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ABSTRACT
Pictures in media sharing applications are increasingly accompa-
nied with geotags. For this reason, we stress the importance of
exploring the possibility of applying spatial, as well as the tempo-
ral dimensions in searching event-related pictures. Specifically, we
propose extended query expansion models that exploit the informa-
tion about the temporal neighbourhoods among pictures in a collec-
tion and leverage on the spatio-temporal distribution of the candi-
date expansion terms to re-weight and expand the initial query. To
evaluate our approach, we conduct extensive experiments on a large
dataset consisting of 88 million pictures from Flickr. The results
from these experiments demonstrate the viability and effectiveness
of our method with respect to retrieval performance, considering
both a large dataset and query pictures with restricted size of terms.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval

Keywords
Event Retrieval, Image Clustering, Relevance Feedback

1. INTRODUCTION
The explosion of photos shared on the web has not only opened

many possibilities but also resulted in new needs, and hence new
challenges. Although recent developments and technological ad-
vances have helped the user to access public photos on the web –
e.g., through media sharing applications, the amount of available
information makes the access to these photos still a less straight-
forward task. To partly address this challenge, the development of
event-related image retrieval systems has been proposed [12]. An
event-related image retrieval system is a retrieval system optimized
to retrieve all pictures related to a specific event. Here, an event
has a specific semantic meaning. Focusing on media-sharing appli-
cations, an event can be "something happening in a certain place
at a certain time and tagged with a certain term" [16]. So in an
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event-retrieval system, the intent of a user might be to retrieve re-
sources related to a particular event, or to use a given tagged photo
representing an event to retrieve other photos related to any sim-
ilar events from a large image collection. Here, we mainly focus
on the latter. Due to their characteristics, pictures in photo sharing
applications such as Flickr1 and Panoramio2 are particularly inter-
esting. Pictures in such applications are accompanied by contextual
metadata, containing heterogeneous fields, such as camera-specific
data, Title, Tags, Description, temporal information – i.e., the pic-
ture capture and upload times, and geolocation. In this work we
study how we can exploit the above metadata in retrieving event-
related pictures.

1.1 Goals and Contributions
Due to the characteristics of tags, there are several challenges

that we must address. First, Tags are unstructured, subjective and
full of noise, which would, in turn, affect the retrieval performance.
Second, we can assume that many of the queries are short – i.e.,
containing only few tags, which is in itself a challenge. Third, a
complete collection of images from photo-sharing applications is
inherently large, which must be dealt with.

In this view, the main goal of this work is to tackle the above
challenges focusing on situations where a user searches for pictures
related to a specific event, represented by an image with a small
number of tags. To our best of knowledge, this area is still new
and only few approaches are available – e.g., [19, 12]. Moreover,
within information retrieval, existing work has mainly focused on
applying temporal information in the retrieval models [8]. At the
same time, the most related approach, such as [19], is promising
with respect to retrieval performance but mainly applying visual
features, thus putting higher requirements on the underlying pro-
cessing power to achieve web-scalability.

In this paper, we show that by mining and extracting the geo-
profiles of the terms in the tags, we can gain an improved retrieval
performance, especially when the query images does not contain
geo-tags at all. To the best of our knowledge, this is the first work to
explore this in depth. Previous work has mainly focused on point-
of-interests (POI) extraction [17] and trajectory mining [20]. With
the constantly increasing number of geotagged pictures3 in – e.g.,
Flickr, exploring this dimension is important.

To this end, the main contributions of our paper are as follows.
First, we conduct a study comparing the effectiveness of different
retrieval models when using only the textual metadata in event-

1See http://www.flickr.com/
2See http://www.panoramio.com/
3Already in 2009, more than 3.3% – i.e., around 100 Million pictures
are geotagged. See also http://code.flickr.com/2009/02/04/
100000000-geotagged-photos-plus/
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related image retrieval. As part of this, we do a thorough anal-
ysis of how the different combinations of textual fields affect the
retrieval effectiveness depending on the adopted retrieval model.
Second, we propose a new weighting model for a query expan-
sion step based temporal proximity in combination with existing
term weighting and similarity models. Third, we develop a new
extended model that also includes the mined spatial profile for tag
terms. Our extensive evaluation shows that using both of our new
models yields better retrieval performance than the baseline mod-
els, especially with short queries – i.e., pictures with only 1 to 3
tags.

