
HSM: A Hybrid Slowdown Model for
Multitasking GPUs

Xia Zhao
Ghent University

Magnus Jahre
Norwegian University of Science and

Technology

Lieven Eeckhout
Ghent University

Abstract
Graphics Processing Units (GPUs) are increasingly widely
used in the cloud to accelerate compute-heavy tasks. How-
ever, GPU-compute applications stress the GPU architecture
in different ways — leading to suboptimal resource utiliza-
tion when a single GPU is used to run a single application.
One solution is to use the GPU in a multitasking fashion
to improve utilization. Unfortunately, multitasking leads to
destructive interference between co-running applications
which causes fairness issues and Quality-of-Service (QoS)
violations.

We propose the Hybrid Slowdown Model (HSM) to dy-
namically and accurately predict application slowdown due
to interference. HSM overcomes the low accuracy of prior
white-box models, and training and implementation over-
heads of pure black-box models, with a hybrid approach.
More specifically, the white-box component of HSM builds
upon the fundamental insight that effective bandwidth uti-
lization is proportional to DRAM row buffer hit rate, and the
black-box component of HSM uses linear regression to relate
row buffer hit rate to performance. HSM accurately predicts
application slowdown with an average error of 6.8%, a sig-
nificant improvement over the current state-of-the-art. In
addition, we use HSM to guide various resource management
schemes in multitasking GPUs: HSM-Fair significantly im-
proves fairness (by 1.59× on average) compared to even parti-
tioning, whereas HSM-QoS improves system throughput (by
18.9% on average) compared to proportional SM partition-
ing while maintaining the QoS target for the high-priority
application in challenging mixed memory/compute-bound
multi-program workloads.

Keywords GPU; Multitasking; Slowdown Prediction; Per-
formance Modeling

1 Introduction
GPUs have become the preferred compute platform for a
wide variety of compute-heavy tasks including machine
learning, scientific simulations, and data analytics. Com-
monly, users only intermittently need GPU capacity — mak-
ing it more economical to rent GPU capacity on demand than
buying GPUs. Hence, leading cloud service suppliers such
as Google and Amazon offer GPU-equipped virtual machine
instances [1, 2]. The simplest way to provide cloud-based
GPU compute capacity is to give each user exclusive access

to physical GPUs. This strategy is wasteful since most GPU-
compute workloads do not fully utilize all GPU resources.
For instance, a compute-bound application will utilize the
Streaming Multiprocessors (SMs) well, but use relatively
little memory bandwidth. Conversely, a memory-bound ap-
plication will have high bandwidth utilization, but use the
SMs inefficiently.
This utilization problem can be overcome by enabling

GPUs to executemultiple applications concurrently— thereby
better utilizing compute and memory resources [3–6]. Un-
fortunately, this creates another problem: The co-running
applications can interfere unpredictably with each other in
the shared memory system [7–9]. In a GPU-enabled cloud,
the main undesirable effects of interference are that it can
result in (1) users being billed for resources they were unable
to use, and (2) unpredictable Quality-of-Service (QoS) and
Service-Level Agreement (SLA) violations.

Enforcing fairness/QoS requires understanding how inter-
ference affects the performance of co-running applications.
More specifically, we need to predict the performance reduc-
tion (slowdown) during multitasking (shared mode) compared
to an ideal configuration (privatemode) where the application
runs alone with exclusive access to all compute and memory
system resources [10]. Using shared mode quantities (e.g.,
shared mode bandwidth utilization) as proxies for private
mode quantities (e.g., private mode bandwidth utilization)
is typically inaccurate since interference can change appli-
cation resource consumption significantly. Thus, slowdown
prediction schemes use performance models or heuristics
that take shared mode measurements as input to predict
private mode performance. While slowdown prediction has
been studied extensively for CPUs (e.g., [11–13]), the prob-
lem is less explored for multitasking GPUs [14–16]. Since
slowdown prediction is performed online, architects need
to appropriately trade off the overheads of the scheme (i.e.,
the number of counters and logic complexity) against the
required accuracy to use chip resources as efficiently as pos-
sible.
Broadly speaking, slowdown prediction models can be

classified as white-box [10, 11, 14] versus black-box [15, 16].
White-box models are derived from fundamental architec-
tural insights which enables them to, in theory, precisely
capture key performance-related behavior. This means that
they incur limited implementation overhead when used on-
line (i.e., few counters and simple logic). Unfortunately, it is

KAIN
文本框
2020 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all other uses

