GDP: Using Dataflow Properties to Accurately Estimate Interference-Free
Performance at Runtime

Magnus Jahre
Department of Computer Science

Norwegian University of Science and Technology (NTNU)

Email: magnus.jahre @ntnu.no

Abstract—Multi-core memory systems commonly share re-
sources between processors. Resource sharing improves uti-
lization at the cost of increased inter-application interference
which may lead to priority inversion, missed deadlines and
unpredictable interactive performance. A key component to ef-
fectively manage multi-core resources is performance account-
ing which aims to accurately estimate interference-free appli-
cation performance. Previously proposed accounting systems
are either invasive or transparent. Invasive accounting systems
can be accurate, but slow down latency-sensitive processes.
Transparent accounting systems do not affect performance, but
tend to provide less accurate performance estimates.

'We propose a novel class of performance accounting systems
that achieve both performance-transparency and superior ac-
curacy. We call the approach dataflow accounting, and the key
idea is to track dynamic dataflow properties and use these to
estimate interference-free performance. Our main contribution
is Graph-based Dynamic Performance (GDP) accounting. GDP
dynamically builds a dataflow graph of load requests and
periods where the processor commits instructions. This graph
concisely represents the relationship between memory loads
and forward progress in program execution. More specifically,
GDP estimates interference-free stall cycles by multiplying the
critical path length of the dataflow graph with the estimated
interference-free memory latency. GDP is very accurate with
mean IPC estimation errors of 3.4% and 9.8% for our 4- and
8-core processors, respectively. When GDP is used in a cache
partitioning policy, we observe average system throughput
improvements of 11.9% and 20.8% compared to partitioning
using the state-of-the-art Application Slowdown Model.

Keywords-Multi-core memory systems; Accounting

I. INTRODUCTION

Chip Multi-Processors (CMPs) commonly share memory
system resources. This is often beneficial since it leads
to improved utilization, but it also makes destructive in-
terference possible [1]. Consequently, the performance of
an application may be influenced significantly by its co-
runners. This lack of performance predictability may be an
annoyance to the desktop user, but it can be a business-
critical issue for data center operators [2]. Furthermore,
OS scheduling policies commonly assume that the progress

(©2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses.

Lieven Eeckhout
Department of Electronics and Information Systems
Ghent University
Email: lieven.eeckhout@ugent.be

made by each process is independent of the behavior of other
processes. Destructive interference breaks this assumption
and may cause problems such as missed deadlines, priority
inversion, unpredictable interactive performance, and not
complying with service-level agreements [3].

Destructive interference can be reduced by techniques
implemented in both software and hardware. These tech-
niques require accurate estimates of how destructive inter-
ference affects the applications that are currently running.
A performance accounting system provides architectural
support for estimating interference-free or private mode”
performance. This is a challenging task because modern
processors contain a variety of latency-hiding mechanisms
(out-of-order execution, non-blocking caches, etc.). Perfor-
mance accounting systems have wide applicability, and have
previously been used in interference-aware OS schedulers
(e.g., [3, 4, 5, 6]) and in a variety of shared memory system
resource management systems (e.g., [7, 8, 9, 10, 11, 12, 13]).

Previously proposed accounting schemes can be broadly
partitioned into two classes: invasive and transparent. Inva-
sive accounting systems [14, 15, 16] estimate private mode
performance by changing architectural policies such that
interference is minimized for a single process over a short
period of time. For example, the Application Slowdown
Model (ASM) [14] periodically gives a single process high
priority in the memory controller and uses simple policies
to account for the remaining sources of interference. This
approach can provide accurate performance estimates, but
may slow down latency-sensitive processes. In our evalu-
ation, we have observed up to 57% performance reduction
for individual processes compared to a configuration without
accounting.

Transparent accounting systems [3, 4, 17] do not affect
application performance. Prior techniques are architecture-
centric and use a set of pre-defined conditions regarding
architectural state to determine if a cycle of memory la-
tency is due to interference and whether it will increase

2The private mode is a configuration used for off-line evaluation where
the application runs on one core of the CMP and all other cores are idle.
Thus, the application has exclusive access to all shared resources. In shared
mode, all cores are active and the applications compete for shared resources.

processor stall cycles. Examples of monitored conditions
are a full Re-Order Buffer (ROB), stalled register rename
stage or if current loads access the shared memory system.
Architecture-centric systems are typically less accurate than
invasive systems. First, they are unable to accurately account
for Memory-Level Parallelism (MLP) [14]. This can result in
a single interference event being accounted multiple times.
In addition, they can only account for interference effects
that match the pre-defined conditions. Selecting conditions
are difficult because it highly depends on the application
which CPU structures become performance bottlenecks.

In this work, we propose a novel transparent accounting
system that provides significantly higher accuracy by taking
a radically different approach which we call dataflow ac-
counting. In this approach, we exploit that the application
and the underlying architecture are identical in the shared
and private modes. Therefore, resource bottlenecks are the
same in the two modes, but the performance impact differs
due to longer shared mode memory latencies.

Our Graph-based Dynamic Performance (GDP) account-
ing technique exploits this insight. GDP detects dependen-
cies between loads and periods where the processor commits
instructions and uses this to dynamically create a dataflow
graph. This graph models the relationship between load
requests and forward progress during program execution.
Since loads are serviced in parallel, the Critical Path Length
(CPL) of the dataflow graph determines the number of non-
overlapped loads needed to execute the program. Thus, the
number of load-related stall cycles can be estimated by
multiplying CPL with the estimated average private mode
memory latency. We also propose a variant of GDP called
Graph-based Dynamic Performance with Overlap (GDP-O).
GDP-O extends upon GDP by accounting for the overlap
between processor commit periods and memory loads.

To illustrate that high accuracy leads to improved system
performance, we develop a Last-Level Cache (LLC) manage-
ment policy which we call Model-based Cache Partitioning
(MCP). Like prior work (e.g., [8, 14]), MCP uses Auxil-
iary Tag Directories (ATDs) to obtain private mode miss
curves for each process and enforces allocations with way-
partitioning. MCP uses a first-order performance model to
estimate shared mode performance as a function of LLC
misses. The private mode performance estimates provided by
GDP or GDP-O enable MCP to directly optimize for system
performance metrics such as System Throughput (STP) [18].
This is especially useful when the LLC management policy
needs to choose between the working sets of different
processes. In this case, accurate private mode performance
estimates empower MCP to select the working sets that will
maximize the chosen system-level performance metric.

In summary, the contributions of this work are:

o We propose dataflow performance accounting which
uses dynamic shared mode dataflow properties to pro-

vide significantly more accurate private mode perfor-
mance estimates than prior work.

« We propose the GDP dataflow accounting technique
which is based on the observation that the number of
loads on the critical path through the load and commit
period dependency graph determines the number of
non-overlapped memory loads necessary to execute the
program. GDP is very accurate and reduces private
mode performance Root Mean Squared (RMS) error by
7.4x and 7.7e12x compared to invasive ASM account-
ing [14] for our 4- and 8-core CMPs, respectively.

o We propose the GDP-O accounting technique that ex-
tends upon GDP by accounting for the overlap cycles
where the processor commits instructions while at least
one load is pending. GDP-O reduces the stall cycle
RMS error by 13.5% and 10.8% compared to GDP for
our 4- and 8-core CMPs, respectively.

« We propose the LLC management policy MCP to estab-
lish that accurate private mode performance estimates
can be leveraged by resource management policies to
improve system performance. MCP improves average
system throughput by 11.9% and 20.8% compared to
state-of-the-art ASM cache partitioning [14] for our 4-
and 8-core CMPs, respectively.

II. EXPLAINING DATAFLOW ACCOUNTING’S ACCURACY

Performance accounting benefits greatly from a model
that leverages the similarities between the shared and private
modes. Although the CPU executes the same application in
both modes, it is challenging to reliably detect these similari-
ties because memory request timing can change significantly.
Figure la shows the same sequence of memory loads and
periods where the processor commits instructions in the two
modes. The out-of-order CPU executes instructions when
their dependencies are satisfied. It commits an instruction
when its computation is complete and prior instructions have
committed. For load instructions, execution entails issuing
a memory request. If a load instruction reaches the head of
the ROB before the memory request completes (e.g., LI at
@), the CPU stops committing instructions or stalls. When
the memory request completes, the CPU commits one or
more instructions. For example, memory load LI enables
the instructions in commit period C2 to commit before L2
reaches the head of the ROB and causes another stall at @.

Figure la shows that loads LI, L2 and L3 are delayed by
interference which causes longer memory latencies in the
shared mode (e.g., at ®). These loads are serviced in parallel,
and the amount of parallelism changes throughout the load
burst. Accurate MLP modeling is a critical component of a
performance accounting system since MLP determines the
performance impact of increased memory latencies.

