach are that none of them applies either temporal, geo-spatial or
geo-spatio-temporal features.

As discussed later in this paper, we are interested in investigating the contri-
butions of the temporal characteristics of a term in a pseudo relevance feedback
context. Within event retrieval, the usefulness of the temporal information is
evident. Also within general information retrieval, results from existing work
have proven its usefulness. For example, Dakka et al. [20] and Jones and Diaz
[21] show how the temporal profile of queries can be used to improve existing
retrieval models; whereas Keikha et al. [22] and Whiting et al. [23] propose new
temporal-based approaches to improve pseudo relevance feedback based models.
Nevertheless, while existing approaches seem to have focused on the temporal
aspects only, to fully support event retrieval, we stress the necessity of including
both the temporal profile of social tags and the spatial profile. To the best of our
knowledge, the combination of both temporal and spatial features of social tags
to improve the retrieval effectiveness has still not been sufficiently investigated.
Only few methods – e.g., [24, 25], incorporate temporal and spatial correlation
measures to compute term-to-term relatedness. Specifically, Radinsky et al. [24]
propose a method to improve the semantic relatedness measure of two terms by
capturing the correlation between the temporal profiles of tags and concepts

5http://www.delicious.com/
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associated with the two terms. Zhang et al. [25], on the other hand, analyse the
tag relatedness by using different correlation measures, based on spatial and
temporal co-occurrence. In summary, although these approaches are related
ours, the way we extract the spatial profiles of tags and apply them in combi-
nation with the temporal profile is different. Also, while these approaches were
originally developed for textual documents containing much term redundancy
that can normally carry the document semantics, image tags usually consist
of few unique terms. This makes it more challenging to derive term-based se-
mantic relatedness for image retrieval in general [26], thus further proving the
usefulness of our approaches.

3. Preliminary

In this section, we first describe the data our approach is based on and define
the problem we address. Thereafter, we give an overview the statistical method
our approach are built on.

3.1. Data and Problem Definition

This work mainly focuses on media sharing applications, where resources
are usually tagged with terms – i.e., tags, that describe the content of the re-
sources. Such resources may also have information specifying their geographical
locations, expressed in longitude and latitude values, and are referred to as
geotagged resources.

Let D = {P1, . . . , PN} be a set containing N = |D| resources. Then, assume
that each resource Pi can be annotated with a set of tag Ti, a temporal times-
tamp ti and a geotag gi = (latitude, longitude), such that Pi = {gi, τi, Ti},
i = 1, . . . , N . Without loss of generality, we assume our resources to be a set
geotagged pictures downloaded from Flickr, that may or may not contain all
of the above information at the same time. Further, let E = {E1, . . . , EM},
M = |E|, be a set of picture clusters Ei = {Pj1 , . . . , PjNi

}, i = 1, . . . ,M , each
of which contains images related to the same event. To make our approach
as general as possible, we assume that a query picture has only a set of tex-
tual tag terms – i.e., it does not contain any geotags or temporal timestamps.
This means that following our setup above, a query picture related to an event
Eiq ∈ E can be expressed as Pjq = {Tjq} – i.e., gjq and τjq are not included. For
simplicity, we will use Q to denote a query picture – i.e., Tjq = Q = {q1, . . . , qn},
where n = |Q| and qi, i = 1, . . . , n are query tag terms.

The problem addressed in this paper concerns how we can effectively retrieve
event-related pictures with a query Q, using only the textual tags. First, we in-
vestigate how current state-the-art information retrieval methods perform when
applied on our dataset, and let the methods serve as the baseline for our exper-
imental evaluation. Second, we study how a query expansion framework using
a set of spatial features summarizing the spatial statistics of the distribution
related to a tag, and a set of features defining geographical relatedness between
two tags can help us improve the retrieval effectiveness. Third and finally, we
compare our method with the baseline methods.
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3.2. Exploring Interaction between Spatial Point Patterns

As mentioned in Section 1, our approach is based on geo-spatial features for
picture tags. To achieve this, we have to build a spatial profile for each tag.

Assume now we have a large dataset D̂ ⊆ D containing L = |D̂| geotagged
pictures – i.e., D̂ = {P̂1, ..., P̂L} and P̂i = {gi, Ti}, i = 1, . . . , L. Further, let
V = {w1, ..., wW } be the vocabulary with size W = |V| of the set of social tags
used to annotate D̂. Then, to extract the spatial features from each tag wi ∈ W,
we analyse the spatial characteristics for the tags using statistical exploratory
analysis [27].

To be able to use and understand the ideas of exploratory analysis translated
into our domain, we need to establish two important concepts our approach is
founded on: picture point processes and tag point pattern. First, considering
Flickr pictures as our geotagged web resources, we model the spatial distribution
of pictures taken in a specific geographical area as picture point processes, which
is formally defined as follows:

Definition 3.1 (Picture Point Process). A Picture Point Process is a point
process modelling the spatial distribution of pictures taken in a 2-dimensional
study region R2. So, any realization of the random variable, P, modelling the
Picture Point Process is called Picture Point Pattern.

Second, for each term wi ∈ V, we can assume that we have a set of points
representing the spatial distribution of the tags in a studied region. With this
assumption, we derive a so-called Tag Point Pattern from Definition 3.1 as:

Definition 3.2 (Tag Point Pattern). A Tag Point Pattern Pwi – or just Pi

for simplicity – for a tag term wi is a subset of a Picture Point Pattern P, and
is a set consisting of the geographical positions of pictures annotated with wi.

With these definitions, we can now use statistical exploratory analysis to
derive the geo-spatial characteristics of image tags. More specifically, we use
a tool called multivariate Ripley K-function [5] to get the geo-spatial features
from the tags. It is used to study the interaction between two or more spatial
point patterns. To help understand how this is done, below is a brief overview
of the multivariate Ripley’s K-function.

3.2.1. Multivariate Ripley’s K-Function

The Ripley’s K -function is mainly a tool for analyzing completely mapped
spatial point patterns data in a two-dimensional space [5]. Hence, it can be used
to determine the spatial distribution patterns of objects in spaces.

Let h denote a distance and λ be the intensity of a spatial point pattern,
then Ripley’s K-function, K(h), is defined as [5]:

K(h) = λ−1E[# other points within distance h of an arbitrary point] (1)

The multivariate Ripley’s Kij(h) function is a generalization of K(h), and
is used to analyse the characteristics of an isotropic spatial point process. It
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contains information about clustering and dispersion of point patterns at dif-
ferent distance scales h. The multivariate form aims at answering questions
regarding the interaction between two or more point patterns – i.e., bivariate or
multivariate point patterns. It is specified as follows [5]: Let λi and λj be the
intensity of the spatial point patterns Pi and Pj , and assume λi and λj being
constant throughout R2. Then,

Kij(h) = λ−1j E[# points of type i within distance h

from an arbitrary point j]. (2)

Translated to our application, a point here would be a geographical position of a
picture. Restricting to the case of two point patterns, we have four K functions:
two self-K functions K11(h), K22(h), and two cross-K functions K12(h), K21(h).
The following is most used estimation of Kij(h), as proposed by Ripley [5]:

K̂ij(h) =
1

λ̂iλ̂jA

∑
k

∑
l

Ih(dikjl), (3)

where dikjl is the distance between a k -th point of type i and a l -th observed
point of type j. Ih(dikjl) is an indicator, such that Ih(dikjl) = 1, if dikjl ≤ h;

and Ih(dikjl) = 0, otherwise. λ̂i = ni/A and λ̂j = nj/A are the intensity of the
two spatial point patterns as the rate between the number of points and the
considered area A.