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Xia Zhao, Magnus Jahre, and Lieven Eeckhout

difficult to formulate accurate white-boxmodels for GPUs be-
cause of the high degrees of concurrent threads and memory
accesses which leads to non-trivial overlap effects, i.e., it is ex-
tremely difficult to tease apart the performance impact from
shared resource interference. DASE [14], the state-of-the art
white-box GPU slowdown model, estimates interference in
all shared resources individually to then predict the overall
performance impact. While successful for CPUs [10–13], this
approach is both complex and inaccurate for GPUs because
of the high degree of overlap effects — we observe an average
prediction error of 17.9% and up to 75.3%.
Black-box models circumvent this problem by automat-

ically learning the performance impact of the non-trivial
overlap effects. Unfortunately, this ability comes at the cost
of non-negligible training and implementation overheads.
For instance, Deep Neural Networks (DNNs) are typical can-
didates for complex machine learning problems, but they
can take a long time to train, usually have hundreds of in-
put parameters, and consist of tens of layers; resulting in
the weights used for online inference requiring megabytes
of storage even after compression [17]. Themis [16], the
state-of-the-art black-box model for GPU slowdown predic-
tion, uses a four-layer neural network and limited number
of input parameters to reduce overheads, but still requires
kilobytes of storage and performs hundreds of floating-point
multiplications to issue a single prediction. For our diverse
set of workloads, we find that Themis’ neural network is
too simple to provide robust slowdown predictions (average
error of 33.8%, and up to 99.8%).
Our key insight is that we can design accurate perfor-

mancemodels with low complexity by combining the strengths
of white-box and black-box approaches. More specifically, we
first usewhite-boxmodeling to determine the key performance-
related behavior resulting from interference in multitasking
GPUs. Second, we use black-box modeling to learn the per-
formance impact of the non-trivial overlap effects. In this
way, we synergistically combine white-box and black-box
modeling in a hybrid approach. More specifically, the white-
box approach captures key performance-related behavior —
to reduce training and implementation overhead — while
the black-box model accounts for non-trivial overlap effects
— to achieve high accuracy.

The result is our Hybrid Slowdown Model (HSM) which
builds upon five white-box insights regarding interference
in GPUs. (1) The streaming execution model of GPUs results
in kernels being either memory or compute-bound, and (2)
the performance of compute-bound kernels scale linearly
with the number of allocated SMs. (3) The performance of
memory-bound kernels is strongly correlated with memory
bandwidth, and (4) DRAM Row Buffer Hit Rate (RBH) deter-
mines a memory-bound kernel’s DRAM bandwidth utiliza-
tion potential. The reasons are that RBH dictates the fraction
of the theoretical DRAM bandwidth that remains idle due
to row management operations and that modern address

mapping policies achieve nearly perfect bank and channel
balance [18]. (5) Memory-bound kernels have similar RBH
in the shared and private mode. The reason is that GPUs
have hundreds or thousands of requests in flight — meaning
that they are typically able to keep their row hit requests
in the memory controller queues even during multitasking.
Further, memory controllers protect RBH by prioritizing row
hits to maximize bandwidth [19].

The black-box component of HSM addresses the problem
of relating RBH to performance for memory-bound appli-
cations, which is non-trivial due to the highly parallel ex-
ecution model of GPUs. We observe that performance is
proportional to memory bandwidth utilization, and we use
linear regression to learn the precise relationship for each
GPU architecture. The constants of the linear regression
model are insensitive to the exact kernels used for train-
ing as long as low-RBH and high-RBH kernels are included.
Overall, HSM has an average slowdown prediction error of
6.8% (30.3% max error); a significant improvement compared
to the state-of-the-art.
To demonstrate the utility of HSM, we use its accurate

slowdown predictions to guide SM-allocation policies de-
signed to optimize for system-level performance metrics
such as QoS and fairness. More specifically, we find that
HSM-based SM allocation is an effective mechanism to man-
age both the SM resources and shared memory bandwidth
in a coordinated way to improve system-level performance
including fairness (HSM-Fair) as well as system throughput
(STP) while maintaining QoS for the high-priority applica-
tion (HSM-QoS). Our experiments show that HSM-based SM
allocation leads to a significant improvement over both even
partitioning and DASE-based SM allocation. HSM-Fair im-
proves fairness by 1.59×, 1.36×, and 1.29× compared to even
partitioning, Themis and DASE, respectively. When HSM-
QoS is used to optimize STP while respecting the QoS target
of a high-priority application, it improves STP by 18.9%,
13.0%, and 15.2% in mixed compute/memory-bound work-
loads compared to proportional SM partitioning, Themis-
based SM allocation, and DASE-based SM allocation, respec-
tively.
In summary, we make the following major contributions:

• We introduce hybrid GPU slowdown modeling which
combines the understanding of key performance-related
behavior provided by white-box models — to reduce
training and implementation overhead — with the abil-
ity of black-box models to account for non-trivial over-
lap effects — to achieve high accuracy.
• We propose HSM, the first hybrid slowdown model
for GPUs, which accurately predicts application slow-
down based on Row Buffer Hit Rate (RBH) measured
during multitasking. HSM predicts slowdown with an
average error of 6.8% whereas white-box DASE [14]

HSM: A Hybrid Slowdown Model for Multitasking GPUs ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Is the bandwidth demand
of kernel k greater than its

bandwidth utilization
potential?

Every 500K clock cycles for kernel k

YesNo

Compute-bound Memory-bound

NP k=
S k
σ k

Predicted
Normalized Progress (NP)

Shared-mode SMs

Private-mode SMs
(i.e., all SMs)

B kNP k=
c 1 c 2RBH k× +

Predicted private mode bandwidth utilization
(i.e., the kernel's maximum bandwidth utilization)

Shared mode
bandwidth utilization

Figure 1. Flow-chart outlining the main operation of HSM.

and black-box Themis [16] yield average prediction
errors of 17.9% and 33.8%, respectively.
• We use HSM to allocate SMs to applications to achieve
fairness- andQoS-awaremultitasking GPUs. HSM-Fair
improves fairness by 1.59×, 1.36× and 1.29× compared
to even partitioning, Themis-based SM allocation, and
DASE-based SM allocation, respectively. HSM-QoS im-
proves system throughput by 18.9%, 13.0%, and 15.2%
on average compared to proportional SM partitioning,
Themis, and DASE, while respecting the QoS target
for the high-priority application in challenging mixed
compute/memory-bound multi-program workloads.
Proportional SM partitioning, Themis, and DASE do
not respect the QoS target.

2 The Hybrid Slowdown Model (HSM)
HSM predicts application slowdown due to interference, and
slowdown is captured by the performance metric Normalized
Progress (NP):

NPk = IPCShared
k / IPCPrivate

k (1)

Equation 1 states that the normalized progress of a ker-
nel k (NPk) is the ratio of k’s performance in shared mode
(IPCShared

k) — where it is allocated a subset of the SMs and
competes with other applications for shared memory sys-
tem resources — to its performance in the private mode
(IPCPrivate

k). The private mode is an off-line configuration
where the application executes in isolation with exclusive ac-
cess to all SMs and memory system resources. Shared-mode
performance can be measured straightforwardly with hard-
ware counters. Private-mode performance is muchmore chal-
lenging: It requires predicting isolated performance based
on shared-mode measurements gathered dynamically while
applications are interfering with each other.

2.1 HSM Overview
Figure 1 outlines the main operation of HSM’s NP prediction
procedure. The main components of HSM are the classifier
and the NP predictors. The classifier determines whether

0

0.2

0.4

0.6

0.8

1

2 10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 IP
C

SM

DXTC HOTSPOT PF BINO MRI-Q

(a) Compute-bound kernels

0
0.2
0.4
0.6
0.8

1
1.2

2 10 20 30 40 50 60 70 80
N

or
m

al
iz

ed
 IP

C
#SM

PVC LBM BH DWT2D EULER3D

FWT 2DCONV SC CONVS SRAD

(b)Memory-bound kernels

Figure 2. Slowdown of GPU-compute kernels as a function
of the number of allocated SMs.

an application is memory or compute-bound. For compute-
bound applications, HSM leverages the white-box insight
that performance is proportional to SM allocation to pre-
dict NP (the left-hand path of Figure 1). If the application
is classified as memory-bound, HSM predicts the NP of the
application using a linear regression model (the right-hand
path of Figure 1). HSM is extremely lean and only tracks
the number of executed instructions, allocated SMs, band-
width utilization, and row buffer hits and accesses for each
co-runner in the shared mode. In the following sections, we
describe HSM’s classifier and NP predictors as well as the
five white-box insights that underpin its design.

2.2 HSM Classifier

Insight #1: The streaming execution model of GPUs results in
kernels being either memory-bound or compute-bound.