Architecture-centric accounting: The best architecture-
centric accounting scheme is PTCA [3] which assumes that
the private mode CPU stalls are the interference cycles

Interference Cycles
Ml Non-Interference Cycles

Il Interference-induced Stall Cycles
8 CPU Commit Cycles

Key Example Data

Inst. Commit Stall Avg. Avg.
nst. Cycles Cycles Latency Overlap

M Load from CPU 0

o L T <03 corpletes Shared . Ml Load from CPU 1
Lo issues Mode 190 190 305 180 38 i 8 CPU O low priority
g3 @ [ErIEEE—. @ —wrEm ode o B
> rivate =3 3 Cycle 10000: Lowest
£3 2/ e — \owr Woge 190 190 205 léﬂ 38 £ e — Froriy
125 stall /e = v Load
5 stall cycles . C2 Il C3 Y so WK% I 3 3 Cycle 19900: oa
Main estimation o
— e, B
L5 | of a dataflow Two loads on'} . £:CPU 0 high priority
accounting 1as on: £
technique the critical S Cycle 20000:
paths N
= o) i 2
. € cycle 29999:
0 50" Commit 100 150 200 350 300 350 400 450 500 Critical Path o hjjjjj 9
stalls Length (CPL) = 2 =

(a) Dataflow accounting

(b) Dataflow graph (c) Invasive accounting

Figure 1: Example explaining why dataflow accounting is significantly more accurate than prior work

a load request is subjected to while the ROB is full. In
Figure 1a, the CPU is able to keep the ROB practically full.
Thus, PTCA assumes that all interference cycles reduce stall
length.

PTCA processes loads independently, and this can cause
inaccuracies when a single interference event affects multi-
ple loads as shown at @. In this case, PTCA will correctly
reduce the length of the stall between C/ and C2, but
incorrectly estimate that the stall between C2 and C3 did not
occur in the private mode. The reason is that the interference
latency of L2 is greater than the shared mode stall. However,
the stall did occur in the private mode because it is caused
by serialization in the memory controller. Our experiments,
which are discussed in detail in Section VII, shows that
PTCA is inaccurate with relative RMS performance esti-
mation errors of 103.3%, 78.8% and 81.5% for our 2-, 4-
and 8-core CMPs, respectively.

Invasive accounting: Invasive accounting schemes such
as ASM [14] avoid modeling MLP. Instead, ASM gives
each CPU highest priority in the memory controller for
a few thousand clock cycles (i.e., an epoch) to minimize
interference. The assumption is that the performance of the
application in the high priority epoch will be similar to its
private mode performance.

Unfortunately, limiting interference does not recreate the
situation that occurs in the private mode. Figure Ic il-
lustrates this with a 2-core CMP running two memory-
intensive applications over two epochs. At the end of the
first epoch, CPU 0 has accumulated a significant backlog
of memory requests due to running with low priority at @.
CPU 0 then spends the subsequent epoch trying to clear
this backlog which causes a backlog for CPU 1 at @. These
backlogs do not occur in the private mode and leads ASM
to significantly overestimate private mode memory controller
queuing delays. The problem is exacerbated by adding more
cores to the system since this increases the time between
high priority epochs. Our experiments show that ASM can be
inaccurate with relative RMS performance estimation errors
of 33.7%, 187.2% and 1.34e14% for our 2-, 4- and 8-core
CMPs, respectively.

Dataflow accounting: Prior transparent accounting tech-
niques are inaccurate because they are unable to accurately
model private mode MLP. To overcome this problem, we
propose dataflow accounting. The first key observation is
that the dataflow dependencies between memory loads and
commit periods are very similar in the shared and private
mode. The reason is that all load requests occur as a response
to an instruction being committed. Concretely, the load
depends on the memory-related instruction that enabled the
execution of the instruction dependency chain that eventually
allowed the load to execute. Conversely, all completed loads
lead to at least one instruction committing. The minimal case
is that only the load instruction itself can commit.

The dataflow graph can be constructed dynamically based
on two simple rules: (1) The parent of a load request is
the commit period that started closest in time before the
request was issued; and (2) The child of a memory request
is the commit period that finished closest in time after the
request completed. Figure 1b shows the dependency graph
resulting from applying these rules to the shared mode
loads and commit periods. For example, C/ unlocks the
instructions that allow L2 to meet its dependencies and issue
its memory request at @. When L2 completes, it allows the
instructions in C3 to commit at @. The (CI, L2) and (L2,
C3)-dependencies are the same in the two modes.

The second key observation is that the dataflow graph rep-
resents the relationship between memory loads and periods
where the CPU commits instructions. Thus, the number of
memory loads on a critical path of the dependency graph
indicates the number of non-overlapped loads necessary to
execute the program. For example, the dataflow graph in
Figure la shows that the critical loads are L3, L4 and L3,
and that L4 is executed in parallel with L5. The private mode
stall cycles can then be estimated by multiplying the number
of loads on a critical path by the estimated private mode
memory latency. We design a novel, low-overhead hardware
unit that estimates the Critical Path Length (CPL) using an
approximation of Kahn’s algorithm [19].

In the next two sections, we will explain in detail how
our GDP and GDP-O schemes compute private mode per-
formance estimates. First, we develop an analytical perfor-

mance model that formalizes the performance impact of
memory system interference in Section III. This model forms
the foundation for GDP and GDP-O. Then, we explain GDP
and GDP-O in detail in Section IV.

III. MODELING INTERFERENCE

The accounting systems we propose in this paper are
based on the analytical performance model by Karkhanis
and Smith [20] and the observation that performance can
be modeled by quantifying steady-state performance (i.e.,
perfect branch predictor and perfect memory system) and
then subtracting the performance loss due to each imperfect
component.

The performance P, of process p is the clock cycles where
the process committed one or more instructions (C),) plus
the cycles where commit was stalled (S,) divided by the
number of committed instructions (Inst,):

CPI, = P, = (Cp + S + §hoads 4 §Other) Tngt, (1)

The total stall cycles is the sum of the memory independent
stall cycles (SZI,“d), stall cycles due to load instructions
(S};O‘*ds) and other memory-related stalls (SI? thery From this
definition, a processor is stalled when it is not committing
instructions. However, it can do useful work in the back-
ground. The key insight is that this work cannot result in
forward progress until the instruction that blocks commit is
completed.

Since the only difference between the shared and private
mode is the memory system behavior, Szl,nd is by definition
the same in the two modes. Through systematic empirical
analysis we determined that the memory-dependent stall
cycles are due to four events. The most important factor
is the stall cycles that occur when a load instruction reaches
the head of the ROB (Sg;oads). Such stalls have two distinct
causes: load requests that remain in the private memory
system of the CMP (SF™9) and loads that visit the shared
memory system of the CMP (SSMS). We refer to these
load types as Private Memory System Loads (PMS-loads)
and Shared Memory System Loads (SMS-loads). PMS-loads
cannot be directly influenced by interference since they do
not access shared units. Thus, memory system interference
primarily affects performance through SMS-loads.

SOther js the sum of three rare events. The first stall type
occurs when the store buffer is full at the same time as a
store instruction is at the head of the ROB. The second type
is due to the L1 data cache being blocked because of too
many in-flight memory requests. This causes a stall when a
load that needs to access the blocked L1 cache reaches the
head of the ROB. Finally, commit might stall when a branch
mispredict resolves and the ROB only contains wrong-path
instructions. Assuming that the stall length is proportional
to the memory latency difference between the shared and
private modes is sufficiently accurate for these events.

Equation 2 ties these observations together and describes
how we compute our private mode performance estimates

#p from the stall estimates 65,5 and &t

fip = (Cp+ Syt + SPMS 4+ 65MS 4 5OUe) /Inst,, (2)

We use Greek letters for private mode values and a hat
to show that a value is a shared mode estimate of a
private mode value (e.g.,). In other words, O'SMS is the
private mode counterpart of the shared mode SMS-stall
cycles SPMS,

IV. ESTIMATING PRIVATE MODE STALLS

In this section, we describe our dataflow accounting
system in detail. We first present how GDP and GDP-O
can be implemented in Section IV-A. Then, we discuss
private mode memory latency estimation in Section IV-B
and performance and area overheads in Section IV-C.

A. Implementing GDP and GDP-O

We use Figure 1a to show how GDP and GDP-O use the
dependency graph to estimate private mode performance.
Both GDP and GDP-O base their estimates on the perfor-
mance model in Equation 2. The example in Figure la con-
tains no memory independent stall cycles, no PMS-loads and
no other stalls (i.e., SII,nd, Sg MS and [7]?ther are equal to 0).
Furthermore, there are 190 committed instructions (Inst,)
and 190 commit cycles (C,). The purpose of GDP and GDP-
O is to estimate the SMS-load-related stall cycles (655).
For simplicity, we assume a perfect private mode memory
latency estimator (Section IV-B removes this restriction).

GDP estimates SMS-load-related stall cycles by multiply-
ing CPL with the estimated average private mode memory
latency (i.e. 65MS~GPP = CPL,, - \,). There are two SMS-
loads on the critical paths of Figure la’s dataflow graph
which gives a CPL of 2. The private mode latency estimator
provides GDP with a perfect estimate of 140 cycles @. Thus,
GDP estimates that the number of SMS-load-related stall
cycles is 280 (i.e., &EMS’GDP = 2 - 140). This estimate
is higher than the actual number of private mode stall
cycles which is 205 @. By inserting 190 instructions, 190
commit cycles and 280 estimated SMS-load stall cycles into
Equation 2, GDP estimates that the private mode CPI is 2.5
([190 + 280]/190) while the actual value is 2.1.