The above four Kij functions are used in the exploratory analysis to study
the relationship between two spatial point patterns. For example, in the inde-
pendence approach proposed by Lotwick and Silverman [28], the null model as-
sume that two spatial point patterns are generated by two different and indepen-
dent spatial processes. Under this independence assumption, with the bivariate
form or the cross-K function, K12(h) = πh2. From this, the empirical/estimated
cross-K function K̂ij(h) calculated on the spatial point patterns, Pi and Pj , can
be compared with the null model to determine the distribution characteristics
between the two point patterns as follows: Attraction, if K̂ij(h) > πh2; spatial

independence, if K̂ij(h) = πh2; and repulsion, if K̂ij(h) < πh2.

3.2.2. Cross-D Function

As can be derived from the above discussion, Ripley’s cross-K functions are
useful in characterising the distributions of spatial point patterns. However, the
graph of the K̂ij(h) function has normally a parabolic curve, which normally
makes it less straightforward to interpret. As a result, a so-called L-function is
often used instead. An L-function is defined as

Lij(h) =

√
Kij(h)

π
. (4)

Using the same assumption of independence of spatial point patterns as
before, we get Lij(h) = h. As with the K-function, the empirical values of

Lij(h), L̂ij(h), can be used to characterise tag point patterns Pi and Pj as
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follows: L̂ij(h) > h indicates attraction between the point patterns, L̂ij(h) = h

shows spatial independence, whereas L̂ij(h) < h means repulsion. To further
facilitate our interpretation, we normalize the cross-L function again to get a
so-called D-function for two tag point patterns. Based on the empirical cross-L
function, the D-function is given by

D̂ij(h) = L̂ij(h)− h. (5)

Again, we can use D̂ij to characterize the two tag point patterns Pi and Pj as

follows: D̂ij(h) > 0 indicates attraction between Pi and Pj ; D̂ij(h) = 0 means

we have independence between Pi and Pj ; whereas D̂ij(h) < 0 implies repulsion
between Pi and Pj . In the rest of the paper, assuming Pi 6= Pj , we refer this
function to as cross-D function.

Example [Cross-D function]: To explain our ideas, assume we have "Old

(a) (b)

Figure 1: Spatial distribution of the Tag Point Patterns related to the tag Old Naval College

and the tag University of Greenwich at two different zooming (a) and (b)

Royal Naval College" and "University of Greenwich" as two specific tags,
both referring to areas in London. Then, consider a cross-L function L12 be-
tween two tag point patterns, P1 and P2, as specified in Definition 3.2, related
to these two tags, respectively. A general observation is that the University of
Greenwich6 is located within the area of the Old Naval College7. Thus, although
the tags are syntactically different, they are connected and refer to the same ge-
ographical entity. Within our spatial statistics, this means that pictures tagged
with "Old Royal Naval College" are spatially attracted to pictures tagged
with University of Greenwich (See Figure 1a and 1b). To further illustrate this
relatedness, consider the corresponding cross-D function D12(h) in Figure 2,
varying the values of h between 0 and 2 km. Using the statistical test described
above, we can check the validity of our observation about the spatial attraction

6See http://en.wikipedia.org/wiki/University_of_Greenwich
7See http://en.wikipedia.org/wiki/Old_Royal_Naval_College
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among the studied point patterns. As can be seen in Figure 2, the graph of
D12(h) (denoted as ”observed” in the figure) is greater than the upper envelope
(denoted as ”higher” in the figure), at all values of h8. Hence, based on our
distribution ”rules” we have ”attraction” between the two point patterns.

0.00 0.50 1.00 1.50 2.00

h

0.0

5.0

10.0

15.0

L1
2
(h
)-
h

observed
theoretical
lower
higher

Figure 2: The empirical (observed) cross-D function D12(h) of the tag point patterns for
Old Naval College and the tag University of Greenwich as a function of distance (in km).
The confidence envelopes (95%) represented by its upper (higher) and lower borders, for the
theoretical cross-D function under complete spatial randomness (CSR) are also shown.

In the following, we elaborate on how we extract our set of features based on
the spatial characteristics of a tag point pattern, and the interaction between
two spatial point patterns derived from the cross-D function.

4. Exploring the Spatial Distribution of Tags

Recall that the primary goal of this work is to find effective ways to ex-
ploit the spatial characteristics of tags to improve the retrieval performance. To
achieve this, we investigate applying methods from spatial statistics to explore
the spatial distribution of tags. In brief, we apply a collection of features de-
rived from the bivariate Ripley’s cross-L function presented in Eq. 4 and the
Ripley’s L-function for a single tag point pattern. To show how we do this, in
Section 4.1 we present our method for extraction of general spatial features of
tags, including both single and term-to-term spatial features. In Section 4.2, we
focus on special tags, such as tags describing point-of-interests, and introduce a
method to extract the spatial features for such tags.

4.1. Single and Term-to-Term Spatial Features

We divide the spatial characteristics for tag terms into two main classes:
(1) single-term spatial features, which determine the aggregation tendency of a
single tag spatial point pattern; and (2) term-to-term spatial similarity features,
which are related to the geographical similarity between the spatial profiles of
two considered tags wi and wj . In the following we explain how we extract both
these features.

8We computed the envelope by simulating the random labelling with a null model and 99
simulations.
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Assume we have a scale interval S = [0 . . . R] in kilometres, and that we
divide the set of the induced intervals into K discrete and equidistant points
hk, k = 1, . . .K. To extract both the single and term-to-term spatial features,
we will use the D-function from Section 3.2.1, estimated over this interval.

To capture the clustering tendency of tag point patterns for single terms,
in [29] we introduced two features called ÎSUM and ÎMAX estimators. ÎSUM is
computed by extracting the positive area within the intersection between the
D-function and the curve representing the null hypothesis; whereas ÎMAX is the
maximum distance between the D-function and the null hypothesis curve. If
we assume that D̂i represents the estimated value of our D-function for a tag
point pattern pi. Then, for a given tag term wi,

ÎSUM (wi) =
∑K

k=1

[
D̂i(hk)√

V ar(D̂i(hk))

]
and (6)

ÎMAX(wi) = max
k=1,...K

(
D̂i(hk)√

V ar(D̂i(hk))

)
. (7)

In other words, ÎSUM (wi) is computed by summing the difference between the
D-function and the null hypothesis. A high value of ÎSUM (wi) means that
there is a strong aggregation among pictures that are annotated with wi and
connected to the tag point pattern pi. Further, ÎMAX(wi) is calculated by
estimating the maximum normalized distance between the D-function and the
null hypothesis. Hence, it determines the highest positive difference between
the K-function of the tag point pattern that the D-function was derived from
and the null hypothesis. A high value of ÎMAX(wi) means that the tag point
pattern pi contributes to a high degree of clustering.

For the bivariate case, we can do similar estimation of the attraction ten-
dency of two tag point patterns as follows:

ÎSUM (wi, wj) =
∑K

k=1

[
D̂ij(hk)√

V ar(D̂ij(hk))

]
and (8)

ÎMAX(wi, wj) = max
k=1,...K

(
D̂ij(hk)√

V ar(D̂ij(hk))

)
, (9)

where wi and wj are two specific tags with their tag point pattern pi and pj .
Our initial studies have shown the potentials and the usefulness of the above

estimators [29]. To apply them in retrieval settings, however, we have to make
them more generic, and introduce two new concepts: the Relative Discrete Pos-
itive Area (RDPA) and Relative Discrete Maximum Distance (RDMD). The
main idea is to extend ÎSUM (wi), ÎSUM (wi, wj), ÎMAX(wi) and ÎMAX(wi, wj)
by including their behaviour at different scales, and not only at a fixed scale.
So, let ĝSum denote the function representing the relative discrete positive area
between the D-function and the null hypothesis in a given scale interval, and
assume ĝMax represents the maximum distance within the same considered in-
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terval. Then, ĝSum and ĝMax are computed as follows:

ĝSum(wi, [hf , hg]) =
∑g

k=f

[
D̂i(hk)√

V ar(D̂i(hk))

]
and (10)

ĝMax(wi, [hf , hg]) = max
k=f,...g

(
D̂i(hk)√

V ar(D̂i(hk))

)
, (11)

where f and g, with f < g, are two indexes related to two points hf and hg of
the scale interval S. Note that if f = 1 and g = K, then ĝSum(wi, [hf , hg]) =

ÎSUM (wi) and ĝMax(wi, [hf , hg]) = ÎMAX(wi). In conclusion, the generalization
captures more features, which divide and summarize the spatial characteristics
over more sub-intervals within the original scale interval.

