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Abstract. Predicting the locations of non-geotagged tweets is an ac-
tive research area in geographical information retrieval. In this work, we
propose a method to detect term co-occurrences in tweets that exhibit
spatial clustering or dispersion tendency with significant deviation from
the underlying single-term patterns, and use these co-occurrences to ex-
tend the feature space in probabilistic language models. We observe that
using term pairs that spatially attract or repel each other yields signif-
icant increase in the accuracy of predicted locations. The method we
propose relies purely on statistical approaches and spatial point patterns
without using external data sources or gazetteers. Evaluations conducted
on a large set of multilingual tweets indicate higher accuracy than the
existing state-of-the-art methods.

Keywords: Location prediction, tweet localization, spatial point patterns, fea-
ture extraction

1 Introduction

Explicit location information in terms of latitude-longitude associated with text
messages and photos in social networks provides a valuable resource for a wide
range of applications, such as event detection, targeted advertisement, and crisis
management. One of the most popular of these social networking platforms is
Twitter, which enables users to post 140-character tweets and share them with
their followers. Its widespread adoption and the accessibility of tweets through
public APIs make it an attractive resource for research. However, despite increas-
ing availability of GPS-enabled mobile devices, geotagged tweets are reported to
constitute only 1-3% percent of all tweets [1, 2]. As a result, predicting tweet
location from its text has recently received considerable attention [1–7].

A widely adopted content-based approach for tweet localization is proba-
bilistic language models. In this approach, the area of interest is partitioned into
subregions, and terms in tweets that are posted in these regions are used for the
training of text-based classifiers [3]. Specialized feature selection methods that
prioritize geo-indicative terms have also been proposed in order to increase the
prediction accuracy of these classifiers [5, 8, 9].



The hypothesis that we investigate in this work is that even if strong location-
indicative terms are perfectly identified in tweets, other terms can still be im-
portant in the interpretation of spatial information. In other words, if each term
in a tweet is considered independent from other terms, probability assignments
may give misleading results. The method that we propose in this work explores
and evaluates spatial relationships, namely attraction and repulsion, between
co-occurring terms in tweets using spatial point patterns and statistical meth-
ods. Selected term pairs (bigrams) with clustering or dispersion tendency with
respect to the underlying unigram distributions are included in feature space to
improve the accuracy of prediction.

To explain our idea, consider an example where we want to predict the loca-
tion of a tweet mentioning heathrow with high precision, e.g., within a tolerance
of 1 km error distance. The term heathrow can be considered to provide strong
evidence about the location of a tweet, probably supporting the region around
the Heathrow Airport in London, which covers a relatively large area. In this ex-
ample, if that tweet also mentions terminal, whose co-occurrence with heathrow
has stronger clustering tendency than heathrow alone, evaluating these two terms
together as a new feature can yield predictions closer to the actual location. On
the other hand, the phrase heathrow express can have an opposite effect (i.e.,
dispersion) and repel the geographical focus of the tweet to a region away from
the airport area. We find such repulsion patterns quite interesting since even if
they do not point to a specific place, they can indicate where a region is less
likely to be the actual location for a tweet. In this example, the tweet mentioning
heathrow express is probably posted from somewhere in the city, referring to the
train that rides to the airport. Our claim is that such co-occurrences in a tweet
can make an attraction or dispersion influence that may affect the geographical
interpretation of a single term.

The main contributions of our work can be summarized as follows: 1) we
investigate the spatial attraction and repulsion patterns of term co-occurrences,
and propose a method to extend the feature space with term pairs having sig-
nificant clustering or dispersion tendency, 2) we develop statistical techniques
that can detect relationships between various types of features including emojis
and multilingual texts, 3) we integrate our method with other unigram feature
selection techniques to obtain higher prediction accuracies. An important aspect
of our approach is that we can achieve the improvement in location prediction
using only the tweet text in our analyses, i.e., we do not rely on external data
sources, gazetteers, or other tweet metadata.