GDP’s private mode performance estimate is not per-
fect because it does not account for the overlap between
pending loads and commit periods. For example, LI, L2
and L3 overlap with C/ at @. GDP-O removes this error
by subtracting the estimated number of cycles where the
CPU is committing instructions while at least one SMS-
load is pending (i.e., 65M5~GPP~0 — CPL,, - Ay — O,]).
However, we do not know if a request is an SMS-load or
a PMS-load until it completes. Thus, we count the number
of overlapped cycles for all L1 load misses. When an SMS-
load completes, we add the per-request counter to a global

Request >
L1 Data Cache P

Response
il

CPU
Stalled ani L Resumed
A A

Pending Request Buffer (PRB) Pending Commit Buffer (PCB)
48bits _ 15bits _ 28bits _ 14bits 1 1 15bits _ 28bits _ 28bits 32 bits

Addr ‘ Depth ‘Comp. at 0verlap‘|C‘V‘ ‘ Depth ‘ Start at
<|v]\«]
<[]\«

|
|
‘ Overlap Counter (32)* |
|

Stallat | Children

Comp. at | Overlap*

Addr ‘ Depth

Newest Valid Pointer (5)

Addr ‘ Depth

Comp. at | Overlap* Oldest Valid Pointer (5)

Addr ‘ Depth

Comp. at clv

Overlap* Timestamp Counter (28)

*The Overlap field and Overlap Counter register are only used in GDP-O

Critical Path Length (CPL) Estimation

Figure 2: Dataflow graph processing architecture

overlap counter. When the estimate is computed, we divide
the global overlap counter by the number of SMS-loads
to compute the average overlap O,. Since the overlap is
a property of the program (e.g., number of instructions
between SMS-loads) and processor core architecture (e.g.,
entries in the ROB), O,, is similar in the two modes.

In Figure 1a, the average overlap is 38 cycles. Thus, GDP-
O estimates that the number of SMS-load-related stall cycles
is 204 (i.e., 6,M5~GPP — 2. [140 — 38)). Using Equation 2,
GDP-O estimates that the private mode CPI is 2.1 ([190 4+
204]/190) which is equal to the actual private mode CPL

Dataflow Graph Processing: We use two hardware
structures called the Pending Commit Buffer (PCB) and the
Pending Request Buffer (PRB) to monitor the dependencies
between commit periods and SMS-load requests. The PCB
is a register and the PRB is a fully associative buffer indexed
by the request address. In addition, the PRB can be accessed
by the buffer index. Figure 2 shows that these buffers are
placed close to the processor core and the L1 data cache.
All dependency graph processing is off the critical path of
the processor and has no performance impact.

Figure 2 shows the fields of the PCB and the PRB. The
PCB field Depth stores the current CPL value, and the
Started at and Stalled at fields are the timestamps when the
current commit period started and completed, respectively.
The timestamps are generated by a cycle counter which is
reset when the CPL is retrieved. Finally, the Children field
is a bit vector of the same length as there are entries in the
PRB. If a bit in this vector is set, it means that the pending
load at that index in the PRB is a child of this commit period.
The Address field is the physical address of the memory
request, and the Depth field is the CPL value for this request.
The Completed flag is used to tag a request as completed
and shared. The Valid bit is set when the buffer entry is
in use. Finally, Completed at is the timestamp when the
request completed and Overlap is the number of clock cycles
the processor committed instructions while this request was
pending. Figure 2 also shows the number of bits required

Algorithm 1: Load Request Issued

if PRB[newestValidPointer] is valid then
Increment newestValidPointer (wrap around if necessary);
if newestValidPointer == oldestValidPointer then
Invalidate PRB[newestValidPointer];
Add request to the PRB and as child of pending commit;

Algorithm 2: Load Request Completed

Find request in PRB;
if Request not found then
| return;
if Request has been in the shared memory system then
\ Set completed bit and update the Completed at field;
else
‘ Invalidate PRB entry and remove PCB pointer;

for each register field. The bit widths of these fields were
selected to accommodate the largest values observed in our
experiments. With 32 PRB entries, the storage overhead of
GDP and GDP-O are 3117 and 3597 bits, respectively.

Dependency Graph Construction: Algorithm 1 is ex-
ecuted when a load request misses in the L1 cache. If the
buffer contains at least one request, we increment the pointer
and check if the buffer is full. If it is, we invalidate the oldest
pending request. We show that this simple policy does not
significantly affect private mode CPL estimation accuracy in
Section VII-B. Finally, the request is added to the PRB and
to the child list of the current commit in the PCB.

Algorithm 2 shows the operations carried out when an L1
miss completes. We first check if the request is still in the
PRB by using its address. If it is not found, it has been
evicted due to lack of space. If the request has been in
the shared memory system, we set the completed bit and
update the timestamp. A request is known to be an SMS-
load when the response arrives at the last-level private cache.
This information is propagated with the response to the CPL
estimation unit. If the request is a PMS-load, we invalidate
it and remove the PCB pointer if necessary. Dependencies
between PMS-loads and SMS-loads are handled through
intervening commit periods.

Algorithm 3 is run when the processor resumes execution
after a stall. First, we use the address of the load instruction
that caused the stall to access the PRB. If this is a miss, the
request was either a PMS-load or removed from the buffer
because of limited buffer space. In both cases, we assume
this was a PMS-stall which does not affect the CPL. If the
address is found, the stall was due to an SMS-load. In this
case, we carry out two steps. First, we process and invalidate
all requests in the shared buffer that completed before the
stall. These requests are the parents of the previous commit
period. The depth of the completed commit period is the
maximum depth of all its predecessors. Then, we set the
Depth of all children of the current commit to the depth
of the commit plus one. Step 2 initializes the new commit

Algorithm 3: CPU Resumed

Find the request s that caused the stall in the PRB;
if s is found then
// Step 1: Complete commit period [
for Completed request r in the PRB do
if © completed before the stall then
if r.depth > l.depth then
l.depth = r.depth;
Invalidate completed request 7;
for All children c of the last commit period | do
| cdepth = ldepth + 1;
// Step 2: Initialize commit period p
Initialize the new commit period p with depth s.depth;
for Completed request r in the PRB do
if r.depth > p.depth then
| p.depth = r.depth;
Invalidate completed request 7;

period. First, we initialize the PCB by setting the Started
at timestamp to the current value and resetting the Stalled
at field and the Children bits. Then, we initialize the PCB
Depth to the depth of the request that caused the stall.
Finally, we check if other completed requests have a larger
depth value and then invalidate them. The Stalled at field of
the PCB is set when the processor stalls on a load instruction.

Computing the Dataflow Graph CPL: Our algorithms
ensure that the PCB always contains the CPL at the time
when the current commit period started. The reason is that
the algorithms collectively implement Kahn’s algorithm for
computing the length of a critical path of a directed acyclic
graph (DAG) [19]. Kahn’s approach is to first topologically
sort the nodes and then traverse the DAG in topological
order. In this case, the CPL of all predecessors is computed
by the time a node is processed, and the CPL of that
node is the maximum of its predecessors plus one. The
dependency graph is a DAG when the depth is incremented
in Algorithm 3 because the first loop removes all cycles.

We use time to topologically sort the load requests. By the
time the depth of a commit period is updated, all requests
that can influence its depth are complete. Conversely, the
commit period that can influence the depth of a request
is complete by the time the request is completed. These
properties are true by construction. For instance, if the
request is not complete when commit period ¢; ends, it is in
fact the parent of the next commit period c2 and thus cannot
influence the critical path length of commit period c;.

Buffering all SMS-loads that may influence the CPL will
in certain cases be infeasible. An example of such a situation
is a sequence of shared cache hits separated by a sufficient
number of memory-independent instructions. In this case,
the number of nodes in the graph will increase but the critical
path length will remain the same. This observation is the
main motivation for our simple PRB management scheme.
If the oldest issued load has not caused a stall, it is unlikely
that it will increase the CPL.

B. Estimating Private Mode Latencies

We use the Dynamic Interference Estimation Frame-
work (DIEF) [21] to provide private mode latency estimates.
DIEF measures the shared mode memory latency L, and
estimates the latency due to inter-process interference Ip,.
Then, it estimates the private mode latency A, by subtracting
the interference estimate from the shared mode latency:

Ap =Ly, —1, 3)

To estimate interference, DIEF uses strategically po-
sitioned counters in the on-chip interconnect, LLC and
memory controller. In the interconnect, DIEF counts the
additional latency a request experiences when delayed by
a request belonging to a different process. In the LLC,
DIEF uses ATDs [8] to identify interference-induced misses
and then records the miss penalty of these requests. DIEF’s
memory bus interference estimator supports out-of-order re-
quest scheduling and accounts for the large latency variation
caused by the row-buffers and banks in modern DRAMs.
DIEF uses a low-overhead hardware mechanism to emulate
the out-of-order scheduling algorithm and thereby estimates
the private mode service order and latency of each request.