For the bivariate case, we apply a similar approach, and compute ĝSum(wi,
wj , [hf , hg]) and ĝMax(wi, wj , [hf , hg]) by replacing the Di function with Dij .

4.2. N-order Spatial Features

The features in Eq. 10 and Eq. 11 estimate the deviation of the D-function of
the tag point pattern (or the two tag point patterns) from the null hypothesis
– i.e., the spatial randomness for a single tag point pattern, and the spatial
independence between two tag point patterns, respectively. In addition to this,
in our study we observed that for some tags representing point-of-interests, the
curve of the D-function related to a tag point pattern tends to be steeper within
a short scale sub-interval. Therefore, to also capture such a characteristic, we
propose a set of features, called first order spatial features that can extract the
information on the shape of the curve of the D-function. In Geometry, the
derivative f ′(x) of a source function f(x) can generally be used to determine
the slope coefficient of the tangent of the source curve at a point x. Using this as
a starting point, our idea is to analyse the derivative function of the D-function
for each sub-interval. Since the D-function is discrete over the scale values hk,
k = 1, . . . ,K, we apply the discrete equivalent of the derivative function, or
more specifically the forward finite difference [30], as follows:

D̂′i(h) = ∆l,mD̂i(h) = D̂i(hl)− D̂i(hm), ∀hl < hm, (12)

where hl and hm are two specific scale points. Note that the value of D̂′i(h) is
positive at each scale point where the D-function increases, but negative at all
scale points where D-function decreases. Moreover, the higher the positive value
of the D̂′i(h) is, the more the intensity of the function increases. Finally, for the

bivariate form of the D-function, we can compute the derivative of D̂ij(h) as

D̂′ij(h) by extending Eq. 12 to take into account both wi and wj .
Besides determining the slope of the D-function, we are also interested in

knowing about the concavity of this function at some point x. This gives us more
information about the structure or the shape of the function, thus providing
us more spatial features. We call such features second order spatial features,
which we get by doing further derivation of the function D̂′i(h). As before, we

estimate the resulting D̂”i(h) function by finite differences. This means that we

11



can extract the spatial features from D̂′i(h), D̂′ij(h) and D̂”i(h), D̂”ij(h) using
the positive area and the maximum distance estimators in Eq. 10 and Eq. 11.

In the next section, we show how the spatial features presented above are
useful, especially when used in a query expansion framework for event-based
image retrieval.

5. Query Expansion Framework

Query expansion techniques have been one of the most studied approaches
within the information retrieval field since the work by Maron and Kuhns [31].
However, new application areas have made query expansion still needed in or-
der to improve the retrieval effectiveness [32]. Nevertheless, reinventing query
expansion techniques is not the focus of this work, per se. Rather, we use it
as a framework to evaluate the effectiveness of our proposed method on event-
related image retrieval. In this section, we specifically elaborate on how we use
our proposed spatial features within a query expansion framework. In addition,
we explain how spatial features can be combined with temporal features for
better retrieval performance.

5.1. Overview of the Kullback-Leibler Expansion Model

A general query expansion model is a post-processing step in a retrieval
system that expand and re-weight an original query with terms from top-k re-
trieved documents that are assumed to be pseudo-relevant. Such top-k retrieved
documents are also called feedback documents.

The Kullback-Leibler divergence-based approach (or just KL-divergence) is
a query expansion approach that has been proven effective focusing on retrieval
performance [16]. The main idea with KL-divergence is to analyse the term
distributions, and maximize the divergence between the distribution of the terms
from the top-k retrieved documents and the distribution of terms over the entire
collection. The terms chosen for the query expansion are those contributing
to the highest divergence – i.e., the terms having the highest so-called KL-
scores [14]. To compute the KL-score for a specific term t in the feedback
documents, the following equation is used [14]:

KL = PRel(t) log

[
PRel(t)

PColl(t)

]
, (13)

where PRel(t) and PColl(t) are the probability that t appears in the top-k docu-
ments and the collection, respectively. PRel(t) can be estimated by the normal-
ized term frequency of t in the top-k documents, while PColl(t) can be computed
as the normalized frequency of t in the entire collection. This also means that
using Eq. 13, terms with low probability in the entire collection and high prob-
ability on the retrieved top-k documents have the highest KL-score.

After the expansion terms have been selected, we can proceed to re-weighting
the query terms. A classical approach for this is the Rocchio’s algorithm [15]
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using the Rocchio’s Beta equation [33], given by:

ŵ(tq) =
tfqtq

max tfq
+ β

w(tq)

maxw
, (14)

where ŵ(tq) denotes the new weight of a term tq of the query, w(tq) is the weight
from the expansion model – i.e., KLDiv(tq), maxw is the maximum weight from
the expanded weight model, max tfq is the maximum term frequency in the
query, and tfqtq denotes the frequency of the term in the query.

Since KL divergence is currently one of the state-of-the-art query expansion
approaches, it has been the natural baseline approach for our experiments.

5.2. Learning-based Query Expansion Framework

As can be inferred from our discussion in previous sections, the approach
proposed in this paper concerns using geo-spatio temporal features in query
expansion frameworks. In particular, we develop a learning-based approach to
choose good expansion terms and maximize the retrieval performance.
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Figure 3: Overview of our supervised learning-based query expansion framework

Figure 3 shows the principle behind our approach. As shown in this figure,
the process is divided into two main parts consisting of an offline processing
and an online search module. In the offline part, we mainly focus on building
a classification model for selecting good candidate terms. In the online part,
on the other hand, the main focus is on using the model in a search context to
select the actual – previously unseen – candidate expansion terms. Algorithm 1
summarizes the steps in the query expansion (QE) process.

An important question is: how do we select the candidate expansion terms?
To answer this question, recall Q = {q1, ..., qn} is query consisting of n terms,
and E = {e1, ..., em} denote the set of candidate terms for the query expansion
process. A good candidate expansion term ei is a term that improves the re-
trieval performance of the original query Q. Building on a similar principle as
the approach in [13], we find ei by computing the improvements in the average
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Algorithm 1 Query expansion procedure

1: Run query Q applying ranking model r
2: Get the set D of top-N relevant docs
3: Extract unique tags from D and get the candidate expansion term set E
4: for ej ∈ E do
5: X ← ExtractTermFeats(ej ,Q) . Sec. 5.2.1
6: Y ← ExtractTemporalFeats(ej ,Q) . Sec. 5.2.1
7: Z ← ExtractGeoFeats(ej ,Q) . Sec. 5.2.1, Sec. 5.2.2
8: Calculate confidence value Conf . Sec. 5.2.3, Fig. 4
9: Combine KL score and confidence value Conf in a single score →
KLFinal(Q, ej) . Sec. 5.2.3

10: end for
11: Rank ej ∈ E terms according to KLFinal(ej) → ERank

12: Re-build Q with the top-k terms from ERank → Q̂
13: Run Query Q̂ by using ranking model r

precisions (AP). The idea is as follows. First, for any ei we compute the aver-
age precisions gained from running the original query Q. We call this AP (Q).
Then, we calculate AP (Q+ ei), which is average precision for the query we get
from expanding Q with a specific candidate term expansion ei. Finally, we find
out the improvement in term of average precision from the original query to the
expanded on by computing

APdiff (Q, ei) =
AP (Q+ ei)−AP (Q)

AP (Q)
. (15)

In other words, a candidate expansion term ei is a good term if APdiff (Q, ei)
is positive. Otherwise, it is considered as a bad term. In practice, a threshold
θ is used to control the difference value, such that APdiff (Q, ei) > θ means we
have a good expansion term, whereas APdiff (Q, ei) < θ means ei is a bad term.
Cao et al. [13] suggest θ = 0.005 as the default threshold. However, because
the application area of [13] is mainly different from ours, we decided to do an
empirical study with different classification algorithms to find the optimal value
of θ (see Section 7.1).

