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Abstract. The theme of this paper is on transactional support for cooperative work environments, focusing
on data sharing – i.e., providing suitable mechanisms to manage concurrent access to shared resources. The
subject is not new per se. In fact, in terms of transaction models and frameworks, several solutions already
exist. Still, there are some problems that are not solved. Among these are the problems that result from the
dynamic and heterogeneous nature of cooperative work. Our solution is to provide transactional support
that not only can be tailored to suit different situations, but can also be modified following changes in the
actual environment while the work is being performed – i.e., adaptable transactional support. As part of
this, we have identified and extracted the beneficial features from existing models and attempted to extend
these to form a transactional framework, called CAGISTrans. This is a framework for the specification
of transaction models suiting specific applications. To handle dynamic environments we propose a new
way of organizing the elements of a transaction model to allow runtime refinement. In addition, we have
developed a transaction management system, built on the middleware principle, to allow interoperability
and database independence. Thus this addresses the problems induced by the heterogeneous nature of
cooperative environments.
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1. Introduction

The proliferation of computers and advanced network technology, such as the World
Wide Web and the Internet, has undoubtedly changed the way people carry out their
work. Work is increasingly performed in teams distributed over networks, where groups
of people get together to have the work done without strict organization. As a result, the
work environments are dynamic, in continuous change and heterogeneous, thus creating
the important challenge of how to provide efficient support for the induced cooperative
activities.

The required support spans activities from informal interaction, which is mainly
based on direct communication among involved parts, meeting and conferencing, to
the sharing and exchanging of data, which is mainly based on concurrent access to a
shared resource base such as databases, web-servers [32]. The main focus of this work
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is on the latter, more specifically on the support of concurrent access to shared resources
that are common in product design like Software Engineering, CAD/CAM and product
manufacturing.

In this respect, the main concern is to ensure the consistency of the data shared
among cooperating individuals. This has been a subject of intensive research within the
database community through the use of transactions over the past two decades. Unfor-
tunately, traditional transactions founded on ACID (atomicity, consistency, isolation and
durability) properties [14] are too rigid for advanced applications. In particular, the sup-
port for long-running activities and sharing is strongly restricted due to the atomicity and
isolation requirements [9].

In order to overcome this limitation, numerous transaction models have been sug-
gested [9,22,28]. Still, it is a widely accepted fact that the goal has not yet been attained.
Most of the existing models were suggested and developed for specific applications, with
fixed, tailor-made semantics and correctness criteria. Thus, they may be unsatisfactory
with respect to cooperative work support.

An accepted solution is to provide the possibility to customize transaction models
for specific applications. In fact, the lack of consensus on which transaction models
are appropriate for what situations advocates the development of a unified transactional
framework allowing such a customization. This idea is not new. Examples of existing
frameworks are ASSET [3], TSME [11], and RTF [1], among others. However, despite
their ability to specify and tailor transaction models for specific applications, there are
problems that are still unsolved. First, adequate support for dynamic environments is
lacking. One of the main reasons is that the frameworks just referred to do not provide
sufficient support for runtime changes. This is because the specification of a transaction
model must be accomplished before the involved transactions can be executed.

Second, cooperative work is diverse [32], making openness crucial. However, since
the existing frameworks are mainly built on database management systems (DBMSs),
only few can adequately support other types of resource bases such as web-servers and
file systems.

The work on the development of a transactional framework reported in this paper
is motivated by the need to overcome these limitations. In an earlier paper [29], we pro-
vided an overview of what kind of support our CAGISTrans framework should provide.
The present paper elaborates on how this is achieved in practice. The remainder of this
paper is organized as follows. To put our research in perspective, section 2 describes
relevant previous work. Section 3 proposes a new way to organize the transaction model
elements which aim at meeting the requirements of dynamic cooperative work environ-
ments. To derive these elements we use adaptations of the ACID requirements as our
baseline. One of our main findings is a way to separate the model specification into
design time and runtime specifications. Section 4 shows, in particular, how transac-
tion specification and execution can be managed at runtime. The emphasis includes the
use and management of user defined correctness criteria that are suitable for concurrent
and dynamic environments. We also address the second main problem – heterogeneity.
Section 5 presents the transaction management system supporting the specification of
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transaction models and the execution of the involved transactions. The section also dis-
cusses the elements of the CAGISTrans framework that have been implemented. One of
the new aspects of our CAGISTrans framework that most existing transactional frame-
works have de-emphasized is integrated support for workspace management. Section 6
describes the way we provide such a support in our framework. Section 7 provides
explicit comparison of our CAGISTrans framework with those described in section 2.
Finally, in section 8 we discuss our approach and results so far.

2. Previous work

In the last couple of decades, several transaction models have been developed for non-
traditional database applications. Some of these are presented and discussed in review
works and papers [9,22,28]. As we initially pointed out, however, many of the exist-
ing models have been suggested with a specific application in mind. Thus, they may
be unsatisfactory with respect to supporting wide ranges of application scenarios. Nev-
ertheless, many of these models provide useful and important foundations for unified
transactional support for cooperative work. Most notable are Moss’ Nested transac-
tion model [23], providing a basis for modular modelling of transactions, Sagas [10],
providing a basis for transaction compensations, which were further exploited in Open
nested transactions [37], a generalization of Moss’ nested transaction model, Split and
join transaction models [15], providing the idea of dynamic restructuring of transac-
tions, and Cooperative transaction hierarchy [24] that presents the idea of cooperative
transactions using user-defined correctness criteria.

Due to the fact that existing models have restricted application areas, the trend
is towards the development of frameworks for transaction models that are tailorable to
different situations. One of the earliest frameworks in this category was ACTA [5];
a framework providing a foundation for synthesizing and reasoning about transactions.
However, although ACTA is a very useful formal tool to specify and verify new transac-
tion models, it is merely a formal and theoretical framework, that does not provide any
means of making transactions operational during runtime.

Motivated by this, ASSET – A System for Supporting Extended Transactions [3] –
was suggested to implement the ideas of ACTA with O++ language primitives. The idea
is to allow the coding of extended transaction models (ETMs) using the O++ program-
ming language, and to make these models operative on top of a DBMS. The ASSET
primitives are begin, abort, commit, delegate, and permits, allowing a trans-
action models designer to create transactions, delegate resources among transactions,
and permit dirty reads etc. among them. In [3], the authors have shown the use of these
primitives to specify ETMs, demonstrating the usefulness of the framework. However,
requiring a transaction models designer to step down and program transactions may be
risky with respect to bugs. Moreover, since a transaction model has to be coded and
compiled before the involved transactions are executed, it is necessary to have complete
a priori knowledge about the tasks to be carried out as well as the induced sharing pat-
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terns. This makes it rather difficult to provide adequate support for dynamically evolving
collaborative activities.

Another framework that is similar to ASSET, that allows specification and imple-
mentation of ETMs, is TSME – the Transaction Specification and Management Environ-
ment [11]. Unlike ASSET, TSME was developed as a complete transaction management
system with a programmable transaction manager that enforces the specified transaction
models during runtime. The main building blocks of the transaction specification in
TSME are dependencies. These are classified into state dependencies, specifying de-
pendencies related to transaction states; begin, abort and commit, and correctness de-
pendencies, specifying dependencies related to correctness criteria; determining which
concurrent executions of complex transactions preserve consistency and produce correct
results. TSME is a promising framework that has further demonstrated the advantages
of allowing a model designer to specify several application specific transaction mod-
els within a single environment, and supporting them during runtime. One of the main
strengths of TSME is its extensive support for execution control, allowing sophisticated
coordination of transaction execution. However, TSME does not provide support for dy-
namic restructuring, making it less appropriate for dynamically evolving environments.
Moreover, the transaction manager component in TSME is apparently built from scratch,
and integration with existing DBMSs seems to be difficult.

RTF – the Reflective Transaction Framework [1] – is another framework similar to
those described above which aims at specifying and implementing application specific
ETMs. Unlike ASSET and TSME, the main focus of RTF was to develop modules that
implement existing ETMs on top of commercial TP-monitors. The basis components are
transaction adapters – i.e., add-on software modules providing extensible transactional
services for advanced applications. Using these adapters, RTF extends the facilities of a
TP-monitor, allowing it to execute transactions beyond the ACID models. Initially, RTF
was implemented on top of Encina,1 demonstrating the applicability of the framework.
It is worth noting, however, that RTF does not provide support for user-defined correct-
ness criteria. This was beyond the scope of RTF, and was left for future studies [1].
Rather, the focus was on provision of extensible lock protocols handling concurrency.
Moreover, RTF is mainly a database-centred framework, and does not explicitly ad-
dress the support for other resource bases that are not supported by the actual underlying
TP-monitors.

The CAGISTrans framework is aimed at providing the possibility to specify and
implement transaction models fitting different situations. In this sense, it shares the basic
objectives with the frameworks described above. However, we attempt to go further by
developing a framework that extracts the beneficial features from existing models and
frameworks, and try to extend these to cope with the remaining problems that are not
fully addressed in the previously developed models and frameworks – i.e., means of
supporting fully dynamic and fully heterogeneous environments. An explicit comparison
of our CAGISTrans framework with existing frameworks is provided in section 7.

1 See http://www.transarc.com/Product/Txseries/Encina/Brochure2.0/encma.html.
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Figure 1. Illustration of the distinction between characteristics and execution specifications.

3. Distinction between characteristics and execution specifications

Dynamic environments are generally characterized by unpredictability and interactive-
ness. Both properties imply that it is not always possible or practical to have a complete
transaction schedule in advance. To cope with this, we have argued the necessity of
allowing both design time and runtime specifications of transaction models [29]. This
implies the necessity of organizing the elements of transaction models in such a way
that parts of the specification can be done before the actual transactions are executed,
while the remaining parts can be accomplished during runtime. To address this need,
the CAGISTrans framework provides transaction modelling building blocks that are or-
ganized in two separate, but connected parts [29]: (a) the characteristics specification,
consisting of blocks that must be defined before runtime, and (b) an execution specifica-
tion, consisting of blocks that are modifiable while transactions are being executed (see
figure 1).