The remainder of this paper is organized as follows: We present a summary of
related work in Sect. 2. We describe our proposed method in Sect. 3, along with
a summary of baseline classification and feature selection techniques. Section
4 is devoted to our experiments and evaluation results. Finally, in Sect. 5, we
conclude the paper and discuss future research directions.



2 Related Work

Location prediction for tweets can be described as estimating the geographi-
cal origin where a tweet is posted from [4, 6, 10]. Various techniques from the
areas of information retrieval, machine learning, and natural language process-
ing have been proposed to make accurate predictions [2–4,7, 11–14]. One of the
widely adopted techniques to that aim is probabilistic language models. In this
technique, probability distributions are assigned for different subregions in an
area using the textual content of georeferenced tweets in a training set [5,9,15].
Based on this trained model, per-region probabilities are then determined for
non-geotagged tweets to be localized. A significant advantage of content-based
approaches is that they can make predictions even in the absence of any other
geographical cues [8].

Recent efforts to improve the accuracy of content-based approaches employ
feature selection techniques, most of which have previously been used in simi-
lar text categorization problems [16]. The objective of these improvements is to
determine location indicative terms in tweets by ranking them according to a
metric. Top-n ranked features are then used in the training of language mod-
els, rather than using the complete vocabulary. Among recent studies in that
direction, Cheng et. al [8] determine local words according to an analysis of fre-
quency and dispersion. In [5], the authors experimented with numerous feature
selection methods, such as information gain, information gain ratio, χ2 statistic,
geographical spreading, and Ripley’s K statistic, and showed that information
gain ratio outperforms their benchmark prediction methods in terms of accuracy.
In that work, the authors use unigrams and also note that their preliminary re-
sults with named entities and higher order n-grams were not satisfactory. In a
similar study [9], the authors employed Kernel Density Estimation (KDE) and
Ripley’s K statistics in order to improve the performance of location estimation
for Flickr photos, particularly when only few terms can be selected for prediction.
Their experiments revealed that the optimal results using geographical spreading
was approximately the same as the optimal results based on KDE and Ripley
K. However, geographical spreading showed more sensitivity to the number of
features used in prediction.

The main objective in these previous feature selection efforts is to select
location-indicative terms and eliminate common words that presumably have
no spatial dimension [5]. Our approach essentially differs from these studies
by evaluating spatial interactions between term pairs, even if a term appears
to have no explicit spatial dimension. The method we adopt in our solution
uses Ripley’s K function [17], which has widespread usage in characterizing the
spatial distribution patterns of objects in two-dimensional space [9, 18]. To the
best of our knowledge, our work is the first to analyze spatial patterns of term
co-occurrences with respect to the underlying term distributions, and use them
in the location prediction of tweets.



3 Spatial Co-occurrence Patterns in Location Prediction

In this section, we briefly describe our baseline model, and then explain the
details of our location prediction method. Adhering to the probabilistic language
model, the region of interest is discretized into mutually exclusive subregions and
a Multinomial Naive Bayes (NB) classifier with additive smoothing is trained
using terms (unigrams) in tweets in a training set [5,9]. We use Multinomial NB
classifier mainly because it incorporates class priors in prediction and is reported
to perform well even on scarce training data [5]. We adopt a grid-based approach
to define subregions, since we aim to make fine-grained predictions, such as at
the level of a place in a city [2, 15].

Improvements over this classifier apply feature selection and use only the
selected location-indicative terms for training. These methods were categorized
as statistical, information-theoretic, and heuristic in [5], and we implemented
different methods from each category as our baselines (explained in Sect. 4). Our
proposed method can also use the results of these term selection methods, and
identify spatially significant bigrams according to the selected unigrams. In the
remainder of the section, we explain how we detect spatially significant bigrams
and use them in the enhancement of feature space for location prediction.