The original DIEF proposal used full-map tag directories
which has a storage cost that we would like to avoid. To
achieve this, we employ set sampling [22]. Here, only a
small number of sets are stored in the ATD and it is assumed
that these are representative for the other sets. Adding sup-
port for set sampling reduces the storage overhead of DIEF
from 929 KB, 1859 KB and 7178 KB to 5.0 KB, 9.9 KB and
23.8 KB for our 2-, 4- and 8-core CMPs, respectively.

C. Performance and Area Overhead

GDP and GDP-O do not have a direct performance
overhead since they are implemented in hardware and are off
the critical path. However, they could have an indirect per-
formance impact if a delay in providing private mode perfor-
mance estimates results in untimely quota allocation. With
a hardware management policy, the quotas are reevaluated
when the shared resource is repartitioned. These events are
rare in computer architecture terms with repartitioning being
carried out once every one to five million cycles [8, 9, 23].
Computing Equation 2 for GDP requires 2 divisions, 2
multiplies and 5 additions for each processor. If we assume
a sequential implementation where an addition takes 1 cycle,
a multiply takes 3 cycles and a division takes 25 cycles, it
takes 71 cycles to compute one performance estimate. This
latency is similar to prior work [3, 4, 14].

The main source of area overhead for GDP and GDP-
O is the DIEF private mode latency estimation mechanism.
DIEF’s main area-driver is the sampled ATDs required to
identify interference-induced LLC misses. This overhead
is similar to prior work because ASM [14], ITCA [4]
and PTCA [3] all use sampled ATDs for this purpose. In
addition, GDP and GDP-O require a CPL estimator per core

and a number of counters strategically positioned throughout
the CMP. The area overhead of these components is less than
2 KB for our 4-core CMP and therefore small compared to
the overhead of DIEF (9.9 KB).

V. MODEL-BASED CACHE PARTITIONING

To illustrate the benefits of using private mode per-
formance estimates for memory system resource manage-
ment, we develop an LLC partitioning technique which we
call Model-based Cache Partitioning (MCP). Like previous
work [8, 14], MCP uses ATDs to obtain private mode miss
curves, way-partitioning to enforce cache allocations and
select per-application cache quotas at regular intervals (e.g.,
5 million clock cycles). Unlike prior work, MCP selects
allocations based on dynamic estimates of the system-
level performance metric System Throughput (STP) [18].
To accomplish this, MCP needs to be able to estimate
the per-application performance impact of LLC capacity
allocations. MCP allocates LLC capacity at way-granularity,
and the ATDs are used to estimate the number of misses an
application would experience with a certain number of ways.

Equation 4 shows the performance model we use to link
LLC misses to performance:

CPI,(my) = Py(my) = By™MC 4+ PP (m,) - (4)

We exploit that the application CPI can be separated into
components for different performance loss events [20]. First,
PE reLLC captures the performance on the CPU-side of the
LLC which is the CPI with infinite LLC capacity. Second,
PPostLLC captures the CPI impact of the LLC misses caused
by SMS-loads. We use a linear first-order model to estimate
the CPI increase for every additional miss (i.e., Py os*MC =
gp - myp). This is an approximation since it assumes that
the amount of MLP remains constant when the number of
misses increases. Further, it assumes that the average per-
load memory bus queuing latency remains constant when
the total number of memory requests changes. Subramanian
et al. [15] showed that these assumptions are reasonable for
coarse-grain management decisions by demonstrating that
performance decreases linearly with increased memory bus
interference.

Equation 5 shows how we compute the application CPI
component with an infinite LLC:

PEreLLC — (Cp + S;SMS + CPLP . EEreLLC)/InStp (5)

It contains the compute and stall cycles in Equation 1 that
are incurred on the CPU-side of the LLC®. The CPU stall
cycles due to SMS-load latencies in the on-chip interconnect
and the LLC are estimated by using the measured average
pre-LLC latency (EE“SLLC) and a locally computed estimate

3 S;SMS is the aggregate of all stall cycles that are not related to the
shared memory system (i.e., S,/ 5MS = glnd 4. gOther | GPMS)

Table I: CMP Model Parameters

Parameter
Clock frequency
Processor Cores

Value [Multiple value encoding: 2-core/4-core/8-core]
4 GHz

128 entry reorder buffer, 32 entry load/store queue, 64
entry instruction queue, 4 instructions/cycle, 4 integer
ALUs, 2 integer multiply/divide, 4 FP ALUs, 2 FP
multiply/divide, hybrid branch predictor with 2048 local
history registers, 4-way and a 2048 entry BTB

2-way, 64KB, 3/3/2 cycles latency, 16 MSHRs

2-way, 64KB, 3/3/2 cycles latency, 16 MSHRs

4-way, 1 MB, 9/9/6 cycles latency, 16 MSHRs

16-way, 8/8/16 MB, 16/16/12 cycles latency, 32/64/128
MSHRs per bank, 4 banks

4 cycles per hop transfer latency, 32 entry request queue,
1/1/2 request rings, 1 response ring

DDR2-800, 4-4-4-12 timing, 64 entry read queue, 64
entry write queue, 1 KB pages, 8 banks, FR-FCFS
scheduling [24], Open page policy, 1 channel

L1 Data Cache
L1 Inst. Cache
L2 Private Cache
L3 Shared Cache

Ring Interconnect

Main memory

of the critical path length. We approximate CPL by dividing
the stall time by the latency (i.e., CPL, = S5MS /L3MS)!,
Equation 6 shows how we compute the CPI gradient g,:

gp = (CPL,, - PO /ngt,, (6)

Similarly to the CPU-side SMS-latency calculation, it con-
sists of the locally computed CPL estimate and the average
memory controller and bus latency. LFS*MEC s the same
for all processes since off-chip bandwidth is shared between
cores. Intuitively, Equation 6 expresses the increase in CPI
for each additional LLC miss that is due to an SMS-load.
To simplify the implementation, we measure P and
the current shared mode CPI P(m,) and use these values
to compute PPostLLC with Equation 4.

Equation 7 shows how we use the performance model to
create an online estimate of system throughput (STP) from
SMS-load LLC misses (m;) in a system with n CPUs:

STP(mg,m1,...,my) = Zﬁz‘/(PipreLLc +gi-m;) (1)
i=0

The estimated LLC misses for a given allocation are re-
trieved from the ATDs, and the private mode CPI estimates
(7;) are provided by GDP or GDP-O. Thus, Equation 7
provides a layer on top of a miss-minimizing partitioning
algorithm that enables making allocation decisions based
on system performance rather than misses. MCP uses the
lookahead algorithm [8] to select cache quotas.

VI. METHODOLOGY

We use an in-house simulator derived from M5 [25]
for our experiments. Our CMP has two private cache lev-
els (L1 and L2) and a shared LLC (L3). The per-core
memory systems are connected to the shared cache with
a ring interconnect. This high-level architecture is inspired

4The CPL estimate also captures the overlap between processor commit
cycles and memory request cycles that GDP-O accounts for. However, we
do not explicitly show this since it would unnecessarily complicate the
mathematical formulation.

by commercial CMP implementations [26]. We faithfully
model DDR2 and DDR4 memory bus interfaces [27, 28].
The default parameters of our CMP models can be found
in Table I. We analyze the impact of changing LLC and
memory controller parameters in Section VII-D.

We use 52 SPEC2000 and SPEC2006 benchmarks to
generate multi-programmed workloads [29, 30]. To avoid
initialization effects, we fast-forward each benchmark in a
single core configuration for 20 billion instructions and take
a checkpoint. This checkpoint contains private cache state.
Then, we profile the next 100 million instructions varying
the available LLC ways. Based on these profiles we classify
the benchmarks into three categories according to their LLC
sensitivity. A benchmark has high LLC sensitivity (H)* if
the speed-up with all LLC ways relative to a single way
is greater than 1.75. If the speed-up is between 1.2 and
1.75, we classify the benchmark as having medium LLC
sensitivity (A/)°. The remaining benchmarks are classified
as having low LLC sensitivity (L). Using this classification,
we randomly generate 30 workloads with H-benchmarks,
15 workloads with M-benchmarks and 5 workloads with L-
benchmarks for our 2-, 4- and 8-core CMPs (150 workloads
in total)’. We explore the impact of workloads mixing H-,
M- and L-benchmarks in Section VII-D.

For multi-programmed experiments, we simulate the
workload until all benchmarks have committed 100 million
instructions. Benchmarks are restarted when they reach the
end of their instruction sample. We measure estimation
accuracy by comparing these shared mode results to the
corresponding private mode experiments. The shared mode
instruction sample points are provided as input to the private
mode experiments to ensure that measurements are based on
the same instructions in both modes.

A shared mode estimate of a private mode value & may
differ from the actual private mode value «. To quantify
this, we use the metrics absolute and relative error defined
as EAP = 4 — a and ER! = (4 — a)/a. We have
configured all accounting techniques to estimate private
mode performance every five million clock cycles since this
is a common allocation period for resource management
techniques (e.g., [8]). Thus, there will be multiple errors for
each benchmark, and we use the Root Mean Squared (RMS)
error metric to represent these errors with a single number:

RMS = (®

SApsi, facerec, galgel, ammp and art from SPEC2000 and omnetpp, lbm
and sphinx3 from SPEC2006.

Equake, twolf, parser and vpr from SPEC2000 and gromacs, astar,
bzip2 and hmmer from SPEC2006.