Blocks belonging to the characteristics specification are fixed and possible to de-
fine in advance. Those falling into this category are (1) the ACID requirements to be
applied – i.e., customized non-ACID properties, (2) the relationship among transac-
tions – i.e., structures and dependencies, (3) the designated correctness criteria – i.e.,
user-defined or database dependent criteria, and (4) the policies to be used based on the
applied criteria – i.e., the mechanisms to be used and the rules for how and when to use
them.

Blocks belonging to the execution specification are those that are only partly pre-
dictable and possible to modify during runtime. Blocks in this category are those being
used to control and manage the behaviour of transactions (see section 4).

3.1. Customizing the ACID properties

We have chosen to use the ACID properties as the basis for the transaction characteristics
specification. The rest of the elements are derived as a result of the specified properties.

The ACID properties have traditionally been recognized as being the ultimate con-
cept for achieving correctness. Unfortunately, their undue strictness has made them
inappropriate for use in advanced, possibly cooperative applications. For this reason,
many, if not all of the existing advanced models or frameworks have advocated the need
to compromise on the ACID requirements. On the other hand, given the diversity of ap-
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plication requirements, we stress the ability to seamlessly tailor the ACID requirements
so as to meet different needs. As some situations within a single advanced applica-
tion still demand parts of the ACID requirements to be preserved, most situations may
see them as just a burden. Thus, the proposed solution is to allow users to customize
the ACID properties according to the needs of their applications, rather than providing
them with fixed properties. Basically, the idea is to allow users to first identify the main
requirements, and thereafter to designate the appropriate properties. But what require-
ments are relevant to customize? As we pointed out in [29], only atomicity and isolation
requirements should be adaptable. Both consistency and durability should be preserved
by definition. This is despite the fact that some transactions may have to tolerate some
temporary inconsistencies, and that parts of a transaction execution may not be required
to be permanent.

3.1.1. Preserving consistency and durability
Fundamental requirements underlying transaction processing are that (1) executing
transactions always transform a database from one consistent state to another consistent
state, and (2) once the execution is terminated the final result is permanent [13]. These
requirements are necessary both to ensure the correctness of the data shared among users
and make sure that all committed results survive possible crashes. These are the main
motivation for the need to preserve both the consistency and durability properties.

Full consistency implies that a set of user defined or database dependent criteria
must be provided. In addition, policies determining relevant mechanisms and specifying
the rules for their applicability are necessary [26,29].

Further, full durability implies the use of logging facilities that maintain all neces-
sary information about executing transactions on a persistent store. In addition, there is a
need for mechanisms that allow transactions to explicitly discard the effect of committed
results such as using transaction compensation [17].

3.1.2. Switching between full and relaxed atomicity
Existing transaction models for advanced applications have emphasized the necessity of
relaxing the atomicity property to meet the requirements of long, interactive transactions.
The suggested solution is to provide abort management with finer granularity than that
provided by full atomic transactions – i.e., allowing partial aborts. However, there are
still situations where full atomicity is necessary to achieve acceptable processing. Ide-
ally, users should be provided with the ability to choose the way to manage transaction
aborts. This is why we have stressed the necessity for seamlessly switching between
full and relaxed atomicity. The strength of such an approach is the ability to manage
transaction termination exactly according to the application needs, thus increasing the
flexibility.

We argue the necessity of specifying the transaction structure, distinguishing be-
tween flat and nested structures. In this way, transaction abortion can be managed in
accordance with the actual structure. We assume that transactions that are short-lived
and do not involve interaction, are flat. They are seen as atomic meaning they are ac-
cording to the all-or-nothing law.
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By contrast, assuming that long-lived transactions are nested, consisting of several
constituent transactions, aborts of transactions can be managed in a more controlled
manner – cf. Moss’ nested transactions [23].

We propose specifying transaction atomicity by means of transaction dependen-
cies. This is based on the dependency theory from, e.g. [5,11]. Note that existing
solutions involving dependencies assume the existence of parent-to-children abort de-
pendency schemes, specifying by default that if a parent transaction aborts then all its
children automatically abort as well. The abortion of a child, on the other hand, does not
have any direct effect on the parent. The source of dependencies in such a case is thus
the transaction structure.

The main disadvantage of such an approach is that abortion of a parent always
discards the effects of its children, making it impossible to define alternative, more re-
laxed, abortion schemes. For example, consider a software project consisting of several
activities. Although the project is cancelled, it might be desirable to “save” the results
of some already completed activities that could be useful in future projects. Moreover,
there are situations where it is necessary to define the effects of a child’s abortion on its
parent as well as on possible siblings. This stresses the necessity for defining a more
generalized dependency scheme than that based on structure. We call this an atomicity
abort dependency scheme.

The idea is to allow an explicit designation of a desired abort specification depend-
ing on the application needs. In this sense, we may define prevailing abort dependencies
regardless of any existing access dependencies or their structural dependencies.

Consider a transaction T with constituent transactions t0, t1, t2, . . . , tn – i.e., T =
{t0, t1, t2, . . . , tn}. To allow the transaction scheduler to deduce which transactions have
to abort in case transaction ti fails, it manages sets, containing lists of affected transac-
tions, called AbortSet(ti ):

AbortSet(ti ) is the set of transactions that have to abort if ti aborts:

AbortSet(ti) = {tj ∈ T | abort(ti) → abort(tj ), i �= j},
where T = {t0, t1, t2, t3, . . . , tn}.

This means that AbortSet(ti ) is a set of transactions tj such that if ti aborts, tj must
also abort.

In the CAGISTrans framework, there is a data structure maintaining a set of
AbortSet(ti ), that the transaction manager uses to determine which other transactions
must abort in case a specific transaction aborts. This means that when transaction ti
aborts, the scheduler will execute DoAbort(ti) as follows:

(1) mark ti “aborted”;

(2) if AbortSet(ti) �= ∅ then for each tj ∈ AbortSet(ti)
if tj is not already aborted then DoAbort(tj).

Figure 2 illustrates this by a nested transaction T1 with sub-transactions T1.1, T1.2

and T1.2.1. From this, we get the constituent transactions T = {T1, T1.1, T1.2} and T ′ =
{T1.2, T1.2.1}. The arrows denote the specified abort dependencies among the involved
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Figure 2. Illustration of abort dependency.

transactions – i.e., T1.1 depends on T1, and T1 and T1.2.1 depend on T1.2. Hence, following
our definition, AbortSet(T1) = {T1.1}, AbortSet(T1.1) = { }, AbortSet(T1.2) = {T1, T1.2.1}
and AbortSet(T1.2.1) = { }.

As this indicates, if T1 aborts then T1.1 must also abort. The abortion of T1.2 will,
cause T1 and T1.2.1 to abort. In other words, the abortion of T1.2 will affect its parent
transaction T1 as well as its child T1.2.1. But the abortion of T1.1 or T1.2.1 will not affect
other (sub) transactions.

How does all this affect the execution of transactions? We have assumed that all
transactions with relaxed atomicity are nested. The effect of the specifications of the
atomicity properties are relevant in the way transactions realize their specified structures
during runtime. This means that some transactions may have to restructure – i.e., spawn
new transactions and delegate some responsibilities, making it necessary to provide op-
erations for dynamic restructuring (see section 4 for elaboration).

3.1.3. Switching between full and relaxed isolation
Traditional multi-user database systems often assume that transactions do not need to
cooperate on data, only compete, giving them the impression of being solely in charge
of some specific resources. Clearly, such an assumption contradicts the cooperative work
philosophy. In fact, the sharing of tentative data is needed to make cooperation possible.
Therefore, transactions must be able to reveal their intermediate results. However, this
may again cause undue cascading abortion, which was originally one of the main rea-
sons for the isolation requirement. Hence, it is important to have an acceptable abortion
scheme to ensure that only those that are directly affected by a failure have to abort. The
other cooperating transactions should be able to proceed as normal. To achieve this, we
again use the AbortSet and its corresponding algorithm, above, but now we are also in-
terested in dependencies among transactions that are not “family” related. Thus, instead
of only traversing the AbortSet containing children of a specific transactions, the abor-
tion algorithm will also go through an “abort set” containing cooperating transactions
that should be aborted with a specific transaction.

Formally, we now define a constituent transaction set Ti as Ti = {ti.0, ti.1, ti.2,
. . . , ti.n}, i = 1, . . . , m. Thus, the new AbortSet is defined as follows:

AbortSet(ti.j ) =
{

t ∈
m⋃

i=1

Ti

∣∣∣ abort(ti.j ) → abort(t)

}
,

where Ti = {ti.0, ti.1, ti.2, . . . , ti.n}, i = 1, . . . , m.
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Figure 3. Illustration of abort dependency across two nested transactions.

Table 1
Isolation with corresponding correctness criteria and applied policies.

Full isolation Relaxed isolation

Correctness criteria Serializability User defined, see section 4.3

Applied policies
Mechanisms Strict locking and awareness Flexible locking, workspaces and

awareness

Rules 2PL protocol User-controlled lock protocol and
collaborative lock protocol

This means that the abort set of a transaction ti.j ∈ Ti may contain transactions that
are children of other transactions.

To illustrate this, consider the two nested transactions T1 and T2 depicted in
figure 3. Using our definition, AbortSet(T1) = {T1.1}, AbortSet(T1.1) = { },
AbortSet(T1.2) = {T1, T1.2.1}, AbortSet(T1.2.1) = {T2.2}, AbortSet(T2) = {T2.1, T2.2} and
AbortSet(T2.1) = AbortSet(T2.2) = { }. This implies that an abortion of T1.2.1 will cause
T2.2 to abort, while T2.1 may proceed as normal.