3.1 Detection of Significant Spatial Co-occurrence Patterns

Ripley’s K-function, represented byKλ, is a statistical method to evaluate spatial
patterns of points in a region [9, 17, 18]. The function calculates a value that is
proportional to the number of point pairs that lie within a distance of λ to each
other. In practice, it is widely applied to analyze spatial patterns of a set of
objects having a certain property in order to determine whether these objects
have a clustering or separation tendency.

We use Ripley’s K-function to analyze the geographical distribution of spe-
cific terms (and term pairs) in tweets based on the latitude-longitude coordinates
of these tweets. The K-function is defined as:

Kλ(Xt) = A× |{(xi, xj)|xi, xj ∈ Xt, xi 6= xj , d(xi, xj) < λ}|
|Xt|2

(1)

where Xt={x1, ..., xm} with m=|Xt| represents the set of tweets that include the
term t, A represents the area of our grid, and d(xi, xj) is the distance between
two tweets xi and xj according to their coordinates. The value of Kλ(Xt) is
proportional to the number of tweet pairs in Xt that are within a distance of λ
to each other. The λ parameter enables the evaluation of spatial relationships
at different distance scales.

In an environment where the underlying population distribution is non-
homogeneous, the value of the K-function for a specific set of objects may be
affected by the population distribution. Therefore, comparison with the under-
lying point pattern should also be performed in order to evaluate the clustering



Algorithm 1 Find co-occurrences with attraction/repulsion w.r.t. feature space

1: Input1: Set of terms in feature space and set of all terms in the training corpus
2: Input2: Distance range λ for Ripley’s K-function
3: Input3: Number of Monte Carlo simulations to execute, denoted by M
4: Output: Set of bigrams B={〈tp, tc〉| Xtptc has either clustering or repulsion tendency with

respect to Xtp }
5: for each primary term tp in feature space do
6: Find the set of tweets Xtp that include tp

7: for each distinct term tc in the corpus do
8: Find the set of tweets Xtptc for which tp is followed by tc in the tweet text

9: Apply K-function in Eq. (1) on Xtptc to get Kλ(Xtptc )

10: for i=1...M do
11: Randomly sample n tweets from Xtp , where n=|Xtptc |
12: Let Xitp denote this sample, apply K-function on Xitp to find Kλ(Xitp )

13: end for
14: Calculate upper boundary (u) and lower boundary (l) of envelop using Kλ(Xitp ) values

with 0.05 confidence interval
15: if Kλ(Xtptc ) > u or Kλ(Xtptc ) < l then

16: Insert tuple 〈tp, tc〉 to the set of selected bigrams B
17: end if
18: end for
19: end for

and dispersion tendency of objects with respect to the population. This is usu-
ally achieved by executing a stochastic process, namely the Monte Carlo sim-
ulation [9]. The simulation mainly consists of taking random samples from the
population, applying K-function on the samples, and calculating a confidence en-
velope with upper and lower bounds. A point pattern with Kλ value above the
upper bound indicates clustering tendency (attraction), whereas the Kλ values
below the lower bound is interpreted as dispersion (repulsion).

Our proposed method employs a similar approach to analyze the spatial pat-
terns of term co-occurrences. However, rather than using the whole tweet set in
the corpus as the underlying distribution, we compare the spatial distribution
of co-occurring term pairs (bigrams) with the spatial patterns of corresponding
single terms (unigrams). In other words, we measure the clustering and disper-
sion tendency of a bigram with respect to the spatial point pattern of each term
in the bigram. This can be considered as a conditional analysis of the bigram’s
spatial distribution. Our algorithm to find term co-occurrences having signifi-
cant attraction or repulsion pattern with respect to their unigrams is presented
in Algorithm 1. For each unigram in the feature space, which we call primary
term and denote by tp, the algorithm finds co-occurring terms tc in the train-
ing corpus that follows a primary term and exerts an attraction or repulsion
influence on tp. Specifically, if the spatial pattern of tweets with bigram tptc
has significantly higher Kλ value compared to Kλ values of the tweet samples
with tp alone, 〈tp, tc〉 is regarded to have a clustering tendency in relation to tp.
Similarly, if the Kλ(tptc) value is below the lower boundary, 〈tp, tc〉 is selected
as a repulsion co-occurrence for tp. If spatial patterns of tweets that include tptc
and tp have no significant divergence, we do not perform any further analysis
on tptc. The reason we make a separate definition of primary term is to enable
using the aforementioned feature selection methods for unigrams (e.g., χ2, in-