1.2 Related Work
Extraction of pictures related to real-life events is an active re-

search field [16, 6], and in the past decades, detection of events
from textual document streams and databases has been extensively
treated in the literature [1, 4]. However, despite being an active re-
search field, retrieving and matching event-related images as a field
is still less mature. Most existing related approaches have been
aimed at extracting events from different kinds of datasets. To our
best knowledge, only few works have addressed the problems of re-
trieval of events in connection to media sharing. Most of these ap-
proaches were presented in the Social Event Detection (SED) task
at MediaEval 20114 [12], where the main objective was to propose
event retrieval systems for Flickr pictures. Most related to our ap-
proach is the work by Trad et al. [19]. Similar to our approach,
the authors proposed a methods to match a given (query) picture
representing an event to pictures representing the same events in a
picture collection. The query image is provided with both temporal
and spatial information, and the matching algorithm is based first
on visual similarity, followed by a reranking step based on geo-
temporal coherence. To handle scalability, they use MapReduce in
the content analysis and indexing process. The main difference to
our work is that rather than applying visual features, our method
uses the textual data only. This also allows us to work on a much
larger data set.

2. EXTENDED QUERY EXPANSION
MODELS FOR EVENT RETRIEVAL

A query expansion approach is a two step approach consisting of
(1) choosing the terms to be used in the expansion, and (2) assign-
ing the weight to the chosen terms. With respect to step (1), there
are several approaches that have been suggested. Among these, we
specifically considered an existing methods for QE that has been
proven to be very effective: the Kullback-Liebler (KL) divergence-
based approach [5]. With the KL divergence approach, the idea is
to analyse the term distributions, and maximize the divergence be-
tween the distribution of terms from the top-k retrieved documents
and the distribution of terms over the entire collection [5]. The
terms chosen for the query expansion are those contributing to the
highest divergence – i.e., the highest KL-score [5]. This means that
expansion terms with low probability in the entire collection and
high probability on the retrieved top-k documents will be given
more weights than other terms. To calculate the KL-score for a
given term t in the feedback (top-k) documents, we use the follow-
ing equation [5]: KL = PRel(t) log [PRel(t)/PColl(t)], where
PRel(t) and PColl(t) are the probability that t appears in the top-
k documents and the collection, respectively. Here, PRel(t) can
be estimated by the normalized term frequency of t in the top-k
documents, whereas PColl(t) can be computed as the normalized
frequency of t in the entire collection.
4See http://www.multimediaeval.org/mediaeval2011/

After the expansion terms have been selected using one of the
approaches above, we can proceed to step (2) – i.e, re-weighting
the terms in the query. One of the classical approach to re-weight
query terms is the Rocchio’s algorithm [15]. More specifically,
we use the Rocchio’s Beta equation [13] as follows: ŵ(tq) =
tfqtq /max tfq + βw(tq)/maxw. Here, ŵ(tq) is the new weight
of a term tq of the query; w(tq) is the weight from the expansion
model – i.e., KLDiv(tq); maxw is the maximum weight from the
expanded weight model; and max tfq is the maximum term fre-
quency in the query and tfqtq is the frequency of the term in the
query.

There are few approaches that have proposed the integration of
the temporal information in a pseudo relevance feedback frame-
work. For example, in [9] the authors proposed incorporating time
information into the relevance model [11]. The main difference
with our approach is the way we use the characteristics of an event
and combine this with the temporal proximity of the term distribu-
tion as a feature in the term selection process.

We assume that all pictures in our collection contains a temporal
annotation identifying when the picture was taken – i.e., a times-
tamp. Further we hypothesize that pictures related to the same
event have some temporal proximity or temporal closeness. This
means that the more temporally close to the query and the retrieved
pictures are, the more likely that they are related to the same event.

Temporal-Proximity Aware KL Divergence. As first improve-
ment, we actively use the assumption about temporal proximity
mentioned before. In both of the presented baseline query expan-
sion models, the core premise is that a query expansion word should
be more common in the feedback documents and less common in
the whole collection.

We extend this assumption as follow. Let a good expansion term
be a term that is added to the user query or got an increased weight
during the retrieval process, and that it improves the retrieval ef-
fectiveness – e.g., increasing the mean average precision (MAP).
In an event-related retrieval system, we hypothesize that a term re-
lated to the same event as of the user query is a good expansion
term. Hence, we can formulate the following intuition: the dis-
tribution of a good candidate term should commonly co-occur as
much as possible in the documents that is temporally close to the
query picture, and less common in the whole collection. This is
the same as having a high divergence between the distribution of
the co-occurrence of the candidate expansion terms and the query
terms in the set of temporal neighbours pictures, and the distribu-
tion in the whole collection.