In addition to this relaxed abortion scheme, it is necessary to have relaxed correct-
ness criteria allowing the above-mentioned sharing of intermediate results. Of course,
such criteria will be user-defined since not all applications have the same needs. How
such a criterion is provided in the CAGISTrans framework is discussed in section 4.3.

Further, to achieve a specified criterion, we have to define which policy should be
applied. Such policies are necessary to determine the mechanisms that are relevant and
the rules for when and how to use the mechanisms. Table 1 provides an overview of the
correctness criteria and policies associated with the isolation property.

For full isolation, we apply the serializability correctness criterion and use the stan-
dard locking policies described in the literature [2]. For relaxed isolation, on the other
hand, we apply user-defined correctness criteria, which are elaborated on in section 4.
The relevant mechanisms are flexible locking – user-controlled locks and collaborative
locks (see section 3.1.3.1), workspace usage (see section 6), and awareness mechanisms
(see section 3.1.3.2).
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3.1.3.1. Flexible locks
The user-controlled lock protocol is defined and implemented as follows:

(1) Locks are acquired to lock specific objects – i.e., each object has an attribute telling
which transaction is holding a lock on it.

(2) No lock mode – e.g., read-lock vs. write-lock – is required, as the lock is associated
directly with an object rather than with an operation.

(3) Once an object is locked, no other transactions may acquire a lock on that object
until the existing lock is released.

The main characteristic of this locking protocol is that locking is basically done
interactively, without following any strict automatic locking rules. Each lock is accom-
panied by a notification tag providing information about the owner of the lock and the
object being locked. In this way, when a lock request is issued the system will be able to
provide the necessary feedback about the current lock held.

In cooperative activities, two or more transactions may have to cooperate on the
same object. The locking protocol above does not permit such cooperation. To allow
this, we apply the collaborative lock protocol. This is defined and implemented as fol-
lows:

(1) As with user-controlled locks, these locks are acquired to lock specific objects.

(2) And again, no lock modes are required.

(3) But, although an object is locked, other transactions may also acquire a lock on that
object, regardless of the operation semantics.

(4) When a transaction requests a lock on an object already locked by another trans-
action, it will be informed about the locking situation, and asked to specify the
intension: browse, incorporate, or modify.

(a) If the intension is to browse, the lock is granted right away.

(b) If the intension is to incorporate, the lock is granted, but the sequence of future
actions must be specified using demands (see section 4.3).

(c) If the intension is to modify, the lock owner and the requester will first be
warned. Thereafter, they are required to solve the conflicts through negotiation.

As can be inferred, this locking protocol allows collaborating transactions to hold con-
flicting locks. These are similar to those found in the Solaris2 file system. However, the
main difference is that before a lock request is granted, the intension must be specified,
and concurrent updates are allowed only after explicit agreement among the collabora-
tive partners.

Note, user-controlled locks may be degraded to collaborative locks upon request.
In other words, if an object is locked using a user-controlled lock, this lock can be de-
graded to a collaborative lock when another transaction requests to access the object.

2 Solaris is a trade-mark of Sun Microsystem. See http://www.sun.com.
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However, before such access can be accomplished, a permit relationship must be estab-
lished (again see section 4.3).

3.1.3.2. Awareness mechanisms
Awareness in CAGISTrans is realized with event notification mechanisms. They are
aimed at providing users engaged in an activity with knowledge about events that are of
possible interest to them.

There are several types of events that are relevant. For those that are related to con-
current execution of transactions, significant events may be associated with transaction
start, transaction termination, acquisition of locks and object change. These are realized
as follows:

(1) Notify on begin. When a transaction starts executing, a notification message is broad-
cast to all involved parties.

(2) Notify on terminate. When a transaction commits or aborts, a notification message
is sent to all involved parties.

(3) Notify on lock. When a lock is acquired or released by a transaction, a notifica-
tion message is broadcast to all involved parties, specifying which type of lock was
acquired or released and on which data the lock is/was applied.

(4) Notify on change. When a data object is being altered by a specific transaction
operation, a notification message is sent to all involved parties.

With relaxed isolation, all four notification events are useful due to potential co-
operation. With full isolation, on the other hand, the knowledge about the existence of
other transactions is normally less crucial. Therefore, none of the notification events
are primarily required. Still, events (1) and (2) may be useful. For example, to ensure
correct results and avoid unnecessary work, execution of project plan updates must be
atomic and isolated. Hence, all affected engineers would appreciate notification about
the beginning and the termination of this update, so that they can accommodate their
activities accordingly.

Summarizing this, notification types (1), (2), (3) and (4) are relevant when the
isolation property is relaxed, whereas types (1) and (2) might be useful when the isolation
property is full (see table 2).

Table 2
Relevance for notification types.

Full isolation Relaxed isolation

Notify on begin Useful Relevant
Notify on terminate Useful Relevant
Notify on lock N/A Relevant
Notify on change N/A Relevant
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Table 3
Possible combinations of atomicity and isolation properties.

Full atomicity Relaxed atomicity

Full isolation OK OK
Relaxed isolation Not always convenient OK

3.2. Analysing the combination of isolation and atomicity properties

Table 3 indicates possible combinations of atomicity and isolation properties of transac-
tions. Combining full atomicity and full isolation is readily OK as for the ACID models –
cf. the literature [14].

We may also combine full isolation with relaxed atomicity, allowing transactions to
provide partial rollback or controlled abort management, but at the same time prohibiting
cooperation. An example of a transaction model having this combination is the nested
transaction model [23].

However, combining full atomicity and relaxed isolation may not always be conve-
nient due to the cost of rollback. An example is open nested transactions [37] allowing
sub-transactions to cooperate. If a transaction aborts then all associated transactions
must abort too, whether they have performed conflicting operations or not. Clearly, such
a requirement would not be suitable within cooperative environments involving several
associated interactive activities of long duration. Anyhow, this combination could be
useful for small cooperative tasks such as those that do not involve too much invested
effort but must still meet the all-or-nothing objective for the results to be reliable.

As opposed to this, a combination of relaxed isolation and relaxed atomicity will
always be OK, assuming the consistency and durability requirements can be met. This
last combination is one of the main issues that we will elaborate on in the rest of this
paper.

4. Management of transactional behaviour during runtime

Adaptability is a prerequisite for the support of dynamic cooperative environments.
Adaptability means the ability to tailor the provided support to different needs, including
those that may change while involved activities are in progress. In the context of trans-
actional support, meeting such a requirement is not a trivial matter. The main challenges
are generally how to apply changes, while the actual transactions are being processed.

To cope with these challenges, we have argued for the separation of design time
and runtime specification of transaction models. Further, there is a need to separate
the execution specification into two parts – fixed and modifiable parts to enable runtime
modifications [29]. Three main building blocks are necessary to manage the transac-
tional behaviour during runtime:

• Operations used to manage the execution of transactions.

• Advanced operations specifying the actions a transaction can execute.
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• Rules defining constraints to manage and control the effect of transaction executions.

These three will be covered in sections 4.1, 4.2 and 4.3, respectively.

4.1. Management operations

The management of transaction execution is achieved through operations that manage
initiation, termination and restructuring, respectively.

4.1.1. Managing initiation and termination
We can assume that every transaction starts executing with a begin and eventually ter-
minates with either a commit – if it succeeds, or an abort – if it has to discard any
changes. To allow the widest possible application areas, CAGISTrans is designed to en-
able both automatic management – i.e., transparent initiation and termination applicable
to ACID transactions, and interactive management – i.e., user-controlled initiation and
termination relevant for cooperative interactive environments. The former is realized by
allowing the system to perform the initiation/termination without any intervention by
the user. The latter, on the other hand, is realized in such a way that a user can freely
choose the way transactions execute and terminate. However, to avoid anarchy there
is a need to define dependencies among the involved transactions. For example, initia-
tion of a transaction Ti may not be accomplished if a begin dependency [5] specification
says that another Tj has to start first. Similarly, a specific transaction Ti may not be
terminated if there is a commit dependency [5] specification that enforces a Ti to wait
for another transaction Tj to finish. Also, aborting a specific transaction Ti may cause
another transaction to abort depending on the prevailing abort scheme (see section 3.1).

4.1.2. Managing dynamic restructuring
The ability of a transaction to delegate responsibilities and spawn new transactions dur-
ing runtime is referred to as dynamic restructuring. It has been identified as a useful
cooperation primitive in addition to being a means to realize a specified structure during
runtime. Dynamic restructuring was originally proposed with the Split and Join trans-
action model [15], using a split operation to divide an ongoing transaction into two or
more transactions, and a join operation to merge two or more ongoing transactions into
a single transaction.

The main reason for adopting the basic ideas of this notion is the ability to support
open-ended activities. By allowing a transaction to delegate responsibilities, it will be
able to release resources that are no longer needed before it terminates. In this way,
resources can be made available to other transactions at an earlier stage. For example,
although a transaction aborts, some of its resources may still be used by others still
executing transactions.

In CAGISTrans we speak of two types of responsibilities: object locks and oper-
ations. A transaction may thus transfer locks on specific objects to another transaction,
giving it the responsibility to do certain tasks, such as accomplish updates on these ob-
jects. It may also transfer operations to another transaction, giving it the responsibility
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to commit these operations. From this perspective, the difference between our approach
and that of the Split and Join transaction model is our use of both operation and object
lock delegation. Restructuring in the Split and Join transaction model is based on object
lock transfers only. Moreover, while the transactions in that model stick to serializability,
our framework allows user-defined correctness criteria.

Our dynamic restructuring will depend on the specified structure. Flat transactions
do not spawn new transactions, but may delegate responsibilities to other transactions.
This requires that a transaction maintains two sets respectively containing object locks
and the operations for which it needs to delegate responsibilities. We call these ObjSet
and OpSet, respectively. An operation delegate(ti,tj,ObjSet,OpSet) per-
forms a resource transfer from a transaction ti to another transaction tj . This means that
when a transaction ti executes delegate, this transaction will release its locks on all
objects in ObjSet, and tj will immediately take over these locks. In addition, all op-
erations in OpSet will be removed from ti’s history, before they are transferred to tj ’s
history. Consequently, when ti terminates, the operations that have been delegated to
other transactions will not be affected.