Fig. 1. Tweets mentioning (a) heathrow, (b) heathrow terminal, (c) heathrow express

formation gain). That means, a primary term tp is taken from the feature space,
which may be a selected subset of all distinct terms in the corpus, whereas tc
can simply be any term in the corpus.

We present the example in Fig. 1 to explain our findings. The dots in the fig-
ure represent locations of tweets in our grid for London area, and shadings in red
color are generated by KDE for visualization purposes. Figure 1(a) shows the lo-
cations of tweets mentioning heathrow in our data set. Although they are slightly
scattered, these tweets still exhibit a high concentration around the Heathrow
Airport, as expected. Figure 1(b) presents a subset of these tweets, specifically
the ones that include the bigram heathrow terminal. The density distribution of
these tweets noticeably focuses on a more specific region in Heathrow. On the
other hand, Fig. 1(c), which is generated for the bigram heathrow express, depicts
a remarkably different distribution. This is probably due to the fact that people
can post tweets about a train line that goes to the airport from places distant
to the airport. As a result, although heathrow is a strongly descriptive term for
location, we observe that its co-occurrences with other terms can change the spa-
tial interpretation remarkably. Our experiments revealed that we can distinguish
such attraction and repulsion patterns by applying Algorithm 1.

As noted in [9], when comparing two K-function values, the number of data
points that are used in these calculations can affect the results. More specifically,
Kλ(X1) and Kλ(X2) would not be comparable if |X1| and |X2| were different,
since a larger dataset is more likely to yield a higher Kλ value. We do not ob-
serve this issue in Algorithm 1, since each simulation takes exactly n=|Xtptc |
samples from Xtp , as described in line 11. This is enabled by Xtptc being a
subset of Xtp . This also provides an advantage in terms of computational cost.
In fact, except for a few term pairs that co-occur very frequently in our cor-
pus (e.g., United Kingdom), we observe that |Xtptc | is remarkably lower than
|Xtp | in most cases, which resulted in acceptable computation times in our ex-
periments. Moreover, we transform latitude-longitude coordinates of tweets into
three-dimensional Euclidean coordinates and index them in a k-d tree [9]. This
transformation provided us noticeable performance improvement in the calcula-
tion of Kλ values.

The steps in Algorithm 1 describe the analysis of bigrams in the form of
tptc (i.e., tp is followed by tc). Similar procedures are also executed to identify
spatially related bigrams where a primary term tp is preceded by tc. Ordering
of terms in bigrams should be taken into consideration since we examine the
distribution of a bigram conditioned on the distribution of tp. We explain the



Fig. 2. Distribution of tweets mentioning (a) stamford, (b) bridge, (c) stamford bridge

effect of ordering on an example. Figure 2(a) and 2(b) demonstrate the distri-
butions of stamford and bridge, respectively. Although tweets mentioning bridge
are scattered in a large area, it exhibits a strong clustering tendency when pre-
ceded by the term stamford in tweets. In other words, when stamford and bridge
are considered as tc and tp, respectively, distribution of tctp given in Fig. 2(c)
leads to a significant clustering tendency with respect to the distribution of tp.
The density of tweets in (c) actually points to the region around the stadium
Stamford Bridge. Similar relationships are also detected between emojis and
terms, such as heathrow and Ø, since we primarily use statistical methods in our
analyses without applying any restriction on the content of a tweet. The next
section explains how we use these detected bigrams in the enhancement of our
feature space.