The GPU compute model is highly parallel and streaming.
This causes the GPU to behave similar to a decoupled archi-
tecture [20], i.e., thememory accesses fill the L1 cache, shared
memory, or constant cache available within the SM mostly
in parallel to the SM executing compute instructions. If the
arithmetic intensity and locality of the kernel is sufficiently
high, the SM’smemory resources will be able to hidememory
latencies and the kernel will be compute-bound. Conversely,

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Xia Zhao, Magnus Jahre, and Lieven Eeckhout

if the SM-local memory resources are insufficient, the mem-
ory access component becomes the performance bottleneck
and the kernel is memory-bound.
Figure 2 sheds more light on this issue by plotting per-

formance as a function of SMs relative to the 80 SM con-
figuration (see Section 5 for details regarding our experi-
mental setup). We conduct the experiment in private mode
with IPC as the performance metric. Figure 2a illustrates
that the normalized performance of a compute-bound ker-
nel scales linearly with the number of allocated SMs, while
Figure 2b shows that the performance of memory-bound
kernels initially increases before saturating1. The gradient is
determined by the bottleneck resource. If the kernel misses
frequently in the Last-Level Cache (LLC) and has low RBH,
few SMs are enough to saturate the memory system (high
gradient). Conversely, a kernel with less frequent LLCmisses
(or better LLC hit rate) will needmany SMs to saturate DRAM
bandwidth (low gradient).
Classifier: To classify a kernel, we compute the applica-
tion’s memory bandwidth demand and its potential to utilize
the theoretical DRAM bandwidth and compare these. The
lower value will be the bottleneck resource. Overall, we are
able to correctly classify all kernels within our applications.
Equation 2 calculates the maximum memory bandwidth de-
mand Bdk for kernel k :

Bdk = (IMax/Ik) ×MemAccesses × ReqSize × (f /E). (2)

We first compute the ratio of the maximum number of in-
structions IMax that a kernel can execute during E clock cycles
and divide this by the number of instructions it actually exe-
cuted Ik . Then, we compute the total amount of data fetched
within the window by multiplying the instruction ratio with
the number of row buffer accesses and the request size. Fi-
nally, we multiply by the ratio of the clock frequency f and
the epoch size E to compute the bandwidth demand in bytes
per second. IMax, ReqSize, f , and E are architectural inputs.
Equation 3 represents the application’s potential for uti-

lizing the theoretical DRAM bandwidth:

B
p
k = BMax × (c1 × RBHk + c2). (3)

We determine the bandwidth utilization potential of a kernel
k by measuring RBHk and applying HSM’s linear regression
model (see Section 2.3.2). Then, we multiply this utilization
with the theoretical memory bandwidth (i.e., 900 GB/s in our
setup) to compute the effective bandwidth supply B

p
k . The

kernel is memory-bound if its bandwidth demand exceeds
the effective bandwidth supply (i.e., Bdk > B

p
d).

2.3 Predicting Normalized Progress (NP)
We now describe how HSM predicts NP for compute and
memory-bound applications. When formulating HSM, we
1We define that a kernel is memory-bound on a particular GPU if there exists
an SM allocation where performance saturates. Thus, a memory-bound
kernel cannot be made compute-bound by increasing its SM allocation.

adopt the notation proposed in prior work [10]. The objective
of the HSM model is to predict the normalized progress of
a kernel k (i.e., N̂Pk). We use a hat to show that a value
is a prediction based on values obtained in shared mode.
Further, we use Latin letters for shared-mode quantities and
the corresponding Greek letter to describe the corresponding
private-mode quantity. A prediction α̂ may differ from the
actual value α , and we use the Absolute Relative Error (ARE)
to quantify this difference (i.e., ARE =| α̂ − α | / α).

2.3.1 Compute-Bound Kernels
Compute-bound kernels have sufficiently high arithmetic
intensity and locality for the SM’s L1 cache, shared memory,
or constant cache to hide the latency of accessing the LLC
or DRAM:
Insight #2: For compute-bound kernels, performance improves
linearly with the number of allocated SMs.
Predictor: To predict NP for compute-bound kernels, we
simply model N̂Pk as the ratio of the shared-mode SMs Sk
over the private-mode SMs σk :

N̂Pk =
Sk
σk
. (4)

By definition, an application uses all available SMs in the
private mode (i.e., σk is an architecture-specific constant).
Some kernels might have too few TBs to use all SMs, but none
of the kernels used in our evaluation have this characteristic.
In this case, our model would need to use the number of TBs
in the application instead of the number of SMs and abstain
from allocating more SMs than TBs in shared mode.