Unlike flat transactions, nested transactions may spawn new transactions. Thus
dynamic restructuring may involve the generation of constituent transactions. In that
case, delegate(ti,tj,ObjSet,OpSet) transfers responsibility from ti to one of
its sub-transactions tj . At the time this operation is issued, tj may be active or not. If tj
is active, then the restructuring is achieved as above. If it is not active, it will be initiated
as a child of ti , before the resource transfer is accomplished as before.

4.2. Advanced operations

Advanced operations mean commands specified at an abstraction level higher than, but
based on, read and write operations. As we pointed out in [29], there are several reasons
for using advanced operations in CAGISTrans. First, there are types of activities that
cannot be easily modelled with read and write operations due to the induced complexity.
By allowing this type of abstraction, however, we increase the degree of modularity,
thus simplifying the modelling task. Further, advanced operations allow us to exploit
the semantic knowledge about an operation. An example of such semantics is the return
information from executed operations – e.g., the changes operations have made. Another
example is the intention of an operation. Here, for instance, we can speak of two types
of read intentions: browsing and incorporation. Browsing means that even if an object
being read by a user had a different value, this would not cause the user to perform
different actions. In other words, with browsing, changes will not affect users’ future
actions. On the other hand, if the intention is incorporation, changes on an object read
are likely to affect the way users act.

How do we realize advanced operations with intentions? We define a general ad-
vanced operation as a tuple Op = 〈Optype, InSet, OutSet, Intent〉, where Optype denotes
the type of operation, InSet is the set of input objects – i.e., objects read, OutSet is the set
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of output objects – i.e., objects written, and Intent indicates the intentions of each input
argument.

Using this, we can specify a general conflicting rule based on operation com-
mutativity [36]; two operations are in conflict if the order in which they are ex-
ecuted matters. Disregarding intentions, this means that two operations Op1 =
〈Optype1, InSet1, OutSet1〉 and Op2 = 〈Optype2, InSet2, OutSet2〉 commute if the ob-
jects read by Op1 are different from the objects written by Op2, the objects read by
Op2 are different from the objects written by Op1, and Op1 and Op2 do not update any
common object:

(InSet1 ∩ OutSet2 = ∅) ∧ (InSet2 ∩ OutSet1 = ∅) ∧ (OutSet1 ∩ OutSet2 = ∅).

With intention knowledge, we can relax this commutativity rule such that even if the
intersection between an InSet and OutSet pair is not empty, the two operations will still
commute when the objects in the intersection are for browse with the inputting transac-
tion.

In practice, we substitute the Intent in the operation tuple with a BrowseSet, as-
suming that all objects found in InSet but not in BrowseSet are by default incorporated.
Based on this, the new commutativity rule can be formally defined as follows. Consid-
ering Opi = 〈OpTypei , InSeti , OutSeti , BroweSeti〉:

Compatible(Opi , Opj ) ⇐⇒ (OutSeti ∩ OutSetj = ∅)

∧ (∀Ob ∈ (InSeti ∩ OutSetj ), Ob ∈ BrowseSeti)

∧ (∀Ob ∈ (InSetj ∩ OutSeti), Ob ∈ BrowseSetj ).

This means that two operations Opi and Opj are compatible iff (1) Opi and Opj

do not perform updates on any common objects, and (2) objects read by one of the
operations and updated by the other operation only are for browse with the inputting
transaction. Note, this assumes that all elements of BrowseSeti are elements of InSeti;
∀Ob, (Ob ∈ BrowseSeti ) → (Ob ∈ InSeti ).

To illustrate this, we can consider a software development environment that pro-
vides the commands Edit_interface, Edit_class, and Compile_class for a coding process.
Assume that all these are abstractions of read and write operations. Suppose that
two modules are to be created as part of the coding process as illustrated in figure 4:
a graphical user interface module (GUI for short) and a process module (P ) process-
ing inputs from the GUI and producing data to be displayed by the GUI. Further,
Edit_class(GUI) implements the interface part of the process module, called process
interface (P_i for short). As indicated in figure 4, this means that changes on P_i will
affect the execution of Edit_class(GUI). But, as depicted, although Edit_class(GUI)
reads GUI_i, changes to this object will not directly affect that operation. It is similar
for Edit_class(P) and Compile_class(P). The workspace operations will be elaborated
on in section 6.

Using our advanced operation type, we get the specifications given in table 4.
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Figure 4. Advanced operations illustration.

Table 4
Illustrations of advanced operation specification.

Operations applied on GUI
Edit_interface(GUI) = 〈Edit_interface, {GUI_i}, {GUI_i}, { }〉
Edit_class(GUI) = 〈Edit_class, {GUI_c, P_i, GUI_i}, {GUI_c}, {GUI_i}〉
Compile_class(GUI) = 〈Compile_class, {GUI_c, P_o}, {GUI_o}, {P_o}〉

Operations applied on P

Edit_interface(P) = 〈Edit_interface, {P_i}, {P_i}, { }〉
Edit_class(P) = 〈Edit_class, {P_c, P_i}, {P_c}, {P_i}〉
Compile_class(P) = 〈Compile_class, {P_c}, {P_o}, { }〉

Applying our advanced compatibility rule, we get for example:

¬Compatible(Compile_class(GUI), Edit_class(GUI))

¬Compatible(Compile_class(P), Edit_class(P))

¬Compatible(Edit_class(GUI), Edit_interface(P))

Compatible(Edit_class(GUI), Edit_interface(GUI))

Compatible(Edit_class(P), Edit_interface(P))

Compatible(Compile_class(GUI), Compile_class(P))

We will use these results in the illustrative examples in the rest of this paper.



CAGISTRANS 39

Figure 5. Illustration of the use of the three constraint tools.

4.3. Managing and controlling transactional behaviour

Transaction executions must be managed in a controlled manner to achieve acceptable
data consistency. Traditionally, serializability has been the ultimate and widely accepted
criterion to achieve data consistency [2]. Serializability ensures that any transaction ex-
ecution is equivalent to some serial execution, and thus always produces correct results.
However, a serializability criterion requires transactions to be isolated, thus prohibiting
cooperation. To overcome such a restriction we have included a set of user-controlled
correctness constraints to allow a controlled sharing of data, and ensure that transactions
terminate with consistent final results. Such constraints may be used when the serializ-
ability criterion is considered inappropriate.

The constraints in CAGISTrans explicitly specify transaction interleavings that are
(1) prohibited, (2) allowed, and (3) mandatory. Constraints (1) are realized using con-
flicts, which define operations that cannot execute concurrently to hinder incorrect ef-
fects. Constraints (2) are realized using permits, which identify operations that in gen-
eral are considered conflicting by (1), but that still can execute concurrently. Finally,
constraints (3) are realized with demands, which specify operation sequences that must
appear to achieve correct executions. Different combinations of conflicts, permits, and
demands thus constitute the user defined correctness criteria in CAGISTrans.

Figure 5 is a general illustration of how combinations of the three constraint types
can be exploited as user defined correctness criteria. A table containing a set of prohib-
ited interleavings specifies the conflicts. This consists of a list of operation pairs that
cannot be executed concurrently, for the currently executing transaction set. Consider
now that T1 = {t5, t6, t10} and T2 = {t3, t7, t4}, are two sets of cooperating transac-
tions. An analysis shows that the prevailing conflict constraints are, for T1 and T2, too
strict. There are, in particular, two specific pairs of operations that we would like to
allow to occur concurrently. To cope with this, we must specify a permit relationship
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Figure 6. (a) Incorrect scenario, and (b) correct scenario using conflicts and permits.

for each transaction set. However, the two permitted interleavings may now introduce
some concurrency anomalies. Therefore, we might also have to specify demand rules,
determining sequences of operations that the transactions in T1 and T2 have to execute.
Note that such demanded interleavings must still obey the conflicts defined for the two
transaction sets.

4.3.1. The necessity of conflicts, permits and demands
This section discusses the necessity of diverse combinations of the three constraint types.

Case 1: Conflicts and permits only
This case assumes that we only have conflicts and permits, where the permits allow
some specific transactions to violate some of the conflict rules. An analogous example is
allowing a transaction tj to write an object read by another uncommitted transaction ti .
As long as ti’s read does not affect its future computation, any changes to this object will
not be critical. But if this is not the case, problems might arise. This means that there
are situations where conflicts and permits alone would not be sufficient to guarantee
correctness. Rules specifying what sequences of actions must be executed for the final
results to be acceptable from the viewpoint of both ti and tj are also needed.

To illustrate this, let us say that two engineers, Tom and John, are assigned the
responsibility to create the two modules GUI and P from section 4.2. Figure 6(a) illus-
trates a possible interaction scenario.

According to our commutativity (conflict) rule, this scenario is illegal because of
the concurrent execution of Edit_interface(P) and Edit_class(GUI). As a result, Tom
must wait until John finishes. Assume, however, that Tom and John find such a wait
unacceptable. Hence, they need a permit relationship to enable their interaction. We
may define this as permit(TTomTJohn, [Edit_class, Edit_interface], [GUI, P ]). This al-
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lows Tom and John to execute Edit_class and Edit_interface upon GUI and P , even
if this violates a commutativity conflict. Taking this permit relationship into account,
figure 6(b) shows the scenario that may be considered correct.

Note, to achieve recoverability [2], we must ensure that TTom does not commit
before TJohn, specified as a commit dependency, and if TJohn aborts then TTom must abort
too.

Case 2: Permits and demands only
This case only combines demands and permits. Permits identify allowable interleavings
while demands specify steps that must appear. Since this assumes that conflict rules do
not exist, permits are used to allow accesses to data that are controlled via locking. This
implies that we will not be able to fully exploit the benefit of advanced operations, and
so be unable to customize conflicts. The reason is that we would not be able to reason
about conflicts appearing beyond read/write.