The idea is that in addition to the original KL-divergence com-
putation, our weighting process also considers the divergence of
the term distributions within a time slice L, centered in the times-
tamp of the query image, and the co-occurrence of the term with
the query terms within the same time slice. Now, let θL[t,ti] be the
distribution of the co-occurrence between the term t and the query
terms ti ∈ Q within the set of temporal neighbours, and θColl

[t,ti]

denote the distribution of the co-occurrence terms in the whole col-
lection. Then, our temporal-aware KL score can be computed as
scQ(t) =

∑
ti∈QKL(θL[t,ti]‖θ

Coll
[t,ti]

) – i.e.,

scQ(t) =
∑
ti∈Q

PL([t, ti]) log

[
PL(t, ti)

PColl(t|ti)

]
. (1)

In this re-weighting process, the new weight of a candidate expan-
sion term t is the sum of the divergence between θL[t,ti] and θColl

[t,ti]
,

for all the ti ∈ Q. In other words, a candidate expansion term gets
a higher weight if the divergence between these two distributions
θL[t,ti] and θColl

[t,ti]
is high.
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Further, PL(t|ti) is the co-occurrence probability of the terms t
and ti within a time intervalL, and PColl(t|ti) is the co-occurrence
probability of the terms t and ti within the whole collection. We
evaluate the co-occurrence probability as proposed in [18] by adding
a normalization factor, such that

PL(t|ti) =

[
nL
d (t,ti)

nL
d
(t)+nL

d
(ti)

]
|DL|

, PColl(t|ti) =

[
nColl
d (t,ti)

nColl
d

(t)+nColl
d

(ti)

]
|D| ,

where D is the whole dataset and DL ⊂ D is a part of a set of
the collection documents D that have timestamps within the time
interval L. nL

d (t, ti) and nColl
d (t, ti) are the number of documents

in the set DL and D, respectively, in which the terms t and ti co-
occur. Similarly, nL

d (t) and nColl
d (t) are the number of documents

tagged with the term t in the set DL and D, respectively.
To include the influences of both scores in the calculation of the

final expansion weight W (t), the last two models can be mixed
in a linear combination, given by KLT (t) = γKL(t) + (1 −
γ)KLL(t), where γ is factor used to determine the amount of in-
fluence each score has on the final weight.

Exploring Term Spatial Distribution. As explained in our hy-
pothesis related to the meaning of event, pictures related to the
same event tend to appear in a limited geographical area. In this
work, we consider query pictures that are not geotagged since this
would mostly reflect the reality of media sharing application and
social media, in general. For example, considering Flickr database,
only 3.3% of the pictures are geotagged, i.e.– around 100 million
of pictures. So the probability of having a geotagged picture is low.
Still, having this amount of pictures can be useful in extracting the
spatial profiles of the tag terms.

We propose a method to find a good expansion term t, given a
set of query terms Q = {ti}i. By including the spatial dimen-
sion (profiles), a good expansion term is a term related to the same
event as the query picture. This means that a good expansion term
are those commonly co-occurring in documents that are temporally
close to the query picture and in a geographic delimited area, and
less common in in the whole temporal timeline in the same delim-
ited area. To mimic a real-world problems, we only consider query
pictures without geotagged.

In this work, we define picture locations by discretizing the world
map. Inspired by [22], we first divide the world map into M tiles
Θ = {Tk}k=1..M of size 1 degree. Since the size corresponding
to 1 degree varies depending the latitude values, the discretization
process does not produce equal tiles. Nevertheless, this approxi-
mation is still useful since most of the areas with high population
density are mainly close to the latitude near the equator.

To include the spatial dimension to score a candidate expansion
term, we start from a similar hypothesis to the one proposed above
but including the geographical dimension. This means that a good
expansion term t is the one that yield a high divergence between
the distribution of the pictures tagged with the query terms, the
expansion terms in a temporal time slice L and a tile Tk; and the
distribution of terms still in the geographical tile Tk but occur in the
whole timeline. Formally, this divergence is computed based on the
KL-divergence as sc3Q(t, Tk) =

∑
ti∈QKL(θL[t,ti,Tk]

‖θColl
[t,ti,Tk]

) –
i.e.,

sc3Q(t, Tk) =
∑
ti∈Q

PL(t|ti, Tk) log

[
PL(t|ti, Tk)