3.2 Enhancement of Feature Space

The enhancement of feature space is performed by adding bigrams from B, which
were found by Algorithm 1 above, as additional features to tweets. Specifically,
given a tweet x with n terms in its text, denoted by [tx1 , t

x
2 , ...t

x
n], if a bigram

〈txi , txi+1〉 exists in B (i.e., having significant spatial relationship), that bigram is
added to the tweet as a new feature. Our rationale in this operation is that, if
there is a clustering or dispersion tendency of a bigram titj with respect to ti or
tj , we can make more reliable estimations if we also have titj in the tweet.

We exemplify the expansion operation on a hypothetical tweet with terms
[a,b,c,d]. Assume that the tuple 〈a, b〉 exists in B, i.e., a and b were found to have
significant spatial relationship in Algorithm 1. In this case, applying expansion
on this example tweet results in [a,b,c,d,〈a, b〉]. Following this example, if B
had also included the pair 〈b, c〉, that bigram would also be added to produce
[a,b,c,d,〈a, b〉,〈b, c〉]. This means that we do not impose any restriction about
mutual exclusion, and utilize a bigram if it has a spatially significant pattern
with respect to its unigrams.

The complete process can be summarized as follows: Using a training tweet
set, we obtain B using Algorithm 1, enhance the feature space by the expansion
operation, and train the language model for classification. For a new tweet to
be localized, we apply the expansion operation for it according to the trained
model and estimate its location using a Multinomial NB classifier.



4 Evaluation

In this section, we present the evaluation results of our method and compare with
state-of-the-art baselines. We evaluate our methods on regional datasets to pre-
dict tweet locations at fine-granular level. Accordingly, we selected the Greater
London Area for our experiments and divided the area into equal-size grid cells
to form a 100x100 grid. This resulted in cells covering approximately an area
of 0.25 km2 each. We collected public tweets between 3 October 2015 and 20
January 2016 using the Twitter Streaming API1. We filtered out tweets without
explicit GPS coordinates (i.e., latitude-longitude) and obtained 4,040,775 geo-
tagged tweets posted from our area of interest. Following the common practices
in earlier similar studies, we eliminated exact duplicate tweets, Foursquare check-
ins, and tweets from possible spammers [5,8,13]. To filter out spammers, we ex-
cluded tweets from users with more than 1000 friends or followers or who posted
more than 300 tweets in our time window (approximately more than two tweets
per day), and tweets with advertisement hashtags (e.g., #job, #realestate), since
they have almost the same text and are usually posted from same places [8,13,19].
Finally, we obtained 489,466 unique tweets posted by 100,997 distinct users. We
did not apply any restriction on the language of a tweet.

Each tweet in our dataset is assigned to a grid cell according to its GPS
coordinates. In our experiments, we used randomly chosen 464,993 tweets for
training and the remaining 24,473 for test. Tweet texts are divided into tokens
by using Twokenize2 library. For training data, we discard tokens that appear in
less than five tweets, hyperlinks, and single characters to reduce sparsity [3,13].
This yields a total number of 54,752 distinct tokens (unigrams) in our training
set. Tokenized tweets in the training set and their assigned grid cells are used in
building the probabilistic language models and for analyzing the spatial point
patterns of bigrams.

4.1 Evaluation Methodology

We compared our proposed method with different baselines, including the full
model (i.e., using all terms in tweets without making prior unigram feature
selection) and four feature selection methods. Among a wide range of feature
selection techniques, we implemented the following four as our baselines, since
they are widely applied in state of the art:

1. IG: Information Gain (information-theoretic) [5]
2. IGR: Information Gain Ratio (information-theoretic) [5]
3. CHI: χ2 statistic (statistical) [16]
4. GS: Geographical Spreading (heuristic) [9]

In our implementations, we followed the descriptions given in the cited papers
above. In addition to these five baselines, we also made estimations using class

1 https://dev.twitter.com/overview/api
2 https://github.com/brendano/ark-tweet-nlp/



priors [5], which basically finds the grid cell with maximum number of tweets in
the training set. This is used to show that assigning all test tweets simply to the
most populous place does not yield useful results.