Nevertheless, we may regard locks as a specialization of conflicts. Hence, this case
is a special case of case 4.

Case 3: Conflicts and demands only
This case is equivalent to that of [24]. This combination may be applied to achieve
correctness. However, since we may not directly refine a conflict definition (also true for
the original conflicts from [24]), there is no way to relax any pre-specified conflict rules
if the requirements change. Nevertheless, we often prefer to allow some limited number
of transactions to disregard some specific conflicts rather than change these conflicts for
all executing transactions collectively. Although cooperation could be useful for Tom
and John, allowing a third party to observe the changes made may not necessarily be
convenient, since the results may still be incomplete. In other words, removing some
specific conflicts, thus opening up for all the involved transactions, may sometimes be
inconvenient with respect to consistency of the final results. Therefore, we may also
need permits in addition to conflicts and demands.

To illustrate, consider the coding example involving Tom and John in figure 7(a).
Due to our conflict rules and the lack of permits, Tom and John may not execute
Edit_interface(P) and Edit_class(GUI) concurrently. This means that only one of the
two engineers can update both P_i and GUI_c at a time. For this reason, Tom and John
agree that Tom should do the necessary updates on P_i as well as GUI_c, while John
modifies P_c.

This far, the interaction between Tom and John’s transactions is legal. However,
to make sure that all interface information included in GUI_c are complete, before pro-
ducing the object code of GUI, Tom has to browse the object code of P . Therefore, the
scenario in figure 7(a) must be considered invalid. Tom has to wait until the object code
of P is available.

Hence, Tom and John need a demand specifying that before Compile_class(GUI)
can be executed – after GUI and P are modified, Compile_class(P) must be performed.
As a result, the interactions depicted in figure 7(b) represent a valid sequence of actions,



42 RAMAMPIARO AND NYGÅRD

(a) (b)

Figure 7. (a) Invalid scenario according to conflicts and demands constraints, and (b) valid scenario follow-
ing conflicts and demands constraints.

using both conflict and demand constraints. A discussion of demand additions (the thick
lines) is provided in section 4.3.2.

Case 4: Conflicts, permits and demands
The main conclusion of the discussions in the three cases above is that we may need all
the three constraints to ensure correctness and enable some degrees of flexibility – i.e.,
controlled sharing of data. To illustrate this case, recall our coding example with Tom
and John from case 1, and consider the scenario in figure 8(a).

Suppose that John has to make some modifications to P_i after Tom has created
the GUI-class. Because of the prevailing permits (see case 1), this is OK. However, due
to these modifications, the P_i incorporated by Tom is no longer up to date. This implies
that Tom ought to re-execute Edit_class(GUI) to reflect the changes made to P_i. A nat-
ural way to ensure this is to add a demand enforcing the execution of Edit_class(GUI)
after Edit_interface(P). Figure 8(b) shows a scenario following this rule.

Here, the commit dependency between TTom and TJohn still applies, meaning that
after the first Compile_class(GUI), Tom must wait for John’s commit before he can
terminate too.

4.3.2. Handling dynamic re-specifications
We have stressed several times the ability to modify the three constraint types – i.e.,
conflicts, permits and demands – at runtime. Table 5 summarizes our conclusions from
an analysis of the possible adjustments.

4.3.2.1. Conflicts
Conflicts should not be modifiable during runtime to avoid unmanageable complex-
ity. However, indirect refinements are still possible. For instance, we can apply user-
controlled locks (see section 3.1) to gain more restriction, and we can add permits to
gain more flexibility.
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Figure 8. (a) Illegal scenario due to incompleteness of conflicts and permits, and (b) legal scenario using
conflicts, permits and demands.

Table 5
Properties of the execution constraint tools.

Addition Removal

Conflicts N/Aa N/Aa

Permits Always OK May cause difficulties
Demands May cause difficulties Always OK

a Conflicts are not modifiable.

4.3.2.2 Permits
Addition of permits. Apart from the concurrency anomalies that may occur, which are
managed separately [29], the introduction of permits at runtime does not cause any prob-
lems since this will only affect operations that will be performed in the future.

To handle a new permit relationship – i.e., permit(tj , ti , Op_set, Ob_set), allowing
ti and tj to perform a set of operations Op_set on a set of objects Ob_set, a specification
manager (see section 5.3) executes the following steps:

Add_permit(tj , ti , Op_set, Ob_set)

(1) Check whether conflicts for Op_set and Ob_set exist. If this is true, define the
permits.

(2) If no conflicts exist, check whether the data in Ob_set are locked:
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Figure 9. Illustration of an In-Between constraint.

(a) if the lock type is user-controlled, request degradation. If this can be granted,
degrade the lock to a collaborative lock and define the permits;

(b) if the lock type is collaborative, define the permits.

(3) Otherwise, no permits are necessary.

Removal of permits. In contrast, the removal of a permit relationship may not always
be straightforward. Difficulties may arise due to existing conflict specifications. For
example, some operations in the Op_set may be conflicting, thus causing an execution
to be invalid. However, this only applies if the involved operations have already been
executed. To manage the removal, the specification manager executes the following
steps:

Rem_permit(tj , ti , Op_set, Ob_set)

(1) For all operations in Op_set, check for conflicts. For each conflict found, check in
the log whether the operation has already been executed. If the operation is found in
the log, report the conflict to the user, providing options for further actions: (i) in-
validate (through abort), (ii) ignore (not recommended), or (iii) cancel (no removal).

(2) Remove the permits.

4.3.2.3. Demands
Addition of demands. Although there are no problems adding permits, introduction of
demands is not always so straightforward. The following discussion considers different
cases and situations that the specification manager must handle when a user adds demand
constraints.

Case 1: Force an occurring operation Opk in-between operations Opi and Opj

An In-Between(Opi , Opk, Opj ) constraint requires that if all three operations Opi , Opj

and Opk occur, then Opk must succeed Opi and precede Opj in sequence. This is illus-
trated with a linking graph in figure 9.

See case 3 in section 4.3.1 for an application of this constraint type. The worst case
here is when such an addition is requested just before Opk is to be executed. It is OK if
Opj has not already been executed (irrespective of whether Opi has been executed) – it is
just a matter of adding the linking requirements and scheduling the involved operations
appropriately (if all three occur). But if Opj has already been executed, it has to be re-
executed – with possible recursive effects – when Opk is executed (if Opi also occurs).
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Figure 10. Illustration of an Occur–Follow constraint.

Case 2: Force a non-occurring operation Opk to occur and follow operation Opi

An Occur–Follow(Opi , Opk) constraint requires that if a specific operation Opi occurs,
then the given operation Opk must also occur and follow Opi in sequence. This is illus-
trated with a linking graph in figure 10.

See cases 3 and 4 in section 4.3.1 for three applications of this constraint type.
Such an addition typically involves forced scheduling of operations. The only recursive
effects here would be other forced executions but no re-executions.

Note that operations may be involved in several demand constraints – of both types
even – at the same time.

Removal of demands. As seen with the adding of permits, the removal of a demand
does not pose any difficulties. This is because occurring patterns of operations are not
prohibited by nonexistent demands.

5. Support for heterogeneous cooperative environments

Cooperative work environments are heterogeneous in addition to being dynamic. There-
fore, openness is crucial. Previously, we have argued the necessity of supporting changes
in the environment, while users are executing their transactions. In the same line, we
stress the necessity of providing the support for a wide range of resource management
systems. Motivated by this, we have developed the CAGISTrans transaction manage-
ment system as a middleware [29]. Our objective is to provide a system built on top of
available DBMSs, which at the same time can offer features that extend these DBMSs in
terms of distribution support, increased resource availability and database independence,
as well as providing flexible cooperative transaction management support.

Figure 11 depicts the architecture of the CAGISTrans transaction management sys-
tem. A natural implication of the distinction in figure 1 is to provide an environment that
allows both design time specification of transaction models and runtime management of
transaction execution. Therefore, the transaction management system is divided into two
separate environments, consisting of a specification environment and a runtime manage-
ment system.

5.1. The specification environment

An important aspect of our system is that all specifications are encoded in XML. There-
fore, the most dominant components of this environment are those used to define, parse
and validate transaction model specifications.

In this environment, a model designer specifies the desired transaction character-
istics and the initial execution constraints and operation sets, before he/she executes
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Figure 11. Architecture of the transaction management system.

his/her transactions. These are then passed through an XML parser, which checks the
specification against prespecified DTDs – document type definitions. Next, a speci-
fication analyser goes through the specification and translates the generated elements
from the XML parser into (a) internal representations of transaction characteristics –
i.e., dependency formation rules, enabled correctness criteria and applied policies, and
(b) operations sets and execution constraints – i.e., conflict table entries, initial permit
sets, and initial demand rules.

Referring to figure 11, we have implemented an XML-based design time specifi-
cation of transaction characteristics based on definitions of the desired “non-ACID” re-
quirements. In addition, a complete XML/DTD-based language has been implemented.
Here, DTD plays the role of a language dictionary. To parse specifications, we have
integrated an XML-parser from IBM – i.e., the XML4J-parser.3 An integral part of

3 See http://www.alphaworks.ibm.com/aw.nsf/techmain/xml4j.
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Table 6
Overview of implemented components.

Blocks Implemented Comments on not fully implemented components

User interface
Design time specification 60% Fully functioned graphical user interface is not

finished yet
Using standard text editor to hard-code the
specification

Runtime specification 100%

Characteristics and execution –
XML and DTD

100%

XML parser 100%

Specification analyser 60% Automatic check for supported model is not
available

Runtime specification manager 80% Handling of advanced conflict rules is only designed

Execution manager 75% Realization of dynamic restructuring is only
designed
Enforcing advanced conflict rules is not supported

Resource management interface 90% Interfaces to standard ACID transaction using
JTA/JTS is implemented but not integrated and
tested yet

the CAGISTrans prototype is also analysing and translating the outputs from the XML
parser – i.e., the specification analyser (SA). An overview of the implementation status
of the components is provided in table 6.