To perform the actual term selection, we define the selection task as a binary
classification problem. The main idea is to learn a classifier to discriminate the
good expansion terms from the bad ones. Thus, we use Eq. 15 as a basis for the
learning process, and to define the positive examples for the classifier. As we will
discuss in Section 7, the main advantage with this approach is its effectiveness.
However, to achieve good results, selection of features is a crucial task. Below,
we discuss how we select the feature set that can be used to represent each
expansion term ei. Thereafter, we explain how we use a classifier to compute
a confidence value as function of ei, as part of the retrieval process. Finally,
we present a way to combine this value with the baseline KL-score of the same
candidate term to re-rank the set of candidate expansion terms E .
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5.2.1. Selecting the Feature Set

Selecting the right set of features has a direct impact on the accuracy of a
classification algorithm. This is also one of the reasons we emphasize the impor-
tance of studying the effects of selection of features in the end (retrieval) results.
To learn a classifier, we define a vector of features for each candidate expansion
term e from the top-k retrieved items, given a query Q = {q1, q2, . . . , qn}. Ta-
ble 1 lists the features we study in this work. We group them into three sets of
features: term, temporal and spatial features. Since our focus is on event-based
retrieval, this calls for features beyond those describing document contents only.

Term Features (X ): The term features consist of features that are used to
characterize a document content. They are chosen based on the hypothesis that
terms that contribute to improve the retrieval effectiveness are those being most
frequent and distinctive [13]. Existing studies suggest using features related to
the distribution of the candidate term e in the feedback documents and the
whole collection, and those capturing the co-occurrence of e with the terms in
the original query Q [13, 18]. It is, however, worth noting that these features
has mainly been applied in full-text document retrieval, where term redundancy
is normal, and thus term frequency would be an important feature. Since a
tag generally appears only once for each picture, term frequency as a feature
has generally no impact on the classification accuracy. For this reason, in our
experiments, our set of term features does not include term frequency but other
traditional statistical features such as document frequency (DF) [34]. As part
of evaluating our approach, we will use the term features in implementing the
baseline approach for our experiments. This will also allow us to assess how
well the features suggested in this work improve the retrieval performance.

Temporal Features (Y): Once again, since our focus is on event retrieval,
we are interested in capturing how each term in image tags contributes to char-
acterising the images over time periods. Therefore, we need a set of statistical
features that represent the temporal distribution of the term in the whole collec-
tion. Here, we propose single term features and term-to-term features related to
the temporal correlation of the candidate expansion term and the query terms.
More specifically, to capture the characteristics of the temporal distribution of
a single term, we adopt the concept of kurtosis defined as µ4/µ

2
2, where µ is the

mean and µj is the j-th central moment. Kurtosis were originally proposed by
Jones and Diaz [21] to capture the dynamics of a time series. It can be used
to quantify the probability distribution concentrated in peaks of a time series –
i.e., the ”peakedness”. In this work, we propose to measure the peakedness for
both a single candidate expansion term e (KURT1), and the combination of a
candidate expansion term e with a term qi from the original query (KURT12).

In addition to this, we are interested in knowing about the randomness
of terms over time. A way to detect such a randomness is to use autocorre-
lation [35]. In general, autocorrelation is computed by finding the statistical
correlation between two values of the same variable at a given time tl and an-
other time tl+m. Such values can, for example, be the number of occurrences of
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Feature Description

Term Features

DF0(e) Raw document frequency.
DF1(e) Inverse document frequency: log(N/DF0).
DF2(e) Inverse document frequency smooth: log(1 + N/DF0).
DF3(e) Probabilistic inverse document frequency: log((N −DF0)/DF0).

CoOccSingle(e) Co-occurrence with single query terms: log(
∑n

i=1 C(qi,e)

n
), n = |Q|.

CoOccPair(e) Co-occurrence with pairs of query terms: log(

∑
(qi,qj)∈Q C(qi,qj ,e)

n
),

n = |Q|.

Temporal Features

KURT (e),
KURT (Q+ e)

The kurtosis value of the time series for the pictures annotated with
an expansion term e, and for the pictures annotated with both an
expansion term e and a query Q, respectively.

AC(e),
AC(Q+ e)

The autocorrelation value of the time series for the pictures anno-
tated with an expansion term e, and for the pictures annotated with
both an expansion term e and a query Q, respectively.

CC(Q, e) The maximum cross-correlation between the time series for the pic-
tures annotated with an expansion term e and the time series for
the pictures annotated with a query Q.

Spatial Features

−→
DMax(e),−→
DMax(e +Q)

The vector of the values from the ĝMax function, related to the D-
function of the spatial point patterns for pictures annotated with a
candidate expansion term e, and with both e and Q, respectively.

−→
DMax(e,Q) The vector of the values from the ĝMax function, related to the

cross-D-function between tag point patterns associated to e and
the tag point patterns of Q.

−→
DSum(e),
−→
DSum(e +Q)

The vector of the values from the ĝSum function, related to the
D-function of the spatial point patterns for the pictures annotated
with a candidate expansion term e, and with both the terms e and
Q, respectively.

−→
DSum(e,Q) The vector of the values from the ĝSum function, related to the

cross-D-function between tag point patterns associated to e and
the tag point patterns of Q.

Table 1: A Summary of the Set of Features

a term e at specific times. The hypothesis is that bursty events in a time series
normally contribute to a high autocorrelation value [21]. To capture this, we
compute the first order autocorrelation of a time series for both a single can-
didate expansion term e (AC1), and the combination of a candidate expansion
term e with a term qi from the original query (AC12). Finally, to measure
the temporal similarity between the time series of two different terms qi and e,
we can apply the cross-correlation measure (CC) [36, 24]. Cross-correlation is
computed by assessing the correlation of the frequency of qi and e to measure
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the relationship between qi and e. To compute the temporal features, we varied
the time windows or bins from one day to seven days, with which seven days
gave the best results. To summarize, we investigate how combining previously
proposed temporal features would affect the retrieval performance. These have
proven successful in other more general information retrieval approaches, but
the way we analyse the effects of their combination within event-related image
retrieval haven’t been done before.

Spatial Features (Z): As explained in Section 1, the concept of event is
strongly related to the spatial dimension – i.e., geographical location. We hy-
pothesize that a good expansion term is spatially correlated with at least one
of the query terms. This is the main reason we study the impact of clustering
tendency, with respect to the spatial distribution for the pictures annotated
with the candidate expansion terms. As part of this, we compute the spatial
features as presented in Section 4.1. For each pair of terms e and qi, we first ex-
tract the set of geographical world tiles Tqi,e containing spatial points related to
documents annotated with qi, spatial points associated to documents annotated
with e, and those related to documents annotated with both qi and e. Next, we
extract a set of six spatial feature vectors from each tile Tqi,e. The first three
feature vectors are the vectors computed using ĝMax – i.e., the relative discrete
maximum distance function for the specified tag point pattern (see Eq. 11),

consisting of
−→
DMax(e),

−→
DMax(e + Q),

−→
DMax(e,Q). The second set of feature

vectors are based on ĝSum – i.e., the relative discrete positive area function (see

Eq. 10), consisting of
−→
DSum(e),

−→
DSum(e+Q),

−→
DSum(e,Q). For all the extracted

features, we compute the values of the functions by varying the distance values
from 0 to 1 km, with a step of 0.1 km. Finally, for both the resulting first and
second derivative of ĝMax and ĝSum, we perform similar operations as described
in Section 4.2. Note that as can be inferred from this, the input query Q used
to extract the features may have varying dimensions. However, this does not
cause problem but may only affect the number of spatial points used to build
the feature vectors, which is, according to Eq. 2 – 5, implicitly decided by the
value of the distance scale h.