PColl(t|ti, Tk)

]
. (2)

Here, PL(t|ti, Tk) is the co-occurrence probability of the query
term ti and expansion term t, within a time interval L and a geo-
graphical tile Tk. Similarly, PColl(t|ti, Tk), is the same probability

without the temporal restriction. We approximate this probability
as follows:

PG
Coll(t|ti, Tk) =

[
nColl
d (t,ti|Tk)

nColl
d

(t|Tk)+nColl
d

(ti|Tk)

]
|Tk|

(3)

PG
L (t|ti, T L

k ) =

[
nL
d (t,ti|Tk)

nL
d
(t|Tk)+nL

d
(ti|Tk)

]
|T L

k |
(4)

We compute the pair of probabilities PG
Coll(t|ti, Tk) and

PG
L (t|ti, T L

k ) for each tile Tk ∈ Θ. Then, we calculate the diver-
gence between the two distribution values, tile by tile, and chose the
maximum divergence value as the final score. In order to include
the influence of KLT, we mix the models in a linear combination as
follows: KLST (t) = σKLT (t) + (1 − σ) max{KLL

Tk
(t)}Tk ,

where KLL
Tk

(t) is the KL divergence between the distributions in
Equation 3 and Equation 4.

3. EXPERIMENTAL RESULTS

3.1 Dataset and Evaluation Metrics
To evaluate our method, we use the Upcoming dataset [3] as the

ground-truth for our experiments. This dataset consists of 270.425
pictures from Flickr, taken between 1st of January 2006 and 31st
December 2008, each of which belongs to a specific event from the
Upcoming event database5, with 9.515 unique events. Each event
is composed by a variable number of images, varying from 1 to
2.398 pictures. Further, to make our experiment more realistic with
respect to scalability, we decided to build an additional dataset by
merging the Upcoming dataset with other pictures gathered from
Flickr6 covering a time period from 01.01.2006 to 31.12.2010 and
without spatial restrictions. Our final dataset now contains 88 mil-
lion pictures, of which approx. 19 millions are without any tags,
and around 23.5% with 1 to 3 tags.

To perform our experiments, we first indexed all image tags us-
ing Terrier7. As part of the dataset preparation we perform a pre-
processing step consisting of tokenization based on whitespace and
punctuation marks, and English stopword removal. Then, we ran-
domly selected a set of pictures from each event cluster in the Up-
coming dataset and use these as queries.

To assess the effectiveness of our approach, we compare our
models with existing models. Such models serve as baselines for
our evaluation, including the Vector Space Model (TFIDF) [2],
Okapi BM25 (BM25) [14], Hiemstra Language Modelling (LM)
weighting model [7] and KL divergence retrieval model (KLDM) [10].
For both BM25 and LM, we use the default parameter values – i.e.,
for BM25 we set k1 = 1.2, k3 = 8 and b = 0.75, and for LM is
c = 0.15.

To evaluate the retrieval performance, we use standard in in-
formation retrieval evaluation metrics, including the Mean Aver-
age Precision (MAP) and R-Precision (RP) [2]. Further, to make
sure that any improvements are statistically significant, we perform
paired two-sample one-tailed t-tests at p < 0.05 or 95 % confi-
dence interval. Therefore, any stated improvements in this paper
are all statistically significant, unless otherwise specified.

3.2 Results
5See http://upcoming.yahoo.com/
6We used Flickr API to do this. See also http://www.flickr.com/
services/api/
7Terrier is a well-known java-based open source programming library tool
for retrieval. See http://www.terrier.org/
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3.2.1 Field Effectiveness
Our first experiment aims at exploring the effectiveness of using

Flickr images as queries. To assess this effectiveness and analyse
the role of the fields in the metadata, we use different combina-
tions of the textual metadata as queries and document representa-
tion. Specifically, we evaluate how Title, Tag and their combination
affect the retrieval effectiveness. To do this, we first represent the
documents by Title only, then by Tag only, and finally by Descrip-
tion metadata only. Thereafter, we test different combinations of
these fields as follows: Title and Tag; and Title, Tag and Descrip-
tion. The set of queries is formed by randomly selecting 1 picture
from each event cluster in the Upcoming Dataset. Only event clus-
ters containing more than 500 pictures from a total of 50 clusters
are considered. Hence, the total number of queries is 50 for each
sample. This random sampling is repeated 5 times in order to ob-
tain five set of 50 queries, giving us 250 queries in total.