5.2. The runtime management system

The representation of the internal characteristics from the specification environment is
used by the runtime management system to control and manage the execution of transac-
tions. Its main component is the advanced transaction manager, responsible for making
sure that the execution of transactions conforms with the transaction characteristics and
execution specifications from the specification environment. This manager again con-
sists of two sub-components; the runtime specification manager (RSM) and the execution
manager (EM). Before transactions are executed, the RSM checks that the specifications
can be supported. The CAGISTrans system is designed to operate on top of DBMSs.
Thus, if a user chooses to rely on an underlying DBMS to handle correctness control,
the RSM checks – through the resource management interface (RMI) – that such support
is present. Unfortunately, many existing DBMSs have their own ways of implementing
concurrency control. For example, it is often impossible to access the lock tables that are
managed by these systems. Instead, some systems allow locks to be explicitly acquired
and released through SQL-statements.4 All in all, “cooperative” management of con-

4 See for example the GET_LOCK and RELEASE_LOCK statements in MySQL.
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currency control between a CAGISTrans system and DBMSs can only be achieved to a
certain degree. A way to overcome this limitation is allowing the underlying DBMSs to
do the required control of sharing. As such, correctness of data managed by the DBMSs
can be assured in each system, but achieving global consistency (across the systems)
is still an important challenge that must be further considered. This issue has been a
subject for intensive research in the last couple of decades. Several solutions have been
proposed in the literature [4,20,21]. However, it is widely agreed that managing con-
sistency across multiple heterogeneous and autonomous DBMSs is an issue that still
deserves further attention.

From a transaction commitment point of view, CAGISTrans can implicitly affect
the way underlying DBMSs handle commitment by enabling or disabling automatic
commitment – i.e., “auto-commit”. There are database systems that allow this speci-
fication through JDBC drivers.

From these perspectives, checking the underlying DBMSs for the support pro-
vided means checking (1) which type of isolation level is supported for each DBMS
and (2) whether auto-commit can be enabled or disabled as needed.

As an alternative to relying on DBMSs, the user may want to rely on the advanced
support provided by the CAGISTrans system. In that case, the RSM will manage the
execution of user transactions in cooperation with the EM.

Further, recall that new specifications may be introduced during runtime. The RSM
provides the necessary support for the required modifications. For example, when new
constraints are to be introduced, the RSM first checks the actual specification. Then it
gives the user all the necessary information on the actions that must be taken. To illus-
trate, consider the addition of new constraints to the current set of demands as discussed
in section 4.3. The RSM checks the log – i.e., an execution descriptor – for all executed
operations. If any new constraint may cause invalidation of some operations because a
specific operation is to appear between two already performed operations, the RSM will
inform the user about this, requesting him/her to choose the way to proceed – either to
cancel the addition or to allow an invalidation.

Validation of transaction executions is managed by EM. The EM uses the specified
correctness criterion to control the execution of a specific transaction. The EM can be
seen as a transaction scheduler in the sense that it is responsible for executing the trans-
actions on the basis of requests. In addition, it is responsible for managing the execution
of relevant management operations. This includes applying the prevailing dependen-
cies, which are relevant when issuing begin, abort or commit (see section 4.1). Further,
the EM allows transactions that have a nested structure to spawn new transactions upon
request. And, if necessary, the EM also accomplishes delegation of operations among
transactions.

As shown in table 6, we have implemented a major part of the runtime manage-
ment system. More specifically, we have designed and implemented the user interface
which supports interactive transaction initiation and termination. The RSM component
is implemented to handle read/ write-based conflicts only. Handling more advanced con-
flict rules has been designed, but this is still not integrated in the CAGISTrans prototype.
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Figure 12. Interfaces to serializable resource management systems.

Permits and demands are, on the other hand, part of the prototype implementation. The
current implementation of RSM also supports specification of the two latter constraints
during runtime. Further, the EM component allows validation of transaction executions
using permits and demands. However, even though dynamic restructuring is designed,
it is still missing from the EM prototype implementation. Finally, some advanced op-
erations are integrated and supported by the EM. These include the operations used to
handle access to workspaces that we will elaborate upon in section 6.

5.3. Ensuring correctness

In CAGISTrans, there are two possible ways to achieve desirable final results: enforcing
serializable execution and adopting user defined correctness criteria.

The serializability criterion is mainly supported by underlaying resource manage-
ment systems. Therefore, the CAGISTrans system provides this criterion through the
interfaces to serializable resource management systems, as shown in figure 12. These
interfaces are realized with JDBC-Java Database Connectivity5 – and the JTA/JTS – Java
Transaction API6/Java Transaction Service7 – interfaces. Using the JDBC interface, we
are able to specify the isolation level of the underlying DBMS connected to the CAGIS-
Trans system. This means that we may enforce serializable execution on that DBMS by
choosing the serializable isolation level – i.e., “TRANSACTION_SERIALIZABLE”.8

On the other hand, if we use non-DBMS resource providers – such as standard file
systems and web-servers – the CAGISTrans system will use the JTA/JTS interface to
enforce serializable execution. Note, however, that this enforces a full ACID execution,
making it impossible to use relaxed atomicity too.

Unlike serializability, management and enforcement of user defined criteria is
achieved through the CAGISTrans system itself. Figure 13 shows how we implement this

5 See http://java.sun.com/products/jdbc/.
6 JTA specifies standard Java interfaces between a transaction manager and the parties involved in a distrib-

uted transaction system. See http://java.sun.com/products/jta/.
7 JTS specifies the implementation of a Transaction Manager which supports the JTA, based on the CORBA

OTS [25]. See http://java.sun.com/products/jts/.
8 See http://java.sun.com/products/jdbc/.
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Figure 13. Managing user-defined correctness criteria.

in CAGISTrans. As depicted, we are still able to use a database as a resource provider
through a JDBC interface. But, now the isolation level is “TRANSACTION_NONE”, in-
dicating that all transactions are handled by the CAGISTrans system. JTA/JTS, on the
other hand, only allows ACID transactions. Therefore, a JTA/JTS interface for extended
transactions is not applicable. Rather, the CAGISTrans system takes over the responsi-
bility for handling advanced transactions through the specification analyser (SA) and the
execution manager.

The user specifies the desired correctness criterion through a user interface, allow-
ing the specification of conflicts, permits, and demands. These are, thereafter, handled
by the specification analyser (SA) which checks their validity and consistency (see sec-
tion 4.3.2 for a discussion). The SA cooperates with the EM to ensure that the transac-
tions meet the specified constraints when they are executed.

Referring back to our implementation overview in table 6, the JDBC interface to
the DBMSs is supported by the current CAGISTrans prototype. For example, we use
a MySQL9 server as database for storing management and control information. This
database server was chosen due to its simplicity in use and implementation. Further, we
have tested the resource management interfaces against a PostgresSQL10 DBMS. We are
also currently investigating use of the IBM DB2.11

9 See http://www.mysql.com/.
10 See http://postgresql.readysetnet.com/.
11 See http://www.ibm.com/db2/.
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5.4. Experiments with conflicts and patterns

The ideas underlying the correctness constraints tools of our CAGISTrans framework
(see section 4.3) have originally been inspired by conflicts and patterns from the coop-
erative transaction hierarchy model [24].

Before implementing our constraint tools, we first tried to implement conflicts and
patterns. We did some experiments with specification of grammars for conflicts and
patterns. From this we learned that meeting the dynamic requirements of cooperative
work was not a trivial matter. First, we had to define a complete LR(0)-grammar for
the patterns and conflicts, and generate a lexical analyser using – e.g., lex [19], and a
parser using – e.g., yacc [19], before we could execute the involved actions. For this to
be possible, however, we also needed complete transaction (operation) sets to be carried
out. Moreover, change incorporation at runtime would not be possible as we first had
to modify the grammar, then generate a new lexical analyser and a new parser, before
execution of the actual transactions could start again. These are the main reasons for
deciding to develop our own demands and a revision of conflicts.

An additional lesson learned from these experiments was that the complexity of
the grammar increased proportionally with the number of transactions and operations
involved. Such a complexity would make the cost of managing the transactions unduly
high. This further supports our argument for allowing runtime adjustments. In fact, by
making such adjustments possible, we might allow stepwise specification, thus coping,
to some extent, with the aforementioned complexity.

5.5. Comparison with other systems

The CAGISTrans system architecture distinguishes between a specification environment,
providing a means for specification and validation of transaction models, and a runtime
management system, offering support for execution of transactions and management of
their behaviour during runtime. The main advantage of such a separation is the ability to
reason about properties and behaviour of transactions before they are executed, allowing
a model designer to customize his/her model as desired. Moreover, the ability to refine
the model at runtime is useful as we may need to support new requirements – e.g., due
to the evolutionary behaviour of the actual activity. There are other approaches that
apply similar separation of specification and runtime environments. Most comparable
with our work from this perspective is TSME [11]. Compared to this, CAGISTrans
has attempted to improve the dynamic support. In TSME a specification is tested with
respect to whether it may be supported before it is applied. Once the specification passes,
and the transactions are executed, there is no way to change the provided specification
before the transactions are terminated or interrupted. Moreover, support for dynamic
restructuring was beyond the scope of TSME.

Further, while TSME was implemented as complete systems, our framework is
built on the middleware principle, making it possible to provide support for a wide range
of resource management systems.
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Figure 14. Interface to external agents.

5.6. Implementation using mobile agents

Proof of concept prototypes have been implemented to realise the CAGISTrans frame-
work based on the architecture described in this section. The prototypes were mainly
built using agent technology. The reason for this was primarily to facilitate the integra-
tion of distributed support – e.g., Web support. Another important aspect was mobility
which can be exploited to reduce the communication cost. Also, agents can be exploited
to facilitate cooperation between diverse system components and act as interfaces to ex-
ternal applications. To deal with such applications we have implemented an external
agent interface.