In this work, we study the impacts of with these features combining the
temporal features. In Section 7, we analyse their usefulness and importance
with respect to improving the retrieval performance.

5.2.2. Combining the Spatial Features using the World Dataset

Our dataset has been built from a collection of Flickr pictures covering the
whole world map. For this reason, the spatial distribution of the pictures is
not uniform. To cope with this, we divide the entire world map into a number
of tiles. More specifically, we divide the world map into grids with size of
one latitude degree and one longitude degree. We span the latitude in the
range of [−180, ...,+180] degrees, while the longitude in [−70, ...,+70], instead
of [−90, ...,+90] degrees to avoid the Arctic and Antarctic areas, since these
areas have normally poor photographic activity. The width of each tile for each
(or one) degree of latitude is constant, and has a size of 111 km, while following
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the latitude values, the tile heights vary from around 0 at the poles to around
111 km at the equator. This would give us in total 50,400 tiles. However, to
restrict the computation cost, we only consider tiles containing a significant
number of pictures – i.e., more than 1,000 pictures. Let such tiles be significant
tiles, denoted by T .

With this in mind, we extract the spatial feature vectors for a pair of terms
wi and wj – e.g., a query term qi and an expansion term e, as follows. First,
let Ti = {Ti1 , Ti2 . . . , TiN } be the set of N tiles containing pictures tagged with
wi, and Tj = {Tj1 , Tj2 . . . , TjM } be the set of M tiles containing pictures tagged
with wj . Then, to find a significant tile, Tij ∈ T , containing pictures tagged
with both wi and wj , we merge the two sets Ti and Tj . Finally, to get the
feature vectors, for each tile, Tij , we compute the bivariate D-function and the
corresponding estimators for the tag point patterns for both wi and wj (see
Section 4).

To have a data structure allowing efficient feature extraction operations, we
index each tile Tl as a document composed by the set WTl = {wl1 , . . . , wl|Tl|

}
of all tags annotating the pictures from each tile Tl. To do this, we create an
inverted index, I, for each tag wli ∈ WTl , which we can formulate formally as
follows:

I : {wi −→ {< Ti1 , tfTi1 (wi) >,< Ti2 , tfTi2 (wi) >, ...}}i (16)

This means that each tag is linked to an inverted list containing the id of the
tile and the term frequency, tfTi1 (wi), of a tag, wi.

Selection of the Tiles for Spatial Features Extraction. To select the tiles
for spatial feature extraction, we are mainly interested in the tiles containing
pictures that are annotated with both at least one term in Q and a candidate
expansion term e. However, to make the spatial features suitable for our classi-
fier, we select only one tile that is most representative to a specific input query
Q. We call this the best tile. To do this, we first run Q on our dataset. Then,
we select the first K geotagged pictures from the resulting ranked list. Finally,
we select the tile containing the highest TF-IDF-based ranking score. For sim-
plicity, by treating tiles as documents, we index and search them using Solr9

search platform. Thus, the resulting list of tiles is ranked using Lucene scores10.

5.2.3. Query Re-weighting Process

We now explain how we perform the re-weighting process using the sets of
features presented in the previous sections.

Figure 4 shows a part of the term selection and re-weighting process. As
depicted in the figure, the Temporal Classifier is trained with positive and
negative examples using only term and temporal features, while the Spatio-
Temporal Classifier is trained with instances using the complete set of features.

9http://lucene.apache.org/solr/
10http://lucene.apache.org/core/3_6_2/scoring.html
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Thus, given a query term qi and the candidate expansion term e, we first ex-
tract the complete set of features. Thereafter, the input instances are classified
with both of the classifiers. Finally, a Final Score Selection module designates
the final confidence value. By default, our system produces scores based on
all three feature sets. However, we might have a situation in which we do
not have geo-tagged pictures that are annotated with both e and any qi ∈ Q.
Thus, producing the spatial feature vectors from the functions gMax(Q+e) and
gSum(Q+ e) would be hard. If this happens, then the final score from the Final
Score Selection module is based on the term and temporal features only.

We call the final confidence score for good candidate expansion terms from
our expansion term selection process Conf(+|e). To produce the final Kullback-
Leibler (KL) score for the query expansion process, we combine Conf(+|e) with
the term-based KL-score as follows:

KLFinal(e) = αKL(e) + (1− α)Conf(+|e). (17)

Note that to allow this combination, both Conf(+|e) and KL(e) values are
normalized. Here, α is a constant used to decide which component should have
the highest contribution. That is, α = 1 means that we only apply the regular
KL-divergence, whereas α = 0 means we rely entirely on the classification mod-
ules to choose good expansion terms. Since we are interested in the impacts of
our expansion terms to the retrieval performance, we let both components to
have equal contributions to the final score – i.e., we use α = 0.5.

The confidence value Conf(+|e) is computed based on the idea that both the
temporal and the spatio-temporal classifiers give their contributions exploring
terms over different dimensions, and that they complement, rather than extend
each other. With this in mind, Conf(+|e) can be computed as follows:

Conf =


0, if ConfT < 0.5 and ConfST < 0.5

ConfT , if ConfT > 0.5 and ConfST < 0.5

ConfST , if ConfT < 0.5 and ConfST > 0.5
ConfT+ConfST

2
, if ConfT > 0.5 and ConfST > 0.5

(18)

Here, ConfT (+|e) and ConfST (+|e) are the confidence values from the Tem-
poral Classifier and Spatio-Temporal Classifier, respectively. The choice of the
value 0.5 as threshold is made based on the fact that 0 ≤ Conf(+|e) ≤ 1 and
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that we aim at having final confidence values higher than half the highest pos-
sible value. Our experimental results have shown that this is a sensible choice.

6. Experimental Setup

In this section we present our dataset and the methodology for our experi-
mental evaluation.

6.1. Dataset

To perform our experiments with tag-based search of event retrieval pictures
and to check the feasibility of our approach, we use a large dataset of pictures
gathered from Flickr11 covering a time period from 01.01.2006 to 31.12.2010
and without spatial restrictions. This results in a final dataset consisting of
88,257,485 pictures, of which 18,861,585 pictures are without any tags and
around 23.5% are with 1 to 3 tags. For relevance judgement we apply the
well-established Upcoming dataset [37] as our ground truth. It has also been
used previously in other related approaches [38]. Specifically, the Upcoming
dataset consists of 270,425 pictures from Flickr, taken between 01.01.2006 and
31.12.2008, each of which belongs to a specific event from the Upcoming event
database12. The unique number of events are 9,515. Each event is composed
by a variable number of images, varying from 1 to 2,398 pictures. This large
number and the heterogeneity of the included events are the main advantage of
the Upcoming dataset, and the main reason we decided to use it. For generality,
we merged the Upcoming dataset with the set of other Flickr pictures.

To perform our experiments, we indexed all image tags using Terrier13. As
part of the dataset preparation, we perform a preprocessing step consisting of
tokenization based on whitespace and punctuation marks; stemming, by using
the Porter stemmer algorithm [39]; and English stopword removal.

6.2. Evaluation Methodology

In this section, we briefly explain how we evaluate our approach. First, we
present our input query set. Second, we discuss the methods we used as baseline
for our experiments. Third, we elaborate on the evaluation metrics we applied.