7 We require that a benchmark is used at most once in a workload for
the 2- and 4-core CMPs. For the 8-core CMP, we allow a benchmark to
be used twice in the H and M workloads. The reason is that the H and
M categories each contain 8 benchmarks which would result in a single
workload if reuse was not allowed.

The key benefit of RMS is that it measures both bias
and variability. In Equation 8, E can be either EAPS or
ERl and n is the number of estimates provided for a
given benchmark. We use the arithmetic mean to represent
multiple per-benchmark RMS errors with a single number.

VII. RESULTS

In this section, we present the results from our experimen-
tal evaluation. All techniques report performance estimates
and re-evaluate allocations every 5 million clock cycles. We
sample 32 sets in the LLC [8], and GDP and GDP-O have
32 PRB entries (see Section VII-D for evaluation).

A. Performance and Stall Time Estimation Accuracy

We compare the accuracy of GDP and GDP-O to Infer-
Task Conflict-Aware (ITCA) accounting [4], PTCA [3] and
ASM [15]. Since our system has an out-of-order memory
controller, PTCA uses the private mode latency estimates
provided by DIEF [21]. Figure 3 shows the average absolute
RMS error of the private mode IPC and SMS-load-related
stall cycle estimates for ITCA, PTCA, ASM, GDP and GDP-
O. Figures 3a and 3b show the same trends for PTCA, GDP
and GDP-O, and this illustrates that SMS-load stalls are the
main source of interference-induced performance loss.

ITCA: ITCA is generally less accurate than the other
techniques for workloads with more than negligible inter-
ference. The reason is that ITCA takes the shared mode
stall cycles as the baseline and then subtracts the cycles
where one of its selected conditions is true. Concretely,
ITCA conditions are (i) a stalled rename stage with an inter-
thread miss at the head of the ROB, (ii) all active MSHRs
are inter-thread misses, or (iii) an empty ROB with an active
inter-thread instruction miss. These conditions catch only
a small part of the stall cycles due to interference, which
results in conservative private mode estimates. This strategy
works well when there is limited interference (i.e., the 2-
core L-workloads), but gives larger errors than the other
techniques in the remaining cases.

PTCA: Although PTCA is also an architecture-centric
technique, it is significantly more accurate than ITCA in
most cases. PTCA does not account the interference cycles
that delay the SMS-load request belonging to the oldest
instruction while the ROB is full. This illustrates that the
choice of conditions is critically important. However, PTCA
can also significantly underestimate private mode perfor-
mance because they miss interference cycles due to stalls
in other CPU structures. An example is /bm which in our
simulation sample is in an inner loop with many floating-
point adds and multiplies. This results in high pressure on the
floating-point units and causes dispatch to stall due to a full
issue queue. Thus, the ROB fills slowly and only a small part
of the interference cycles are detected. GDP and GDP-O do
not suffer from this problem since they use the critical path

o CJITCA [CIPTCA [ASM EEEGDP BN GDP-O
g ' ' ' ' ' ' 1.34e12]
w 0.8
25
o
o 0.4
e
ag 0.2
<0

2ccH 2cM 2c-L 4cH 4cM 4c-L 8-H 8c-M 8cL

(a) IPC estimate (Average absolute RMS error)

500000 —WCA EEEPTCA EENASM EENGDP NN GODP-O
5 - : - : . . ; . ‘

000000
500000
000000
500000

0

= o= N N

Average RMS Error

2ccH 2cM 2c-L 4cH 4cM 4cL 8H 8c-M 8c-L

(b) SMS-load stall cycles (Average absolute RMS error)

Figure 3: Average private mode prediction accuracy

length of the dependency graph to estimate private mode
SMS-stalls.

Another problem is that PTCA can severely overestimate
private mode performance for benchmarks with significant
SMS-load parallelism. This causes the accuracy degradation
for the 2-core L-workloads in Figure 3. The main culprit
is a workload where libquantum runs together with ronto.
Libquantum is in a tight bandwidth-bound loop that sustains
five concurrent SMS-loads, and each load enables commit-
ting a few instructions. One load causes a long stall and
the remaining four cause short stalls because most of their
latency was hidden by the long stall. PTCA treats these
five stalls as isolated events. The long stall is estimated
accurately since its length is dominated by interference. The
requests causing the short stalls also experience abundant
interference, and PTCA concludes that they did not occur
in the private mode because the ROB is full. However, the
stalls are present in the private mode since they are due to
the loads being serialized in the memory controller. GDP
and GDP-O use the dependency graph to determine that
these load requests are serviced in parallel and therefore
treat them as a single unit.

ASM: ASM’s IPC estimates for the category L-workloads
are highly inaccurate with an average RMS error of 1.34e12
for the 8-core CMP (Figure 3a). This error is mainly due to
applu which has periods where practically all of its memory
latency is due to interference-induced LLC misses, and the
sample is dominated by stalls on these misses. Thus, almost
all of the cycles in the period would not occur in the private
mode. This leads ASM to estimate that the cache access rate
would be very high because the substantial number of LLC
accesses are divided by a small amount of clock cycles. This
is not correct since applu does incur some latency accessing
the other cache levels and on-chip interconnect. GDP and
GDP-O handle this situation better than ASM because the
performance model ensures that each source of processor
stall cycles is handled independently.

In Figure 3b, we combine ASM’s slow-down estimates
with the SMS-load-related stall cycle component of our
performance model to estimate the private mode stall cycles.
This improves accuracy significantly and leads to ASM
being more accurate than ITCA and PTCA for most work-

o o|TCA v vPTCA o o|TCA v vPTCA o o|TCA v vPTCA

44 ASM <+ <GDP a4 ASM <+ <GDP a4 ASM < <GDP
4 >—* GDP-O 4 >—* GDP-O 5 >—> GDP-O
2 3t 1 e 4t 2
=3[1 =3 =41 o
<ol 1 < 3f 3 T3l o
S 2t g g 2F o v 2 o 4
w Tl 3] w2 ° wo| 0co v
g of M g 17 o v] g 1 eo? Y
[] [a v [o° Y X anad
n:g | EM T olasasnpEiiiesses]
o o o [=3 o (=3 =3 o o o o o o090 o9 o9 o9
o < © © o wn o w o n o wowo o
~ -~ o - - N N OO
Sorted Benchmarks Sorted Benchmarks Sorted Benchmarks
(a) 2-core (b) 4-core (c) 8-core

Figure 4: Absolute RMS error distribution for the SMS-load
stall cycle predictions (y-axes in millions)

load categories and core counts. This indicates that ASM
may be useful in combination with a performance model in
situations where slowing down latency-sensitive processes is
acceptable. GDP and GDP-O provide more accurate private
mode stall cycle estimates than ASM for the 4- and 8-core
CMPs and comparable accuracy for the 2-core CMP.

GDP and GDP-O: Figure 4 shows the private mode
SMS-load-related stall cycle RMS error distributions for
the 2-, 4- and 8-core CMPs. The distributions contain all
workload categories. We generated these plots by retrieving
the prediction errors for all workloads before we sorted the
errors in ascending order. Overall, Figure 4 confirms the
trends observed in Figure 3 and illustrates that GDP and
GDP-O generally yield lower errors than ITCA, PTCA and
ASM across our CMP configurations.

Perhaps counter-intuitively, Figure 4 shows that the accu-
racy benefit of GDP-O over GDP is limited. The reason is
that applications are typically able to hide tens of cycles
in the private mode while the average memory latencies
are hundreds of cycles for memory-intensive applications.
One exception is the 2-core H-workloads in Figure 4. Here,
the applications are able to hide a significant part of the
private mode memory latency which causes higher average
error for GDP than GDP-O. Accurate private mode memory
latency estimates is most important for the 4- and 8-core H-
workloads, and this results in GDP-O only outperforming
GDP by a small margin. These results indicate that the
marginally simpler GDP technique can be used in situations
where slightly lower accuracy is tolerable.

350

< 800

& 140 4318
120
100
80
60
10
20

< 700 | 2768.8 4541.4
|

= 300
2 600 2)

250
200

oy
I

100
50
0

Rel. RMS Errors (
Rel. RMS Errors (%

Rel. RMS Errors (%)

: 100 ‘ A

2c-h
2c-m
2c-1{p
4c-h)
4c-m i
4c-l 4
8c-h i
8c-m A}
8c-1i
2c-h
2c-m
2c-l
4c-h
4c-m {0
4c-l
8c-h{i
8c-m {1
8c-l
2c-h i
2c-m i

(a) CPL

Figure 5: Relative RMS error distribution of GDP/GDP-O
estimate components

(b) Overlap (c) Latency

B. GDP Component Prediction Accuracy

CPL Estimation Accuracy: The key underlying assump-
tion of GDP and GDP-O is that CPL is very similar in the
shared and private modes. Figure 5a shows a Violin plot® of
the RMS error distribution of the CPL estimates generated
with our runtime technique from Section IV compared to
the same algorithms running with unlimited buffer space in
the private mode. Thus, Figure 5a covers all sources of CPL
inaccuracies, including our PRB management policy. The
main observation is that the relative RMS error is less than
10% for the majority of benchmarks. Thus, the assumption
that CPL is very similar in the shared and private modes
holds in most cases.