The main purpose of the external agent interface is to allow external agents to
access resources administrated through the CAGISTrans system. Implicitly, this means
that if several agents cooperate via the same objects, our system provides transactional
services which support the cooperation.

Currently, we have implemented a system that allows both aglets and other KQML-
speaking agents to access such CAGISTrans services. This allows agents assisting users
in a cooperative process to follow a cooperative policy specified for that cooperation.
This means that when one or more agents access a back-end resource server they will
follow the prevailing correctness criteria specified for their interaction.

Figure 14 depicts how the external agent interface in CAGISTrans is realised. As
already mentioned, CAGISTrans currently supports two categories of agents: KQML-
speaking agents and aglets. KQML agents communicate with the CAGISTrans system
through a facilitator (see figure 15), using the KQML communication protocol. A fa-
cilitator is a service provider maintaining information about active system agents – i.e.,
special purpose agents forming part of the CAGISTrans system itself – that accomplish
agent requests. A system agent, which is an aglet, advertises all available services to
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Figure 15. Interaction between an agent and the external agent interface components.

the facilitator along with its physical address and symbolic name. Such services include
executing operations through CAGISTrans, mediating transparent accesses to underly-
ing distributed resource bases, and presenting notifications for awareness purposes. This
means that a client application can use agents to request executing operations such as
workspace operations through the CAGISTrans external agent interface. They can also
be used to access remote resource servers where documents or objects used in coopera-
tive activities are stored. A list of such servers including their exact addresses is managed
in CAGISTrans. This list can be provided by a system agent to external agents. Note
that, as mentioned above, the distribution of document servers is intended to be trans-
parent to the users. Thus, the use of agents here aims at facilitating such a transparency.
Finally, external agents may “poll” notification information that is useful for awareness
purposes. This means that some of the awareness services can be presented by system
agents to external agents, and then again “forwarded” to users.

An external agent asks the facilitator whether there are system agents that can offer
the service it needs. If the service request matches one of those being advertised, the
facilitator will provide the external agent with the address and the symbolic name of an
appropriate system agent. Hereafter, the two agents will continue their dialogue until the
external agent has accomplished its tasks.

In addition to being KQML agents, external agents may also be aglets. Since our
system agents are aglets, unlike a KQML agent, an (external) aglet may communicate
directly with a system agent, exchanging messages with it until its service requests and
corresponding tasks are accomplished. Thus, intervention by the facilitator is not nec-
essary. Here, communication between two aglets follows the agent transport protocol
(ATP) for message passing. See [18] for an overview of the ATP.
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6. Integrating workspace management

A widely accepted approach to supporting cooperative work is to provide a shared space
which can be logical or physical where groups of people can perform tasks together.
Such a space is called workspace. It is common to assume the existence of both shared
and private workspaces. This allows people to alternately work in a group, and carry out
individual activities in private, thus enabling partial privacy. Integration of the workspace
concept in CAGISTrans was motivated by the need to facilitate the management of shar-
ing in data intensive systems as well as to further widen the application areas of the
CAGISTrans framework.

However, for this to be practical we had to extend the concept. In many existing
systems the control of access to the workspaces is either left to the user to figure out –
e.g., many groupware-based approaches, or it is unduly strict – e.g., many database cen-
tred approaches. This makes it necessary to provide flexible support which is powerful
enough to bridge this gap.

6.1. Flexible workspace support

First, it is necessary to organize the workspaces into a nested structure, enabling multiple
levels of sharing (see figure 16). In addition to individual and public workspaces there
are group workspaces that provide limited groups of people with shared space [29].

To illustrate this, let us assume that our software company consists of engineers co-
operating to perform the coding task, developing a software artefact. Usually, the size of
a software artefact to be developed is so large that to address the induced complexity the
engineers have to be organized into small groups, coding different but related modules.
To allow flexible interactions among group members, there is need for a place where
these members can exchange their program codes. Note, however, that sharing is only
reasonable if the code has reached a certain maturation phase. Until then each member
ought to work in private – i.e., in a private workspace. Later the produced program codes
can be released to a place where a larger group can access them. This process continues
to ever larger group workspace until one reaches the public workspace.

Extensions to the workspace access support are also necessary to allow flexible
accesses to workspaces [29]. In brief, the operations needed are write-check-out (wco)
and read-check-out (rco), distinguishing the intentions behind the check-out operation,
upward-check-in (uci), checking in data from any level to the next level, check-in (ci),
checking in data from any workspace to the public workspace, refresh, updating a lo-
cal copy of data with the one residing in the parent workspace, and data manipulation
operations such as read, write, insert and delete, plus diverse advanced operations (see
section 4.2). Note that the main difference between uci and ci is that when a user per-
forms uci(obj), he/she only puts a copy of obj from his/her workspace into a parent
workspace. He/she still has the ownership on obj. But, with ci(obj), obj is moved to the
public workspace, and the ownership to obj is released.

We can now return to our coding example. Using the above workspace opera-
tions, the detailed interactions between Tom and John corresponding to figure 8(b) which
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Figure 16. Nested workspaces and corresponding operations.

again is based on figure 6(b) are depicted in figure 17. Before editing the GUI interface
(GUI_i), Tom must check out GUI_i for write – i.e., wco(GUI_i). This allows him to
make all the necessary changes to GUI_i. John does the same with P_i. When John
is finished, he updates the copy of P_i in his and Tom’s group workspace by issuing
uci(P_i). Here, John chooses uci rather than ci since he knows that P_i is still incom-
plete. Therefore, making P_i publicly available is not reasonable yet. P_i is useful to
Tom, though. Actually, Tom is now ready to edit the GUI class (GUI_c). For this, he
needs a copy of P_i so he issues rco(P_i). Thereafter, he checks out GUI_c for write –
i.e., wco(GUI_c). Now, while Tom is performing his updates on GUI_c, John finds
out – after making some changes to P_c – that he must do some further changes to P_i,
which he afterwards checks in to the group workspace once more. As Tom is forced to
re-edit GUI_c (see figure 8(b)), he must update his copy of P_i with the latest changes.
Since Tom already has a copy of P_i, he accomplishes this by issuing refresh(P_i),
rather than another rco(P_i). Hence, Tom will now update GUI_c to reflect the changes
to P_i.



56 RAMAMPIARO AND NYGÅRD

Figure 17. Illustration of the use of workspace operations.

6.2. Mapping between workspaces and resource bases

Our workspace concept can be regarded as an abstract concept. This means that physical
workspaces do not exist by themselves. Instead, they are logically mapped to underlying
resource bases, as illustrated in figure 18.

As depicted in this figure, objects reside on several types of repositories, includ-
ing file systems, Web servers and databases. Then, when an object is checked-out
or checked-in, it is “marked” with where it will logically belong – i.e., to a private
workspace, group workspace or public workspace. Thus, to facilitate this mapping, we
define an object as a tuple (id, type, ws-state, address, owner), where

• id is a unique object identification;

• type is the object kind – i.e., file, web-doc, or relation (see figure 18);

• ws-state identifies the type of workspace that the object is checked-out from or
checked-in to – i.e., ws-state may be private, group or public;

• address denotes the physical location of the object:

– if the object type is file, the address will be a file path – i.e., “file:
//<path-name>”,
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Figure 18. Illustration of mapping between several resource management systems and workspaces.

– if the object type is web-doc, the address is either an IP-address or an HTTP
URL – i.e., “http://<ip-address>” or “http://<web-url>”,

– if the object type is relation, the address is a database URL – e.g., determin-
ing the JDBC driver – i.e., “jdbc ://<database-protocol>:<data-
base-host>/<database-name>”;

• owner identifies the current owner of the object – i.e, username or groupname. If
ws-state is public, the owner is empty.

Since workspaces are only logically defined, they can be created as needed de-
pending on the current cooperation situation. They are simply determined by the ob-
jects’ ws-state and owner. This means that objects residing in the private workspace
owned by Tom are all objects such that ws-state=’private’ and owner=’tom’.
Objects in a group workspace Gi are all objects such that ws-state=’group’
and owner=’Gi’. Objects in a public workspace are all objects such that ws-
state=’public’ and owner=’ ’.

The above mapping facilitates the use of our extended workspace operations. This
means that when an object is checked-out from or checked-in to a workspace, it suffices
to update the objects ws-state and owner accordingly. The address will thus specify
the link to the resource base to be used.

6.3. Correctness assurance and coordination

To ensure correctness and coordinate interactions through workspaces, we use user-
defined constraints to specify prohibited interactions, permitted interleavings, and re-
quired sequences of operations, as described in section 4.3.

To illustrate, assume that the commutativity (conflict) rules from section 4.2 apply,
and consider figures 6, 8 and 17. Without the permit relationship from figure 6(b), when
Tom issues rco(P_i), the execution manager would have to request him to wait until John
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has committed his updates on P_i. But, with the indicated permit relationship, upon
request, John will be requested to make available his partial results by issuing uci(P_i),
allowing Tom to proceed with his task.

Further, John’s repeated processing of P_i will affect Tom’s processing of GUI_c.
As indicated in figure 8(b), this triggers a demand relationship too. This again will force
the execution of Tom’s refresh operation, after the new copy of P_i is made available
through John’s uci operation.

7. Comparison with other frameworks

Our CAGISTrans framework differs from other relevant work in providing a combi-
nation of support for explicit customization of non-ACID requirements, user-defined
correctness criteria, explicit support for applied policies, dynamic restructuring and
workspace support. This is summarized in table 7. As illustrated, some features have
been adopted from existing transaction models and frameworks, and then extended in
forming the CAGISTrans framework. This will now be explained:

• Explicit customization of non-ACID requirements. To our knowledge, support for
explicit definition of non-ACID requirements to specific applications has not been
proposed before. Existing frameworks let non-ACID requirements be implicitly tai-
lored, but do not allow users to define them in accordance with their application’s
needs.