6.2.1. Input Query Set

We randomly selected set of 150 pictures, one for each event cluster in the
Upcoming dataset, and use the tags annotating the pictures as queries. We
divide this set of queries into two subsets, one subset consisting of 100 queries
that we use to train and evaluate the performance of the classifiers, and another
subset consisting of the remaining 50 queries that are used as the test set to
evaluate the retrieval effectiveness of the proposed retrieval framework. For

11We used Flickr API, http://www.flickr.com/services/api/
12See http://www.cs.columbia.edu/~hila/wsdm-data.html
13See http://www.terrier.org/
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completeness, in Table 2, we show some example of input queries used in our
experiments.

Query Event Description

hammermuseum,

spiritualized, coachella

gibsonamphitheatre,
universalcitywalk

weswood, ioecho

Concert of ”The Duke Spirit” band at UCLA 
Hammer Museum, 17th of July, 2008

Coachella Valley Music and Arts Festival, 
26th of April, 2008

Download 2008 music festival at Gibson 
Amphitheatre, Los Angeles, 20th of July, 2008

Table 2: Example of queries extracted from the Upcoming dataset.

6.2.2. Baseline Methods

To assess the effectiveness of the retrieval framework, we compare our mod-
els with several baseline methods. First, we perform the searching process by
using classical retrieval models, including the Vector Space Model (VSM), Okapi
BM25 (BM25 ) [40], and the Language Model (LM) for information retrieval –
with Jelineck and Dirichlet smoothing. Since BM25 gave the best results in
term of effectiveness, we only show the results related to this model. We use
the default parameter values k1 = 1.2, k3 = 8 and b = 0.75 as baseline for our
evaluation. As a query expansion model, we use the basic KL-divergence model
(KL) and the machine learning approach with the baseline features as proposed
Lin et al. [18] as baseline (KLML). For simplicity and readability, we only show
the results of KL since we observed that the MAP values of KLML are compa-
rable with the MAP values of KL. We compare the baseline approaches with our
proposed methods, first by comparing them with a query expansion framework
applying a classifier trained with the combination of terms and temporal features
(KL T ); and then a framework with a classifier learned with the combination
of terms, temporal, and spatial features (KL ST ). Note that in addition to the
above models, we also experimented with the Mixture Model [11] and the Rel-
evance Model [10], also incorporating the feedback documents in the ranking
score computation. However, the results from these experiments were, though
comparable, worse than those from the BM25+KL query expansion models.
Thus, for simplicity we did not include the results from these experiments.
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6.2.3. Comparison with Related Work

To have a fair comparison with similar approaches, we implemented the geo-
temporal tag relatedness by Zhang et al. [25], which we, from now on, refer to as
ZKYC[25] for simplicity. As with our approach, with ZKYC[25] the similarity
between two tags is computed by comparing their temporal and geographical
distributions with so-called geo-spatial, temporal, and geo-temporal similarity
measures. First, they quantize the world map (space) into m tiles of 1 degree,
and the time into n temporal bins of two weeks. Then, they extract the tag
features based on the three measures using vectors of numbers of users applying
a tag in each bin. This means that for a specific tag the geo-spatial feature
vector contains m elements of numbers of users applying that tag in each bin;
the temporal feature vector contains n elements of numbers of users applying
the tag in each bin; and the geo-temporal feature vector or matrix contains
m× n elements of the counts of unique users tagging a picture within the geo-
temporal bin. All vectors are normalized with l2-norm. Zhang et al. [25] get
the similarities between two tags by computing the euclidean distance between
the two corresponding feature vectors.

As can be inferred from this, the main difference between our approach
and ZKYC[25] is the geographical and geo-temporal features used and how
they are extracted. Specifically, with ZKYC[25], the geographical feature vector
related to a tag is static, and representing the distribution of the tag over a
single size of bin; whereas basing our approach on the Ripley K-function enable
characterizing the geographical distribution of tags over non-fixed geographical
scales. As discussed previously, the Ripley K-function also allow us to extract
the clustering properties of tags. In our experiments, we pay special attention to
how this difference affects the retrieval performance. Specifically, we consider
a range between 0 km and 3 km of scales when computing the K-function.
According to Zhang et al. [25], the geo-temporal features yielded the best results.
For this reason, we only compare our approach using with the one applying the
geo-temporal features. To incorporate this relatedness in a retrieval framework
and compare it with our approach, we define a ranking equation equivalent
to Eq. 17 as αKL + (1 − α)relgeo−temp, where α is a constant deciding the
contribution of the components, KL is the KL-score and relgeo−temp denotes
the geo-temporal tag relatedness score. We tune and select the best value of the
parameter α over a set of 50 queries.

6.2.4. Evaluation Metrics

To evaluate the retrieval performance of all the models, we use Mean Av-
erage Precision (MAP), a widely used evaluation metric within information
retrieval [34]. We compute our MAP values based on 1,000 retrieved documents
(images). To make sure that any improvements are statistically significant, we
perform paired two-sample one-tailed t-tests at p < 0.05 or 95 % confidence
interval. Any stated improvements in this paper are all statistically significant,
unless otherwise specified.
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7. Results

In this section we perform two different analyses. First, we study the impact
of using our temporal and spatial features on training classification algorithms.
Second, we investigate the effectiveness of using the temporal and spatial fea-
tures in a classifier with an optimal feature selection procedure.

7.1. Classification Accuracy

As part of the process of designing a good classifier for selection of good
expansion terms, we investigated which classifier is suitable for our application.
We evaluated several existing classifiers with respect to their classification accu-
racy, and selected the classifier yielding the best accuracy. Specifically, we tested
our method using Näıve Bayes classifier, Support Vector Machine (SVM ), C4.5
decision tree (also named J48 ) and Random Forest. We used Weka [41] ma-
chine learning toolkit with default parameter settings to test the classifiers. The
training set was composed by a set of 1,000 terms, equally divided into good
and bad terms. These were obtained by randomly selecting the feedback terms
from the results of running the queries using the training set.

To perform a thorough evaluation, we calculated the accuracy, precision
and recall values for each classifier, with a leave-one-out cross validation. We
performed the test for five different training sets that we obtained by selecting
a positive and a negative class using different values of threshold θ (see also
Section 5). The θ values we selected were 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5.

We summarize the averaged results in Table 3. Here, ”+” is the positive
class containing the good candidate terms, whereas ”−” denotes the negative
class holding terms considered bad expansion terms. From these results, we
can observe that the general performances of the classifiers are good using the
proposed set of features. The overall best result was gained by using Random
Forest classifier, with an accuracy of around 95%. The precision for the clas-
sification of the good terms was 93% and the recall was as high as 97.56%.

Precision Recall

Accuracy (%) + − + −

Näıve Bayes 59.12 0.6102 0.6092 0.6180 0.5644

SVM 69.22 0.6802 0.7072 0.7288 0.6556

C4.5/J48 91.52 0.8870 0.9490 0.9536 0.8768

Random Forest 94.98 0.9288 0.9736 0.9756 0.9240

Table 3: Comparison of the classification performances. The best scores in each column are
type-set boldface.

We now analyse the behaviour of the accuracy value of the four proposed
classifier over the different θ values. The results is summarized in Figure 5.
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Here, we can observe that the higher the threshold value is, the more the ac-
curacy of the classifier increases. Moreover, both J48 and Random Forest (RF)
outperformed the Näıve Bayes (NB) and SVM, with high margin.