However, all workload categories have clusters of bench-
marks with higher CPL errors. Higher relative errors can
occur when the critical path is short. In this case, even a
relatively small absolute deviation can cause a large relative
error. A notable example is wrf in the 8-core L-workloads
where the relative error is 431.8% while the absolute RMS
error is only 7.8. However, GDP’s performance estimate
error is only 5.0%. The reason is that wrf is compute-bound
which means that the memory-related stall cycles account for
a small fraction of the total stall cycles. The same problem
occurs with facerec in the H-workloads, and this causes
the highest errors for this data series. Facerec is alternating
between compute-bound and memory-bound phases, and the
CPL estimates are accurate when facerec is memory-bound.

CPL differences are also caused by private mode shared
cache hits that enable the processor to continuously commit
instructions even when a later load instruction depends on
an earlier load. If these cache accesses become interference
misses in the shared mode, the shape of the dependency
graph will change since the dependencies become observable
in the memory system. Figure 5a shows that the conditions
that cause CPL changes in memory-bound phases are rela-
tively rare. In fact, we have not observed a single case where
inaccurate CPL estimates can be blamed for significant
private mode performance estimation errors.

Overlap Estimation Accuracy: Figure 5b contains a

8 A Violin plot uses kernel density estimation to illustrate the distribution
of a series of discrete data points. The horizontal line shows the median of
each data series.

Violin plot showing the RMS error distribution of GDP-
O’s overlap estimator. It shows that our overlap estimator
can be inaccurate, but that it performs reasonably as long
as the overlap behavior is similar in the shared and private
modes (i.e., on the 2-core and the 4- and 8-core H- and M-
workloads). Our estimator is inaccurate for the 4- and 8-core
L-workloads. However, this inaccuracy does not adversely
affect the performance estimates because SMS-load-related
stall cycles have a limited impact on accuracy for compute-
bound applications. For example, the worst-case error of
4541.4% is due to the compute-bound h264ref benchmark,
but GDP-O’s IPC estimation error is only 2.2%. Thus, we
conclude that our simple overlap estimator is sufficient, and
we avoid further complicating the design.

Memory Latency Estimation Accuracy: Figure 5c uses
a Violin plot to show the RMS error distributions of DIEF’s
private mode latency estimates. The latency estimates are
relatively accurate for the majority of the workloads with a
maximum median RMS error of 31%. However, there are
cases where larger errors occur, and the root cause of these
errors are inaccurate memory bus queuing latency estimates.
For the L-workloads, the queuing latencies are relatively
small which results in significant relative errors even if the
estimates are only off by a few tens of clock cycles. In fact,
the worst observed mean error is 140.8 clock cycles. Again,
the errors do not adversely affect the performance estimates
because the L-workloads are mostly compute-bound.

There are cases where DIEF’s estimates are inaccurate.
However, these do not result in unmanageable performance
prediction errors due to a phenomenon similar to Amdahl’s
law. The key insight is that the memory latency estimate is
one of many components of the performance model. Thus,
the performance estimate impact of a large error in one
component is reduced if the errors of the other components
are lower. The results in Section VII-A shows that DIEF is
sufficiently accurate to enable GDP and GDP-O outperform
prior work. However, there might be use cases where more
accurate private mode latency estimates are helpful.

C. Shared Cache Management Case Study

In this section, we evaluate our Model-based Cache Par-
titioning (MCP) scheme to illustrate the benefits of using
private mode performance estimates for dynamic memory
system resource management. We compare to the conven-
tional LRU replacement policy, Utility-based Cache Parti-
tioning (UCP) [8] and ASM-driven cache partitioning [15].
We evaluate two versions of MCP: MCP and MCP-O. MCP
uses GDP to provide private mode performance estimates
and MCP-O uses GDP-O. We use the throughput-oriented
System Throughput (STP) [18] performance metric. STP is
the sum of the private to shared mode CPI slowdowns across
all cores in the CMP (i.e., STP = Y7 7, /CPL).

Figure 6a shows the average STP for LRU, UCP, ASM,
MCP and MCP-O across all workload categories and core

[LRU [UCP /3 ASM

[LRU [UCP 3 ASM [MCP I MCP-O

= MCP I MCP-O 2 2.0
66— ——————— o
[o 15
% 4 ©
23 5 10
o °
g 2 o 0.5
<1 o
0 5 00
T = 4 T = 4 T = < © O W< — ©
5 2 8 6 % o 5 209 ~NO ~q O
d o VN & ¥ 0 o ©

(a) Average system throughput

" MCP limited by
associativity

MCP not limited by associativity

(b) System throughput for the 8-core category H-workloads relative to LRU

Figure 6: System throughput with LLC partitioning

counts. The main observation is that accurate private mode
performance estimates enable MCP and MCP-O to outper-
form the other policies on the 4- and 8-core CMPs. Resource
contention is limited on the 2-core CMP, and this results
in all techniques performing similarly. For the 8-core H-
workloads, MCP improves average STP by 11%, 34% and
52% compared to LRU, UCP and ASM, respectively. MCP
also provides a significant STP improvement for the 4-
core H-workloads (i.e., 19%, 9% and 24%). These results
indicate that accurate private mode performance estimates
are most useful when there is significant competition for
LLC capacity. However, MCP and MCP-O are also the top
performers for the other workload types on the 4- and 8-core
CMPs, but the performance difference is smaller.

Figure 6a also shows that LRU outperforms UCP and
ASM for the 8-core H-workloads. To explain this result,
we have included Figure 6b which show the STP for all H-
workloads on the 8-core CMP. Overall, Figure 6b shows that
MCP and MCP-O provide significant STP improvements
relative to LRU (up to 88%). UCP and ASM are able to
approach the performance of MCP and MCP-O for some
workloads (e.g., 16, 5 and 25). However, there are also a
number of workloads where MCP and MCP-O significantly
improve STP where UCP and ASM perform similarly to
LRU (e.g., 20, 14, 21 and 8). This indicates that highly
accurate private mode performance estimates enable MCP
and MCP-O to find good cache allocations in situations
where ASM cannot.

LRU outperforms UCP and ASM on average because
way-partitioning allocates LLC capacity in a coarse-grained
manner. This has led researchers to propose management
techniques such as Vantage [31] that target high-associativity
cache structures such as z-caches [32] and molecular
caches [33]. Such cache structures add non-negligible com-
plexity compared to conventional set-associative caches
which implies that they are challenging to design, ver-
ify and deploy in commercial processors [34]. Figure 6b
shows that MCP and MCP-O have significantly smaller
STP regressions relative to LRU than UCP and ASM for
the associativity-limited workloads. This indicates that high-
accuracy private mode performance estimates help allevi-

ate a well-known limitation of way-partitioning-based LLC
management schemes.

D. Sensitivity Analysis

Figure 7 shows GDP-O’s accuracy when changing ar-
chitectural parameters and configuration settings as well
as when running mixes of H, M and L-benchmarks. The
main observation is that GDP-O achieves high accuracy for
almost all configurations. For the M -workloads, error either
decreases with more resources or is unaffected by parameter
changes. The reason is that more resources result in less
contention which leads to smaller differences between the
shared and private modes. In other words, more resources
makes the estimation problem easier. On the architectures
used in this work, the L-workloads do not exhibit significant
contention and have relatively stable accuracy.

LLC Parameters: Figure 7a shows that RMS error
increases slightly with LLC size for the H-workloads. This
is primarily due to facerec. With the 8 MB and 16 MB LLCs,
facerec is able to cache one of its working sets. This results
in performance mainly being limited by the ability of the
memory system to service loads. For the 4 MB LLC, facerec
is bound by the ability of the memory system to service
stores, and interference causes the store buffer to block.
This is a significantly easier estimation problem. Figure 7b
shows that the accuracy of GDP-O is relatively stable across
different LLC associativities.

DRAM System: Figure 7c shows the accuracy impact
of changing the number of DDR2-channels, and Figure 7d
explores the impact of changing the single-channel interface
from DDR2-800 to DDR4-2666. Overall, GDP-O is robust
to changes in memory bandwidth. The slightly higher errors
for the 4-channel DDR2 H-workloads and the DDR4 A
and L-workloads are caused by increased private mode
latency estimation errors. Since future computer systems are
expected to be bandwidth-limited [35], it is important that
accounting techniques are accurate for resource-constrained
configurations [36].

PRB Entries: Figure 7e shows the accuracy impact of
changing the number of PRB entries for GDP-O. Intuitively,
the PRB needs enough entries to track the dependencies of

C—_4mMB CI8MB

[16MB 16 CI32 W64 o w— -

8 16 332

[—1DDR2 @ DDR4 [64 I 1024 0.16

0.1C
0.08
0.06
5 0.04
0.02
0.00

Avg. RMS Error
=

Avg. RMS Error
£ <

Avg. RMS Error

T B - I = < T =
5 > 5 5 > 3 S)
< 4 < 3 g < 2] <

(a) LLC size (b) LLC associativity (c) DDR2 channels

Avg. RMS Error
=

Il

H
M
L

T H 5 Q
5 ;
< él‘)

0.10 @
= 0.08
2 0.10 T 0.06
0.06 « 0.04
0.04 9 0.05 Z 0.02
0.02 < 0.00
0.00 0.00
T B - ;
LI

4c-L
4c
4c-
4c
HHML
HMML
HMLL

(d) DRAM interface (e) PRB size (f) Mixed workloads

Figure 7: Average absolute RMS error of GDP-O IPC estimates for the 4-core CMP

the in-flight load requests. For the M- and L-workloads,
8 PRB entries are sufficient to reach the accuracy potential.
For the H-workloads, a 32-entry PRB is necessary because
the highly LLC-sensitive benchmarks exhibit significant
MLP. Increasing the number of PRB entries beyond 32
does not improve accuracy because the amount of MLP is
bounded by the CPU’s 32-entry load/store queue.