TFIDF BM25 LM KLDM
Comb MAP RP MAP RP MAP RP MAP RP

Query: Tag field
TAGTAG .685 .695 .687234 .697234 .691 .704 .69323 .70423
TAGTIT .064 .082 .085 .105 .067 .083 .064 .081
TAGDES .281 .290 .281 .287 .434 .448 .281 .288
TAGTT .695123 .707123 .530 .540 .696123 .708123 .69123 .70423

Query: Title field
TITTAG .498 .502 .500234 .506234 .484234 .492234 .503234 .510234
TITTIT .350 .358 .324 .332 .357 .364 .353 .360
TITDES .550124 .559124 .459 .467 .460 .468 .460 .468
TITTT .113 .129 .106 .124 .127 .140 .130 .147

Query: Tag and Title field
TTTAG .663 .680 .66923 .68623 .468 .484 .66723 .68223
TTTIT .117 .139 .108 .129 .120 .144 .129 .154
TTDES .369 .376 .287 .295 .288 .297 .289 .297
TTTT .673123 .690123 .66523 .68323 .693123 .705123 .67023 .68623

Table 1: MAP and R-precision (RP) by querying the dataset
using the Tag field only, Title field only, and both fields. The
numbers 1, 2, 3 and 4 in superscript indicate the statistical sig-
nificance improvements on the dataset indexed with TAG field,
TIT field, DES field and TT fields, respectively.

Table 1 summarizes the results from our experiments using dif-
ferent fields of the pictures as queries. Here TAGTAG means
we use the tag field in both the indexing and the query, whereas
TAGTIT means we apply tag (TAG) in the indexing but title (TIT)
in the query, and so on. TT stands for tags and title combination,
while DES is the description field.

With the results in the tables above, we can make the following
observations. First as shown in Table 1, querying using the title
resulted in the lowest MAP and R-precision (RP) values compared
to querying with the title and the tags. Further, with the best re-
sults in each section of the table, for each retrieval model, the most
representative field for each picture was the Tag field, with which
the MAP and the RP values were the highest. Finally, when query-
ing using Title, either in combination with the Tag field or alone,
we can see that in all the cases, the highest MAP and RP values
were obtained when the same fields were used both to represent the
documents/images and to generate the set of queries. In summary,
since these results are conclusive, we can safely base our experi-
ments to test our query expansion (QE) step using the combination
TAGTAG.

3.2.2 Evaluating the Extended QE Models
In this experiment, we evaluated the approaches proposed in Sec-

tion 2. Similar to the previous experiment, we first randomly se-
lected 100 queries from the event clusters, containing more than
100 pictures. Then we selected pictures with less than 3 tags.

To perform a complete set of experiments, we considered differ-
ent values of the following parameters. First, as query expansion
parameters, we varied the value ofK such thatK ∈ {30, 60, 90, 120}
and the values of n such that n ∈ {8, 18}. Second, as a parameter
for KLT, we varied the time slice L in the following set: {1 day, 3
days, 7 days}8.

(1) The Impact of γ on Mixed KL. With this set of experiments,
we tested the impact of the parameter γ in Section 2 used to linearly
combine the KLT and the standard KL divergences. We varied its
values from 0 to 1 such that γ ∈ {0, 0.25, 0.5, 0.75, 1}, 0 means
that we only have the contribution of KLT and to 1 we only have the
contribution of KL. We repeated the experiment for the six combi-
nations of the number of query expansion terms n, and the number
of top-K documents considered in the query expansion process.

0 0.25 0.5 0.75 1
0.50

0.51

0.52

0.53 30_8
60_8
90_8
30_18
60_18
90_18

(a) TFIDF
0 0.25 0.5 0.75 1

0.50

0.51

0.52

0.53

(b) BM25
0 0.25 0.5 0.75 1

0.47

0.48

0.49

0.50

0.51

0.52

0.53

(c) LM

Figure 1: MAP values as function of K and n (expressed as
{K}_{n}), for the 3 different retrieval and query expansion
(QE) models, with different values of γ.

Figure 1 shows the MAP values as function of the different val-
ues of γ. As can be seen in this figure, for all the six combi-
nations, the MAP values decreased when the γ values decreased.
This means that the mix of both of the contributions was not ef-
fective, but the most important contribution came from our KLT
divergence.

(2) KL vs KLT. To further assess the performance of our KLT
approach, we compared it with the baseline approach, using the
linear combination above, with γ = 0 .