0.005
0.01

0.05
0.1 0.5

50

60

70

80

90

100

NB
SVM
J48
RF

Figure 5: Accuracy of the four different classifiers over the different values of θ

There are several factors that may affect the performance of classification
algorithms, which can also be used to explain this. These include randomness
and sparsity of the actual dataset, the probability of noises and outliers, the size
of the dataset, and the number of independent features – i.e., dimensionality.
In addition, many algorithms need calibration to perform well [42]. Focusing
on our experiments, the results showed that tree-based classification approaches
work best, of which Random Forest is the best classifier. This is because we
experimented with a large dataset that has a high degree of randomness and
a high number of independent features. This conclusion is also supported by
results from other studies [42, 43]. Moreover, the fact that we applied the
classifiers with default parameters, with no tuning, played an important role.
Since we focus on the ability to treat the classifiers as a ”black-box”, squeezing
out every bit of performance by tweaking the classifiers’ parameters is beyond
the scope of this work. In conclusion, we choose Random Forest as the base
classifier for our framework.

7.2. Retrieval Effectiveness Comparison

As part of our evaluation, we performed a comparative study on the retrieval
performance. We compared our approaches with the baseline methods by ex-
ecuting a standard retrieval model – i.e., the BM25, and applying the query
expansion models described in the previous section – i.e., Kullback-Leibler (KL)
divergence, in combination with both the temporal features (KL T ) and with
the spatio-temporal features (KL ST ). More specifically, we used the Rocchio’s
framework weighting model, with both the KL divergence model to choose the
expansion terms. For each query expansion run, we used the default value of
β from [33] – i.e., β = 0.4, and chose the first n terms of the top-k documents
for the Rocchio’s Beta weighting model. The numbers of pseudo relevant docu-
ments, k, were set to 20, 40, 60, 80, 100, and 120, and the numbers of selected
terms, n, were 15, 25, 35, 45, and 55. Finally, we performed the query expansion
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Baseline Related method Our approaches

#Doc #Term BM25 KL KL+ZKYC[25] KL T KL ST

20 15 0.4448 0.4601 0.4614 0.475212 0.481612

25 0.4448 0.4605 0.4626 0.475512 0.4838123

35 0.4448 0.4618 0.4638 0.476112 0.4838123

45 0.4448 0.4618 0.4634 0.476412 0.4833123

55 0.4448 0.4618 0.4624 0.476112 0.4838123

40 15 0.4448 0.4708 0.4744 0.478612 0.4870123

25 0.4448 0.4714 0.4738 0.479912 0.4880123

35 0.4448 0.4705 0.4734 0.481312 0.4885123

45 0.4448 0.4726 0.4757 0.484312 0.4918123

55 0.4448 0.4717 0.4745 0.482712 0.4913123

60 15 0.4448 0.4665 0.4674 0.481612 0.484812

25 0.4448 0.4685 0.4696 0.481812 0.4909123

35 0.4448 0.4704 0.4733 0.485612 0.4951123

45 0.4448 0.4712 0.4721 0.487712 0.4957123

55 0.4448 0.4703 0.4731 0.486712 0.4957123

80 15 0.4448 0.4697 0.4706 0.480312 0.4894123

25 0.4448 0.4699 0.4711 0.484712 0.4935123

35 0.4448 0.4718 0.4733 0.486212 0.4951123

45 0.4448 0.4712 0.4731 0.488412 0.4979123

55 0.4448 0.4719 0.4741 0.489012 0.5001123

100 15 0.4448 0.4613 0.4621 0.470112 0.472712

25 0.4448 0.4611 0.4619 0.475512 0.480212

35 0.4448 0.4634 0.4642 0.478112 0.4849123

45 0.4448 0.4613 0.4621 0.480312 0.4879123

55 0.4448 0.4621 0.4631 0.482012 0.4891123

120 15 0.4448 0.4592 0.4601 0.468112 0.470912

25 0.4448 0.4589 0.4610 0.476912 0.481412

35 0.4448 0.4606 0.4625 0.477412 0.4870123

45 0.4448 0.4589 0.4606 0.482912 0.4899123

55 0.4448 0.4595 0.4606 0.484512 0.4914123

Table 4: MAP Comparison between baseline QE (KL) and QE with classifier learned with
baseline+temporal features (KL T ) and baseline+temporal+spatial features (KL ST ). The
best scores within each row and each group are type-set boldface. The numbers 1,2,3 in the
superscript in the table indicates statistical significance improvements with respect to KL,
KL+ZKYC [25], KL T, respectively.

baseline model based on the geo-temporal tag similarities as proposed by Zhang
et al. [25] – i.e., the ZKYC[25] discussed in Section 6.2.3.

Table 4 lists the results from our experiments. As shown, the baseline query
expansion method is better than the baseline BM25 in all of our tests, with the
best MAP improvement of 6.2%. We can also see that ranking the feedback tags
using KL and ZKYC[25] to select query expansion terms does not significantly
improve the effectiveness of the ranking score of KL. This is mainly because
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ZKYC[25] captures the feature of a tag distribution on a fixed geo-temporal
scale, due to the size of the geo-temporal bin.

Overall, both our proposed query expansion methods outperform both of the
baseline methods, for all the combinations of number of documents and number
of terms. For KL T, the maximum MAP improvement is 9.7%, while for KL ST,
the improvement is 12.4%. Moreover, studying the MAP values, both KL T
and KL ST outperform ZKYC[25]. As discussed in Section 6.2.3, an important
difference between our method and ZKYC[25] is the property of geo-temporal
attractiveness of terms with respect to scales. Recall that with ZKYC[25], the
geo-temporal features are extracted using a fixed scale. In contrast, our methods
allow extracting the features at different scales, and take spatial attractiveness
into account (see Section 3). Because the concentration of pictures normally
vary both in time and space, considering spatial attractiveness and scales is
important. The above results further confirm this importance. In conclusion,
the ability to capture the geo-temporal attractivenesses of terms at different
geo-temporal scales leads to improved retrieval performance.
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Figure 6: Comparison of MAP improvements as function of feedback documents

In Figure 6, we summarize the improvements of MAP compared to BM25,
while varying the numbers of feedback documents (k). Specifically, in Figure 6a,
for each method, we first take the average MAP values for different numbers
of terms. Then, we plot the values as function of the number of feedback
documents. In Figure 6b, on the other hand, we plot the best MAP values for
each method by only taking into account the numbers of feedback documents,
independent of the number of terms. As we can observe in both graphs, all the
four query expansion methods have similar trends; that is, the search process
using each method gains benefits from the query expansion until reaching a
specific number of documents – i.e., a breakpoint, and thereafter this benefit
decreases. However, the breakpoint for both of our two approaches (KL T and
KL ST ) is much higher than with both the baseline KL and ZKYC[25] – i.e.,
80 versus 40. The reason for this is that with baseline KL, the set of candidate
expansion terms are explored by considering only document features, which
seems to be too restrictive. Moreover, ZKYC[25] does not consider spatial
attractiveness and variation in scales.
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7.3. Analysis of the Features

In this section, we analyse the effectiveness the temporal and spatial features
we have used to learn the classifiers for selection of the expansion terms. The
question we want answered is: Do the features we have proposed in this pa-
per contribute to improve the classification accuracy, and which features work
best? To ensure comprehensiveness, we perform our analyses using three differ-
ent widely-used correlation-based feature evaluation methods. More specifically,
we use Information Gain (IG) [44], Gain Ratio (GR) [45] and Symmetrical Un-
certainly (SU ) [46]. Information Gain is given by IG(C,F ) = H(C)−H(C|F ),
where H(C) is the entropy of a class C and H(C|F ) is the entropy of the class,
given a feature F . Gain Ratio is the direct extension of Information Gain,
which is GR(C,F ) = IG(C,F )/H(C). Symmetrical Uncertainly (SU) evaluates
the goodness of a subset of features F by comparing its symmetrical uncertainty
with another subset of features [46]. Let FSub1 ⊂ F and FSub2 ⊂ F such two
subsets. Then, SU(FSub1 , FSub2) = IG(FSub1 , FSub2)/(H(FSub1) +H(FSub2)).
As before, we use Weka to implement of the feature selection methods.