• User-defined correctness criteria. Patterns and conflicts as user-defined correctness
criteria tools were originally proposed by [34]. They were improved in the Coop-
erative Transaction Hierarchy [24], where they were represented as state-machines.
The demands and conflicts of our CAGISTrans framework are built on these con-
cepts. However, in contrast to patterns, demands are represented as directed graphs
identifying and representing sequences of actions required to ensure correctness. In
addition, while a complete set of patterns has to be defined before transaction ex-
ecution – without any possibility for re-definition during runtime, demands can be
modified while transactions are being executed. Moreover, our conflicts are defined
as tabular relationships rather than with a state-machine. In fact, our conflict con-
cept is more similar to that associated with semantic-based concurrency control than
those proposed in [24]. For a discussion of semantic-based concurrency control is-
sues, see [31]. The benefit here is that when transactions are to be validated, instead
of checking a state-machine which is usually complex, CAGISTrans utilizes simpler
tabular inquiries. Finally, permits were originally proposed with ASSET [3]. Our
use of the concept also allows flexible sharing. However, permits in CAGISTrans
are accompanied by conflicts and demands. For example, we utilize permits both to
override specific conflicts and to enable concurrent accesses to locked objects. Hence,
CAGISTrans aims at providing a more flexible, but controlled type of sharing.

• Explicit support for applied policies. Applied policies in CAGISTrans determine the
relevant mechanisms, and specify rules for how and when to use them. Although the
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Table 7
A summary of CAGISTrans features and their relation to other frameworks.

CAGISTrans Inspiration or Supported by Extension or
feature origin other frameworks difference

Explicit
customization
of non-ACID
requirements

None or not known Done implicitly in all
other relevant frame-
works – i.e., explicit
specification not
supported

Explicit support

User-defined
correctness
criteria

Conflicts:
Cooperative transaction
hierarchy and semantic-
based concurrency
control

Permits:
ASSET

Demands:
Patterns as in cooperative
transaction hierarchy

TSME:
Through correctness
dependencies

ASSET:
Through permits

The combination of all
three constraint tools

Dynamic support in
terms of runtime
modifications

Explicit support
for applied
policies

None or not known Not supported by any
other relevant
framework

Brand new

Dynamic
restructuring

Splitting as in Split and
Join transaction model

Delegation as in ACTA

RTF:
Dynamic
restructuring

ASSET:
Delegation of
operations (static)

Support for both lock
and operation
delegation

Application of
user-defined
correctness criteria

Integrated
workspace
support

Classical check-in and
check-out models, and
Coo, EPOS and
TransCoop

Not supported by any
other relevant
framework

Combination of
unlimited nested
structure, flexible
workspace operations,
and user-defined
coordination

distinction between mechanisms and rules has long been known in both the database
and the CSCW communities, to our knowledge, it is still not addressed in connection
with transaction models and frameworks. Hence, our use of this concept, allowing
users to explicitly fit policies in accordance with the needs of the applications is
probably unique.

• Dynamic restructuring. This concept was originally proposed in the Split and Join
transaction model [15]. CAGISTrans applies a similar approach to restructure trans-
actions while they are being executed. The difference lies in the way the restructuring
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is performed. CAGISTrans realizes dynamic restructuring by combining transaction
splitting – from the Split and Join transaction model – with the notion of delegation –
which originated with ACTA [5]. Finally, while Split and Join transactions apply
serializability as the correctness criterion, CAGISTrans allows user-defined criteria.

• Integrated workspace support. In the context of transactions, the workspace concept
has been extensively used in EPOS [6,7], Coo [12], and TransCoop [8,35], among
others. In brief, EPOS and Coo use temporary, shared sub-databases (scratch-pads)
for data exchange and integration work. TransCoop focuses on the exchange of op-
erations instead of exchanging data between private and public workspaces, while
correctness control is handled through history validation and merging mechanisms.
Our workspace concept differs from these in combining several aspects. First, we
use a nested workspace structure that applies unlimited nesting levels to regulate the
degree of sharing. To our knowledge, existing approaches are restricted to two –
i.e., private and public, and three levels – i.e., public, semi-public, and private. Sec-
ond, our CAGISTrans framework applies several extended workspace operations en-
hancing workspace interaction. Finally, our approach utilizes user-defined constraint
tools – cf., conflicts, permits, and demands – for coordinated workspace access.

8. Discussion and conclusion

The diversity of cooperative work means that there are extensive possibilities for cus-
tomizing all offered support, including transactional support. There are many transac-
tion models and a few transactional frameworks that have provided useful foundations
for such support. Still, there are problems that must be faced due to this diversity.

The dynamic nature of cooperative work is an important challenge addressed in
this paper. Our objective has been to extract beneficial features of existing models and
frameworks and extend these into a new framework that is able to address this problem.
The fundamental idea in our framework is distinguishing between design time and run-
time specification of transactions. In this way, predictable parts of a transaction model
can be specified before a transaction is executed, whereas parts which are not possible
to reason about a priori are specified during runtime. The main strengths of such an ap-
proach is the ability to meet new requirements during runtime, and the ability to separate
the specification of transaction models from the execution of the actual transactions. As
a whole, the way we combine support for explicit customization of non-ACID require-
ments, user-defined correctness criteria, explicit support for applied policies, dynamic
restructuring and workspace support is probably unique compared with other existing
transactional frameworks.

Nevertheless, there are several issues worth further discussion. A key issue is the
trade-off between system transparency and user management. From a CSCW perspec-
tive, too much system management and too little user control is unacceptable. Users
might then get the feeling of losing the whole picture of what is going on, which is
against the philosophy of CSCW. As a result, most CSCW applications rely on social
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interactions to handle concurrency. But, from a database point of view, this is unac-
ceptable as data consistency cannot be guaranteed. Thus, this has given rise to the need
for a sensible trade-off. The specific combination of user-managed specifications and
system-based control in our CAGISTrans framework may give an acceptable result. Our
framework has been designed to allow users to specify appropriate transaction models
based on application needs, and have the system do the validation, management and
control based on this. However, the cost still to be paid is that users may be required to
have a level of expertise above what can be expected from an average user. This trig-
gers the necessity of developing a graphical user interface to make our system more user
friendly. This will, for instance, relieve users from coding transaction models in XML
themselves.

Another important issue is performance such as transaction throughput. Tradition-
ally, high transaction throughput has been one of the main requirements for transaction
processing systems. The discussion in section 4 indicates that our framework’s execution
of advanced transactions may introduce some overhead. For example, several execution
“parameters” have to be in place before a transaction is executed. Further, introduction of
new constraints may also imply control and management tasks, which could slow down
the overall speed. However, transactions supporting cooperative work exist for long
periods of time. Therefore, they may be more sensitive to response time performance
than system throughput. Hence, some extra time needed for validation, management
and control purposes will be less critical in the global picture. For this reason, we have
primarily emphasised provision of flexible support for cooperative activities rather than
optimization of the transaction speed itself. Nevertheless, optimising the overall system
throughput is also an important issue that deserves further development. Thus, this will
be a significant subject for further research.

Another performance issue is our use of Java12 as the implementation platform.
Currently, the most significant weakness of Java is its moderate performance, at least
compared with C/C++. However, Java is an interpreted object-oriented language with a
capability of being executed on heterogeneous environments. In addition, Java programs
are inherently capable of being transported over networks and executed at a remote sys-
tem. Due to our distribution and heterogeneity requirements, the choice of Java was a
simple one to make. It is nonetheless important to note that Java’s moderate performance
can be improved by making Java code executable instead of interpretable. So-called Java
just in time compilers (JIT)13 are already available to help improve the speed of “execut-
ing” Java applications.

Currently, there are several issues that our CAGISTrans framework has not ad-
dressed, either because they are beyond the scope of this work or because they are still
part of our future investigation. Some of these may be seen as limitations of CAGIS-
Trans. First, team work often requires full ad-hoc support, but this is not addressed.
This would allow cooperating participants to perform work the way they want to. Con-

12 See http://java.sun.com or http://javasoft.sun.com.
13 See http://www.sun.com/solaris/jit.
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currency control, for example, is often left to social protocols. However as discussed
above, due to the necessity of a trade-off between user-intervention and system con-
trol this is beyond the scope of CAGISTrans. Second, no specific extended transaction
model (ETM) is provided with our framework, as – e.g., with ASSET and RTF. On the
one hand, this could be regarded as a limitation of CAGISTrans. On the other hand,
given the diversity of existing models combined with the lack of concesus on which
models that suit which situations, we have put our emphasis on the extraction of bene-
ficial features of relevant models, and on exploitation of their combination as much as
possible to provide efficient support. Third, full recovery mechanisms are not addressed.
At the time we designed our system, this was beyond the scope of our framework. How-
ever, our CAGISTrans does allow the use of an underlying database management system
to do things such as logging for recovery purposes. A problem first arises when the un-
derlying resource bases are other than legacy databases, which would call for explicit
CAGISTrans recovery management. Our framework provides a simple logging mecha-
nism to manage transaction aborts.

The CAGISTrans system is aimed at being interoperable and portable, allowing
people to work together across different platforms and geographical boundaries. Hence,
we have designed and built a transaction management system that not only provides ad-
vanced transactional support but also operates on top of diverse resource management
systems. In this sense, the development of our CAGISTrans system follows the middle-
ware principle, making it operable in heterogeneous environments.

The system is implemented combining standard mature technology such as XML
and Java14 and advanced evolving technology such as Software Agents. We refer to [30]
for a more thorough description and discussion of our general experience and specific
use of these technological tools. The CAGISTrans prototypes [16,27,33] have imple-
mented the major parts of our framework (see table 6). It is our main conclusion
that the current CAGISTrans system is able to support the basic features of dynamic
transaction management, allowing users to specify models and have the system exe-
cute their transactions in a flexible but controlled manner. Our future work will pro-
ceed with an implementation of the rest of the designed components. As part of this,
we will further investigate the ways to make our system even more efficient and user
friendly.
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