We evaluate the performance of these methods using the following three
metrics: 1) Accuracy: proportion of tweets in the test set for which the true
grid cell is correctly predicted, 2) Accuracy@n: proportion of tweets for which
the estimated location is at most n kilometers away from the true location,
3) Median: median of the distances between the predicted location and the true
location for test tweets. The distances in these metrics are calculated based on
the centers of predicted and true grid cells for tweets.

For each feature selection method in our baselines, we first apply a ranking
of tokens in the training set using the corresponding feature ranking metric. For
example, IG ranks all tokens in the training set according to their information
gain. Then, the training of a baseline predictor is performed by using top-n
features in its ranking, and the location prediction for test tweets are executed
with that setting.

We apply our proposed enhancement on each baseline separately. When ap-
plied on the full model, Algorithm 1 analyzes all terms in the corpus. When ap-
plied on a unigram selection method, the algorithm uses only the top-n unigrams
as primary terms (explained in Sect. 3.1). We denote our enhanced methods with
suffix SCoP, as an abbreviation for Spatial Co-occurrence Pattern. For example,
IG(n)+SCoP represents our enhancement where the top n of unigrams with the
highest information gain are used as the feature space in Algorithm 1.

4.2 Evaluation Results and Discussion

Table 1 presents the minimum median error distances obtained by each method,
along with the corresponding accuracies. Since each method can achieve its high-
est accuracy using different top-n features, we also indicate this value with a
subscript. For example, IGR(0.6), the most accurate baseline, uses top 60% of
unigrams with highest information gain ratio. IG(1.0) means that a feature selec-
tion based on information gain does not perform better than the full model for
any selection of top-n. We observe that the evaluation results of our baselines
are also consistent with the findings in previous studies [5, 9].

The table shows that our enhancement (denoted by SCoP) on each base-
line results in better predictions, even when no prior unigram feature selection is
applied (full model). The most accurate predictions are obtained by our enhance-
ment when it is applied on IGR(0.6). In order to analyze the difference in error
rates between a baseline and its SCoP enhancement, we employ McNemar’s test
on their predictions. The results of the test show that the improvement using
SCoP is statistically significant for every baseline (p�0.00001). In our experi-
ments, the λ distance that we used in the calculation of Ripley-K values is 0.5 (in
kilometers). We have also experimented with λ=2.0 and obtained similar results.
Specifically, when λ=2.0 is used, IGR(0.6)+SCoP predictions were made with a
median error distance of 0.7430 and an accuracy of 0.432. Since λ=0.5 performed
slightly better, we demonstrate the results that we found using λ=0.5.



Table 1. Comparison of methods with settings minimizing their median error distance

Prediction Method Median (km) Accuracy Acc@0.5km Acc@1.0km Acc@2.0km
Class Prior 3.7743 0.049 0.065 0.119 0.310
Full Model 1.4860 0.363 0.391 0.442 0.530

Full Model+SCoP 1.2585 0.408 0.432 0.478 0.558
IG(1.0) 1.4860 0.363 0.391 0.442 0.530

IG(1.0)+SCoP 1.2585 0.408 0.432 0.478 0.558
IGR(0.6) 1.0831 0.407 0.436 0.491 0.586

IGR(0.6)+SCoP 0.7429 0.435 0.460 0.510 0.594
GS(0.3) 1.3657 0.389 0.415 0.462 0.535

GS(0.5)+SCoP 1.2583 0.414 0.437 0.482 0.558
CHI(0.45) 1.2583 0.393 0.422 0.477 0.567

CHI(0.45)+SCoP 1.0831 0.424 0.448 0.496 0.575
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Fig. 3. Accuracies of four baselines and corresponding enhancements using SCoP. Base-
lines and SCoP enhancements are colored in red and green, respectively.