Mixed Workloads: We also explore the sensitivity of
GDP-O to workloads that contain benchmarks with different
characteristics. To achieve this, we generate three mixed
workload types that contain two H, M or L-benchmarks and
one benchmark from each of the two remaining categories.
We identify the mixes with the type of each benchmark, and
randomly generate 10 workloads for each mix. For example,
the HHML workload type contains two H-type benchmarks,
one M-benchmark and one L-benchmark. Figure 7f shows
GDP-O’s average RMS error for the HHML, HMML and
HMLL workload mixes and compares it to the results of
the H, M and L-workloads. Overall, the error of GDP-
O is relatively insensitive to how the workloads are con-
structed. However, we observe somewhat higher errors for
the workloads that contain H-benchmarks. The reason is
that the H-benchmarks create significant interference which
makes the private mode performance estimation problem
more challenging.

VIII. RELATED WORK

Performance Accounting: A number of transparent ac-
counting systems exist. PTCA [3] assumes that performance
loss due to memory system interference occurs when the
ROB is full and the oldest SMS-load request is delayed
by cache or memory bus interference. ITCA [4, 17] uses
a similar heuristic. The differences are that ITCA defines a
processor stall using a stalled register rename stage and does
not account for interference in the off-chip memory bus for
intra-task shared cache misses. Furthermore, ITCA defines
cycles where all active MSHRs contain inter-thread misses
and cycles where the ROB is empty due to an inter-thread
instruction miss as interference. We compare to both PTCA
and ITCA in our experiments and show that GDP and GDP-
O are significantly more accurate. In addition, Zhou et al. [7]
propose a performance estimation technique for the shared
cache, but do not consider memory bus sharing effects.

Other researchers have proposed invasive accounting sys-
tems which estimate private mode performance by periodi-
cally running an application in isolation or with high prior-
ity. Cazorla et al. [16] estimate private mode performance
by periodically running each selected process in isolation.
MISE [15] is a memory bus scheduler that estimates private
mode performance by periodically running each process with
the highest priority in the memory controller. ASM [14]
extends the MISE model to account for LLC interference.
We compare to ASM and show that GDP and GDP-O
are significantly more accurate. Invasive accounting systems
may also slow down latency-sensitive processes. In contrast,
GDP can estimate private mode performance without any
performance overhead for the running applications.

Accounting schemes for SMT processors have also been
proposed (e.g., [37, 38]). Here, the focus is on handling
interference in the processor core resources and the per-core
memory system. Thus, they are complementary to this work.

Accounting Heuristics: In addition to the research that
targets private mode performance estimation, there is a sig-
nificant body of work that detects interference cycles but do
not detail how this additional latency impacts performance.
Ebrahimi et al. [39] estimate the excess cycles due to
interference using a pollution filter to detect cache interfer-
ence and detecting bus conflicts, DRAM bank conflicts and
row-buffer interference. The Cache Scouts [40] mechanism
collects information on cache interference for use by the
OS or virtual machine monitor. Mutlu et al. [10] detect
memory bus interference by using the shared mode memory
bus queue and bank state to estimate the additional shared
mode memory latency. In fact, most cache management
schemes that rely on ATDs fall into this category (e.g., [8])
since they commonly use private mode shared cache misses
as a proxy for private mode performance. These works
all validate their interference estimates by showing that
their proposed interference-aware schemes perform well.
We argue that estimation techniques should be considered
first-class citizens of a resource management system and
thoroughly evaluated with respect to their accuracy.

LLC Partitioning: A large body of research targets
shared LLC capacity management (e.g., [7, 8, 9, 23, 31, 34]).
Of these, MCFQ [41] and ASM [14] are most closely related
to this work since they determine per-process LLC quotas

by combining private mode miss curves obtained with ATDs
and a performance model. MCFQ does not take private mode
performance into account. This may lead to prioritizing high
IPC processes over low IPC processes which may not be in
accordance with high-level system management objectives.
We compare to ASM in our evaluation and show that our
MCP scheme provides higher throughput.

In addition, a large body of work use ATDs and miss-
minimization within their shared LLC partitioning schemes
[8, 23, 31, 34, 42, 43, 44, 45]. These are complementary
to this work because using MCP would enable them to
select partitions based on system performance rather than
LLC misses. Another common optimization target is QoS
[7, 9, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. These
works are also complementary because MCP can enable
specifying QoS targets in terms of performance rather than
resource requirements. Finally, researchers have proposed to
partition the LLC to improve energy efficiency by disabling
cache ways that are of little utility to the current workload
[56, 57, 58]. MCP enables making the decision of disabling
ways using performance estimates rather than LLC misses.

Dynamic Voltage and Frequency Scaling (DVFS): Prior
work has used leading loads [59, 60, 61, 62] to estimate the
performance impact of changing processor core frequencies.
Informally, a leading load is the first load in a load burst.
Counting the cycles a leading load is pending estimates the
memory-related stall cycles, and these cycles are relatively
unaffected by core frequency changes. Stall cycle parti-
tioning is also an important accounting system component,
and leading loads is similar to the heuristics employed in
architecture-centric accounting (e.g., PTCA [3]). However,
the leading load mechanisms cannot be directly applied to
performance accounting since they lack support for estimat-
ing how memory system interference affects stall cycles.

Instruction Criticality: Researchers have proposed tech-
niques for detecting and exploiting instruction criticality.
Of these, Fields et al. [63] is most similar to our work
since they use a CPU-internal instruction criticality detector.
In contrast, we propose to track dependencies within the
memory system which has several advantages for accounting
systems. Concretely, we avoid high-frequency interactions
with internal CPU resources, avoid tracking dependencies
among non-load instructions and avoid the increased ver-
ification costs associated with complicating the CPU de-
sign. The cost of exact criticality and dependency tracking
has motivated researchers to develop heuristic approaches
[64, 65, 66]. Such heuristics are similar to the heuristics used
in architecture-centric accounting which we have shown to
be less accurate than dataflow accounting.

IX. CONCLUSION

Shared memory system resources lead to destructive in-
terference between co-scheduled applications and reduced
performance predictability. This problem can be alleviated

by interference-aware OS schedulers or thread-aware mem-
ory system management policies. In both cases, accurate es-
timates of private mode performance is a great asset. In this
work, we have presented the GDP and GDP-O estimation
techniques. They explicitly model the relationship between
SMS-load latency and CPU stall cycles, are very accurate
and can be implemented with only a small storage overhead.
We also presented the MCP LLC partitioning scheme to
illustrate how highly accurate private mode performance
estimates can be used in a memory system resource man-
agement policy. GDP enables MCP to dynamically estimate
system throughput [18] which MCP uses to partition the
shared cache. For the 4- and 8-core CMPs, MCP is able to
improve average throughput by 11.9% and 20.8% compared
to ASM-driven cache partitioning [14].

ACKNOWLEDGMENT

We would like to thank the researchers at NTNU’s Com-
puter Architecture Lab and the anonymous reviewers for
their insightful comments on the research presented in this
work. Lieven Eeckhout is supported through FWO grants
no. G.0434.16N and G.0144.17N, and European Research
Council (ERC) Advanced Grant agreement no. 741097.
The simulations were performed on resources provided by
UNINETT Sigma2 — the National Infrastructure for High
Performance Computing and Data Storage in Norway.

REFERENCES

[1] K. J. Nesbit et al., “Multicore resource management,” IEEE micro,
vol. 28, no. 3, 2008.

[2] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud
computing,” University of California at Berkeley, Tech. Rep., 2009.

[3] K. Du Bois et al., “Per-thread cycle accounting in multicore proces-
sors,” ACM Trans. on Arch. and Code Optimization, 2013.

[4] C. Luque et al., “CPU accounting for multicore processors,” IEEE
Transactions on Computers, vol. 61, no. 2, 2012.

[5] R.Das et al., “Application-to-core mapping policies to reduce memory
system interference in multi-core systems,” in Int. Symp. on High
Performance Computer Architecture (HPCA), 2013.

[6] A. Jaleel et al., “CRUISE: Cache replacement and utility-aware
scheduling,” in Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[7]1 X. Zhou et al., “Cache sharing management for performance fairness
in chip multiprocessors,” in Int. Conf. on Parallel Architectures and
Compilation Techniques (PACT), 2009.

[8] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition
shared caches,” in Int. Symp. on Microarchitecture (MICRO), 2006.

[9] R. Wang and L. Chen, “Futility scaling: High-associativity cache
partitioning,” in Int. Symp. on Microarchitecture (MICRO), 2014.