First, we compared KL and KLT. The result from this exper-
iment is summarized in Figure 2. As can be observed, by using
BM25 and TFIDF retrieval models in the initial retrieval step, our
KLT outperforms KL, with all combinations of K and n. With
LM and n = 30, the KLT also outperforms the baseline model.
With n = 60, the KLT still outperforms KL but in this case the
query expansion process is not so effective. All the improvements
from KL and the baseline methods are statistically significant at 95
% confidence interval.

30_8
60_8

90_8
30_18

60_18
90_18

0.48

0.49

0.50

0.51

0.52

0.53

(a) TFIDF
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90_8
30_18

60_18
90_18

0.48
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0.51

0.52

0.53

(b) BM25

30_8
60_8

90_8
30_18

60_18
90_18

0.48

0.49

0.50

0.51

0.52

0.53 Baseline
KL
KLT 1DAY
KLT 3DAY
KLT 7DAY

(c) LM

Figure 2: The MAP values as function of K and n (expressed
as {K}_{n}), with the 3 different retrieval and QE models.

(3) KLT vs KLST. In this subsection we compare the temporal-
aware query expansion model with the spatiotemporal-aware query
8In addition to the above models, we also implemented the Mixture
Model [21] and the Relevance Model [11]. However, the results were com-
parable to the KL query expansion models.
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expansion model KLST. We use the values of γ = 0 for the lin-
ear combination between KL and KLT, which has been shown to
yield the best result. Further, we set δ = 0.5 to computeKLST (t)
as discussed in Section 2. Due to the space limitation, we do not
present any tuning process for the δ value. Table 2 shows the per-
centage of improvement of MAP and RP values between the KLST
query re-weighting model and the other models. The numbers 1, 2
and 3 in superscript in the table indicate the statistical significance
improvements on the baseline, KL and KLT re-weighting models,
respectively.

∆MAP(%) ∆RP(%)
KL KLT KLST KL KLT KLST

30_8 2.97 8.20 10.8412 3.74 8.29 10.5912

60_8 4.57 10.66 15.06123 5.46 9.79 16.66123

90_8 2.91 13.19 16.77123 3.02 11.30 17.42123

120_8 2.61 13.34 16.94123 2.47 11.01 17.63123

30_18 3.62 8.58 11.44123 4.35 8.61 12.30123

60_18 3.62 12.25 15.55123 4.35 11.30 16.63123

90_18 2.95 14.33 16.85123 3.19 13.38 18.30123

120_18 2.84 14.52 17.25123 3.14 13.29 19.05123

Table 2: Percentage of improvement of MAP and RP using dif-
ferent re-weighting model on BM25.

In all the retrieval models, we observe that KLST outperforms
both the baseline KL reweighting model, KL, and the temporal-
proximity-aware model, KLT. Without loss of generality Table 2
shows the results using the BM25 retrieval model, considering 3DAY
as temporal window. As can be observed from this table, KLST is
from 10.6% to 19% better than the baseline method. Moreover,
with the best MAP and RP values, KLST is six times better than
the baseline KL and around 50% better than the KLT model.

Figure 3 further illustrates our comparison with respect to MAP
and RP values. This figure confirms our observation about the ef-
fectiveness of our KLST model.
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(a) MAP
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Figure 3: Comparison of the MAP and RP values for KLT and
KLST against the baseline query expansion model, as function
of the values of K and n (expressed as {K}_{n}), using BM25.

4. CONCLUSIONS
Photosharing applications, such as Flickr, contain many pictures

related to real life events, many of which are annotated with time
and location information. The main goal of this work has been to
improve existing retrieval models by exploiting this information in
search of event-related images. To achieve this goal, we have pro-
posed an extended query expansion model that exploits the tem-
poral information of the pictures and the spatial distribution of the
terms. We thoroughly evaluated our approach by first analysing
the retrieval effectiveness with respect to different combinations
of metadata fields, and using different standard retrieval models.

Thereafter, we conducted several experiments to assess the effec-
tiveness of our two proposed query expansion models; one based
on temporal proximity of tag terms, and an other based on spatial
distribution of tag terms. We compared both methods with existing
baseline approaches. The results of these experiments have shown
that our approach outperforms the state-of-the-art query expansion
models, and that the improvements were statistically significant at a
p < 0.05% level. In particular, we demonstrated that our method is
effective even when the amount of information surrounding a pic-
ture is small. Finally, by testing our approach on a large dataset,
and still getting good results, we can conclude that our approach is
also scalable.
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