Figure 3 presents the detailed accuracies of predictions using different selec-
tions of top-n features. The results reveal that our proposed SCoP enhancement
improves the accuracies of all baseline (unigram) feature selection methods for
every setting of top-n. Among the four baselines, the highest accuracy is ob-
tained by IGR, which is even further improved by applying SCoP on it. The
results of GS are also worth discussing. The figure shows that if we had to use
only the 5% of features (unigrams) for training, the highest baseline accuracy
would be obtained by GS. That means, GS makes the most useful top 5% un-
igram selection among our baselines, and the figure shows that its predictions
are further improved by using our proposed enhancement in GS+SCoP.

These results reveal that we can obtain accuracies with SCoP that could not
be obtained by the unigram feature selection methods in our experiments. How-
ever, since our method adds new bigrams to the training model, we also analyze
the size of increase in feature space. The baseline IGR(0.6), which yields the most



accurate predictions among the baselines, uses 32,851 tokens for training (60% of
all unigrams). SCoP uses these tokens as primary tokens in Algorithm 1, which
detects 10,095 bigrams with significant spatial relationship with respect to the
32,851 unigrams. As a result, IGR(0.6)+SCoP uses 42,946 features in total. The
number of added bigrams may vary depending on the baseline unigram selection
method and the choice of top-n ratio.

Considering the spatial analyses in Algorithm 1, as expected, the detection of
spatial co-occurrence patterns causes an increase in the training time of the over-
all model. We observe two important factors that can affect the training time:
1) the number of co-occurrences of term pairs, and 2) the number of simulations
M in Algorithm 1. We refer to line 11 in the algorithm, where the simulation
takes n=|Xtptc | samples from Xtp . As a result of this sampling strategy, bi-
grams with high co-occurrence frequency negatively affect the execution time.
For example, the most frequent term pair in our dataset was United Kingdom
(n=16,377), and the analysis of this single bigram took more than 60% of the
time spent to analyze all bigrams in our training data. Therefore, alternative
sampling strategies may need to be devised for larger-scale analyses. Regarding
the second performance factor, the number of simulations M in our experiments
was 500. We also experimented the effect of using higher M values, and observed
that using M=1000 made a change only for 0.7% of the bigrams that were identi-
fied with M=500. Therefore, we performed our experiments using M=500 with
satisfactory results in reasonable time. We note that since there is no inter-
dependency or sequential relationship in the spatial analyses of bigrams, these
operations can also be parallelized and executed in distributed environments.

Finally, we evaluate the utility of our method by comparing it with a setup in
which we do not make any particular selection among bigrams. The total number
of distinct bigrams that occur in at least five tweets in our training set is 99,452.
We trained the model using all of these bigrams and the unigrams selected by
IGR(0.6) (i.e., without making the SCoP analysis in Algorithm 1). Our tests in
this experiment resulted in an accuracy of 0.387, which is lower even than the
baseline’s. Therefore we can conclude that an effective analysis of bigrams, as
we proposed in this paper, is critical to obtain accurate predictions.

5 Conclusion

In this paper, we introduced a new approach to detect term pairs that exhibit
clustering or dispersion tendency in their geographical distribution in relation
to the underlying single-term spatial patterns. We used the detected term pairs
to improve probabilistic language models and increase the accuracy of content-
based location prediction of tweets. We demonstrated that the effective selection
of co-occurring terms yields significant improvement in location prediction ac-
curacy. Using purely statistical methods and spatial point patterns enabled our
methods to execute without any dependence on predefined gazetteers or external
data sources.



In our future research, we plan to adapt our framework in distributed envi-
ronments and apply our methods for fine-grained location prediction in global
scale. Applying discriminative learning models for location prediction and inves-
tigating alternative methods to utilize detected attraction and repulsion patterns
are also among our future research directions.
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