Table 5, 6 and 7 report the IG, GR and SU scores, respectively, for the fea-
tures we used in our classification of good and bad expansion terms. They show
which features are the best using the baseline and temporal features compared
with applying baseline, temporal and spatial features.

Baseline+Temporal Baseline+Spatial+Temporal

Feature IG Score Feature IG Score

coOccSingleWhole 0.104 AC2 0.204
CC 0.066 RDPA2Second[1] 0.106
KURT12 0.065 RDMD12[2] 0.097
AC12 0.046 RDPA12[3] 0.088
DF3Feedback 0.035 RDMD12[1] 0.086
coOccSingleFeedback 0.034 RDMD12[3] 0.086
coOccPairFeedback 0.031 RDPA12First[3] 0.080
DF0Feedback 0.029 RDPA12[1] 0.074
DF1Feedback 0.025 DF3Feedback 0.064
DF2Feedback 0.025 RDMD12Second[1] 0.063
DF2Whole 0.021 RDPA12First[1] 0.062
DF0Whole 0.021 RDPA12[2] 0.062
DF1Whole 0.021 RDMD12[4] 0.056
DF3Whole 0.021 KURT2 0.048
coOccPairWhole 0.021 coOccSingleWhole 0.048
KURT1 0.000
AC1 0.000

Table 5: Comparison of the feature quality based on Information Gain. RDMDs are the
features related to the relative discrete maximum distance feature vectors. RDPAs are the
features related to the relative discrete positive area vectors. ”L” means that we use a cross-
L (or cross-D) function. ”First” and ”Second” stand for first and second order feature,
respectively. ”[number]” denotes the number, k, of intervals hk used to compute the L (or D)
function (see Section 4).
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Baseline+Temporal Baseline+Spatial+Temporal

Feature RG Score Feature RG Score

KURT12 0.104 RDMD12Second[4] 0.157
AC12 0.086 RDPA12First[4] 0.116
coOccSingleFeedback 0.079 RDPA12Second[3] 0.111
coOccSingleWhole 0.056 CC 0.109
CC 0.054 RDMD12First[4] 0.109
DF0Feedback 0.040 RDPA12[3] 0.107
DF3Feedback 0.040 RDPA12Second[4] 0.107
DF1Feedback 0.036 RDMD12[3] 0.105
DF2Feedback 0.036 RDMDL12Second[2] 0.098
coOccPairFeedback 0.031 RDMD12Second[2] 0.093
coOccPairWhole 0.025 RDMD12[2] 0.093
DF3Whole 0.025 RDMDL12Second[2] 0.088
DF2Whole 0.025 RDMD12[4] 0.085
DF0Whole 0.025 RDMDL12[4] 0.078
DF1Whole 0.025 RDPAL12[2] 0.078
KURT1 0.000
AC1 0.000

Table 6: Comparison of the feature quality based on Gain Ration. RDMDs are the features
related to the relative discrete maximum distance feature vectors. RDPAs are the features
related to the relative discrete positive area vectors. ”L” means that we use a cross-L (or
cross-D) function. ”First” and ”Second” stand for first and second order feature, respectively.
”[number]” denotes the number, k, of intervals hk used to compute the L (or D) function (see
Section 4).

Focusing on the baseline and temporal features, these results show that with
all the three feature selection methods – i.e., IG, GR and SU, none of the features
related to the temporal autocorrelation (AC1 ) and kurtosis (KURT1 ) have any
impact on the classification. This means that the information about peaks in the
temporal distribution of candidate expansion terms does not seem to have any
effects on determining good candidate expansion terms. However, the temporal
correlation between the distribution of documents annotated with a candidate
expansion term and of those annotated with a term from the initial query – i.e.,
AC12, KURT12 and AC12, seem important, as their scores are within the top-5
highest scores. Similar observation can be made on the cross-correlation – i.e.,
CC, between the time series of a candidate expansion term and a query term.

Focusing on our set of features – i.e, the baseline, temporal and spatial fea-
tures, on the other hand, our observation is that with all the three feature
selection methods, the most important features are those related to the vec-

tors
−→
DMax(Q, e) (called RDMDL12 in Table 5, 6 and 7),

−→
DMax(Q + e) (or

RDMD12),
−→
DSum(Q, e) (called RDPAL12 in Table 5, 6 and 7) and

−→
DSum(Q+

e) (or RDPAL12). This means that the features related to the spatial distribu-
tions of the documents annotated with both the candidate expansion terms and
the query terms, and the spatial correlation between the two tag point patterns
have a strong impact on the classification results. As a conclusion, our analysis
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Baseline+Temporal Baseline+Spatial+Temporal

Feature SU Score Feature SU Score

KURT12 0.080 AC2 0.107
coOccSingleWhole 0.073 RDPA12[3] 0.096
AC12 0.060 RDMD12[2] 0.095
CC 0.059 RDMD12[3] 0.094
coOccSingleFeedback 0.048 RDMD12[4] 0.067
DF3Feedback 0.037 RDPA12First[3] 0.064
DF0Feedback 0.034 RDPA12[2] 0.063
coOccPairFeedback 0.031 RDPA12First[1] 0.062
DF1Feedback 0.029 RDMD12Second[1] 0.057
DF2Feedback 0.029 RDPA2Second[1] 0.057
DF2Whole 0.023 RDPA12[4] 0.054
DF0Whole 0.023 RDPAL12First[2] 0.054
DF1Whole 0.023 DF3Feedback 0.053
DF3Whole 0.023 RDMD12[1] 0.052
coOccPairWhole 0.023 RDMD12First[3] 0.051
KURT1 0.000
AC1 0.000

Table 7: Comparison of the feature quality based on Symmetrical Uncertainly. RDMDs are
the features related to the relative discrete maximum distance feature vectors. RDPAs are
the features related to the relative discrete positive area vectors. ”L” means that we use a
cross-L (or cross-D) function. ”First” and ”Second” stand for first and second order feature,
respectively. ”[k]” denotes the number, k, of intervals hk used to compute the L (or D)
function (see Section 4).

confirms the importance of using the spatial correlations between a candidate
expansion term and a query term as features for classification of good and bad
candidate expansion terms.

8. Conclusion

In this work, we have developed a new approach to effectively retrieve event-
based images from typical media sharing applications, such as Flickr. To achieve
this, we have developed a new method using a new set of spatial features ex-
tracted from image tags to capture the characteristics of the spatial distributions
of such tags. This has included applying rigorous statistical exploratory analysis
of spatial point patterns to extract the geo-spatial features. As we have shown in
this paper, with these features, we have been able to both summarize the spatial
characteristics of the spatial distribution of a single term, and identify the sim-
ilarity between the spatial profiles of two terms. Further, aiming at improving
the retrieval performance, we have investigated the gain of combining our geo-
spatial features with a set of temporal features from the current state-of-the-art
approaches within information retrieval. In addition, we have studied the useful-
ness of our method by applying our features in a machine-learning-based query
expansion framework. More specifically, we have used our spatial and temporal
features to select of the best candidate terms for the query expansion process.
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The originality of this work lies in the way we extract these features and how we
use them to choose the best expansion terms. Our experiments and extensive
analyses, including comparison against the baseline methods and existing work,
have demonstrated the effectiveness of our approach. These have particularly
shown the importance of our proposed spatial features and the feasibility of our
approach.

Nevertheless, there are interesting aspects of this work that we have left for
further investigation. First, to further explore the usefulness of our spatial fea-
tures in more general information retrieval settings, we currently study applying
our approach on other resources than pictures. Second, in this paper, we have
focused on selecting candidate expansion terms as a binary classification prob-
lem. As part of making our approach even more generic, we are investigating
performing unsupervised selection of expansion terms based on their associated
temporal and geo-spatial characteristics. Third, we are exploring the combina-
tion of this approach with Open Linked Data usage, such as DBPedia, to further
improve the choice of best expansion term candidates.
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