[10] O. Mutlu and T. Moscibroda, “Stall-time fair memory access schedul-
ing for chip multiprocessors,” in International Symposium on Microar-
chitecture (MICRO), 2007.

, “Parallelism-aware batch scheduling: Enhancing both perfor-
mance and fairness of shared DRAM systems,” in Int. Symp. on
Computer Architecture (ISCA), 2008.

[12] Y. Kim et al., “Thread cluster memory scheduling: Exploiting dif-
ferences in memory access behavior,” in International Symposium on
Microarchitecture (MICRO), 2010.

[13] M. Xie et al., “Improving system throughput and fairness simultane-
ously in shared memory CMP systems via dynamic bank partitioning,”
in Int. Symp. on High Perf. Computer Architecture (HPCA), 2014.

[11]

[14]

[15]

[16]

(171

[18]
[19]
[20]

[21]

[22]

(23]

[24]
[25]
[26]
[27]
(28]
[29]
[30]

(31]

(32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

L. Subramanian et al., “The application slowdown model: Quantifying
and controlling the impact of inter-application interference at shared
caches and main memory,” in International Symposium on Microar-
chitecture (MICRO), 2015.

——, “MISE: Providing performance predictability and improving
fairness in shared main memory systems,” in Int. Symp. on High
Performance Computer Architecture (HPCA), 2013.

F. J. Cazorla et al., “Predictable performance in SMT processors: Syn-
ergy between the OS and SMTSs,” IEEE Transactions on Computers,
vol. 55, no. 7, 2006.

C. Luque et al., “ITCA: Inter-task conflict-aware CPU accounting for
CMPs,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2009.

S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, 2008.

A. B. Kahn, “Topological sorting of large networks,” Communications
of the ACM, vol. 5, no. 11, 1962.

T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Int. Symp. on Computer Architecture (ISCA), 2004.

M. Jahre et al., “DIEF: An accurate interference feedback mechanism
for chip multiprocessor memory systems,” in Int. Conf. on High-
Performance Embedded Arch. and Compilers (HIPEAC), 2010.

M. K. Qureshi et al., “A case for MLP-aware cache replacement,” in
International Symposium on Computer Architecture (ISCA), 2006.
Y. Xie and G. H. Loh, “PIPP: Promotion/insertion pseudo-partitioning
of multi-core shared caches,” in International Symposium on Com-
puter Architecture (ISCA), 2009.

S. Rixner et al., “Memory access scheduling,” in International Sym-
posium on Computer Architecture (ISCA), 2000.

N. L. Binkert et al., “The M5 simulator: Modeling networked sys-
tems,” IEEE Micro, vol. 26, no. 4, 2006.

J. Casazza, “Intel core 17-800 processor series and the Intel core i5-
700 processor series based on Intel microarchitecture (Nehalem),”
2009, Published: White paper, Intel Corp.

JEDEC, DDR2 SDRAM specification, 2009.

——, DDR4 SDRAM standard, 2017.

SPEC, “SPEC CPU2000 web page,” 2007. [Online]. Available:
http://www.spec.org/cpu2000/

J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Computer Architecture News, vol. 34, no. 4, 2006.

D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-
grain cache partitioning,” in International Symposium on Computer
Architecture (ISCA), 2011.

——, “The ZCache: Decoupling ways and associativity,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2010.

K. Varadarajan et al., “Molecular Caches: A caching structure for dy-
namic creation of application-specific heterogeneous cache regions,”
in Int. Symp. on Microarchitecture (MICRO), 2006.

R. Manikantan er al., “Probabilistic shared cache management
(PriSM),” in Int. Symp. on Computer Architecture (ISCA), 2012.

J. Huh et al., “Exploring the design space of future CMPs,” in Int.
Conf. on Parallel Arch. and Compilation Techniques (PACT), 2001.
M. Jahre et al., “A quantitative study of memory system interference
in chip multiprocessor architectures,” in International Conference on
High Performance Computing and Communications (HPCC), 2009.
S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in SMT
processors,” in Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009.

C. Luque et al., “Fair CPU time accounting in CMP+SMT proces-
sors,” ACM Trans. on Arch. and Code Opt., vol. 9, no. 4, 2013.

E. Ebrahimi et al., “Fairness via source throttling: A configurable and
high-performance fairness substrate for multi-core memory systems,”
in Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2010.

L. Zhao et al., “CacheScouts: Fine-grain monitoring of shared caches
in CMP platforms,” in Int. Conf. on Parallel Architecture and Com-
pilation Techniques (PACT), 2007.

D. Kaseridis et al., “Cache friendliness-aware management of shared
last-level caches for high performance multi-core systems,” IEEE
Transactions on Computers, vol. 63, no. 4, 2014.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

H. Dybdahl et al., “A cache-partitioning aware replacement policy
for chip multiprocessors,” in International Conference on HigE Per-
formance Computing (HiPC), 2006.

Y. Xie and G. H. Loh, “Scalable shared-cache management by
containing thrashing workloads,” in Int. Conf. on High-Performance
Embedded Architectures and Compilers (HiPEAC), 2010.

D. Zhan et al., “CLU: Co-optimizing locality and utility in thread-
aware capacity management for shared last level caches,” IEEE
Transactions on Computers, vol. 63, no. 7, 2014.

J. J. K. Park et al., “Fine grain cache partitioning using per-instruction
working blocks,” in International Conference on Parallel Architecture
and Compilation Techniques (PACT), 2015.

R. Iyer, “CQoS: A framework for enabling QoS in shared caches
of CMP platforms,” in Proceedings of the 18th Annual International
Conference on Supercomputing (ICS), 2004.

P. Petoumenos et al., “STATSHARE: A statistical model for managing
cache sharing via decay,” in Second Annual Workshop on Modeling,
Benchmarking and Simulation (MoBS), 2006.

F. Guo et al., “A framework for providing quality of service in chip
multi-processors,” in International Symposium on Microarchitecture
(MICRO), 2007.

K. J. Nesbit et al., “Virtual private caches,” in International Sympo-
sium on Computer Architecture (ISCA), 2007.

N. Rafique et al., “Architectural support for operating system-driven
CMP cache management,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2006.

J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” in Int. Conf. on Supercomputing (ICS), 2007.

S. Srikantaiah et al., “SHARP control: controlled shared cache
management in chip multiprocessors,” in International Symposium on
Microarchitecture (MICRO), 2009.

M. Moreto et al., “FlexDCP: a QoS framework for CMP architec-
tures,” ACM SIGOPS Operating Systems Review, vol. 43, no. 2, 2009.
A. Herdrich et al., “Cache QoS: From concept to reality in the Intel
Xeon processor ES-2600 v3 product family,” in Int. Symp. on High
Performance Computer Architecture (HPCA), 2016.

H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
QoS for latency-critical workloads,” in Int. Conf. on Arch. Support for
Programming Languages and Operating Systems (ASPLOS), 2014.
K. T. Sundararajan et al., “Cooperative partitioning: Energy-efficient
cache partitioning for high-performance CMPs,” in Int. Symp. on
High-Performance Computer Architecture (HPCA), 2012.

, “RECAP: Region-aware cache partitioning,” in International
Conference on Computer Design (ICCD), 2013.

H. Cook et al, “A hardware evaluation of cache partitioning to
improve utilization and energy-efficiency while preserving responsive-
ness,” in Int. Symp. on Computer Architecture (ISCA), 2013.

B. Rountree et al., “Practical performance prediction under Dynamic
Voltage Frequency Scaling,” in International Green Computing Con-
ference and Workshops, 2011.

S. Eyerman and L. Eeckhout, “A counter architecture for online DVFS
profitability estimation,” IEEE Transactions on Computers, vol. 59,
no. 11, 2010.

G. Keramidas et al., “Interval-based models for run-time DVFS
orchestration in superscalar processors,” in International Conference
on Computing Frontiers (CF), 2010.

B. Su et al., “PPEP: Online performance, power, and energy pre-
diction framework and DVFS space exploration,” in Int. Symp. on
Microarchitecture (MICRO), 2014.

B. Fields et al., “Focusing processor policies via critical-path predic-
tion,” in Int. Symp. on Computer Architecture (ISCA), 2001.

S. Subramaniam et al., “Criticality-based optimizations for efficient
load processing,” in International Symposium on High Performance
Computer Architecture (HPCA), 2009.

S. Ghose et al., “Improving memory scheduling via processor-side
load criticality information,” in International Symposium on Computer
Architecture (ISCA), 2013.

M. Hashemi et al., “Accelerating dependent cache misses with an en-
hanced memory controller,” in International Symposium on Computer
Architecture (ISCA), 2016.

http://www.spec.org/cpu2000/

	Introduction
	Explaining Dataflow Accounting's Accuracy
	Modeling Interference
	Estimating Private Mode Stalls
	Implementing GDP and GDP-O
	Estimating Private Mode Latencies
	Performance and Area Overhead

	Model-based Cache Partitioning
	Methodology
	Results
	Performance and Stall Time Estimation Accuracy
	GDP Component Prediction Accuracy
	Shared Cache Management Case Study
	Sensitivity Analysis

	Related Work
	Conclusion