2.3.2 Memory-Bound Kernels
The challenging part for NP prediction is to appropriately ac-
count for the performance impact of shared memory system
interference [10]. To overcome this challenge while minimiz-
ing overheads, HSM’s NP-predictor for memory-bound ker-
nels combines three white-box insights with an architecture-
specific linear regression model.
Insight #3: The performance of memory-bound kernels is corre-
lated with memory bandwidth, and eventually saturates when
increasing the number of allocated SMs.
This insight follows from Figure 2b. Here, performance

first increases with more SMs before it saturates. The reason
is that GPU memory systems are highly parallel, and the
effective bandwidth increases when more requests — and in
particular row buffer hits — are available within each mem-
ory channel. Thus, increasing the number of SMs increases
Memory-Level Parallelism (MLP) and results in better mem-
ory bus utilization2. Eventually, all of the potential row buffer

2PVC has a slight (4.5%) performance degradation with higher SM counts.
This is due to self-interference in the LLC. Variation in LLC utilization
also causes knees in the performance curves of other benchmarks (e.g.,
2DCONV), but it does not majorly affect the overall performance trend.

HSM: A Hybrid Slowdown Model for Multitasking GPUs ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

B
W

 u
ti
liz

a
ti
o

n

Row buffer hit rate

46%

76%

86%

93%

Figure 3. HSM uses linear regression to learn the relation-
ship between RBH and bandwidth utilization.

hits are available to the memory controller, maximizing the
effective memory bandwidth. Increasing the SM allocation
beyond this point is useless; it simply increases the number of
memory requests without improving bandwidth utilization
(and hence performance)3.

The above analysis indicates that performance is maxi-
mized for memory-bound kernels when they are able to satu-
rate DRAM bandwidth. Recall that the kernel is allocated all
SMs and has exclusive access to memory system resources in
private mode. In other words, a memory-bound kernel will
saturate DRAM bandwidth in private mode. Thus, we need
to identify an architectural characteristic that is measurable
in shared mode and has a clear relationship with saturation
performance.
Insight #4: RBH determines effective DRAM bandwidth utiliza-
tion and the relation is approximately linear.

Figure 3 supports Insight #4 by plotting private-mode RBH
against bandwidth utilization for our 10 memory-intensive
benchmarks as well as the relation we identify with linear
regression. RBH is strongly correlated with effective band-
width utilization because: (1) It determines the amount of
DRAM bandwidth that will remain idle due to row manage-
ment operations within banks (see Section 3 for a detailed
architectural explanation); and (2) Load imbalance is exceed-
ingly rare because modern address mapping policies evenly
distribute requests across banks and channels [18]. The ef-
fective bandwidth range in Figure 3 reaches from around
320 GB/s to 690 GB/s — a dramatic difference for memory-
bound kernels. The information required to compute RBH is
available within the memory controllers since they identify
and prioritize requests that hit in the row buffers to maximize
utilization (e.g., the First-Ready, First-Come-First-Served (FR-
FCFS) policy [19]).
We have now determined that RBH is a key parameter

for determining a kernel’s effective bandwidth utilization in
private mode. However, NP prediction is performed using

3We verified that memory bandwidth utilization as a function of the number
of SMs is similar to Figure 2b.

0%

20%

40%

60%

80%

100%

R
o

w
 b

u
ff

e
r

h
it
 r

a
te

Private mode Shared mode

Max

Min

Figure 4. RBH is similar in the shared and private modes.

shared-mode counters. Thus, we need establish the relation-
ship between shared-mode and private-mode RBH.
Insight #5: RBH is sufficiently similar in the shared and private
mode to enable accurate NP prediction.
Figure 4 explains Insight #5 by showing RBH for our

memory-intensive benchmarks in private mode compared
to the average, maximum, and minimum RBH when co-run
with all other applications (i.e., both memory and compute-
bound). Overall, RBH is similar, and the reason is that the
highly parallel execution model of GPUs means that applica-
tions are generally able to keep their row-hit requests in the
queues of the memory controller (see Section 3). By favoring
row-hit requests, the memory controllers therefore protect
the RBH of the co-running kernels — enabling HSM to use
shared-mode RBH as a proxy for private-mode RBH.
Predictor: HSM’s NP-predictor for memory-bound kernels
captures Insight #3, #4, and #5 mathematically:

N̂Pk =
Bk

β̂k
=

Bk
c1 × RBHk + c2

(5)

Equation 5 states that the predicted normalized progress
N̂Pk can be expressed as the ratio of kernel k’s shared-mode
bandwidth utilization Bk and predicted private-mode band-
width utilization β̂k . HSM uses black-box linear regression
to learn the relationship between private-mode bandwidth
utilization β̂k and shared-mode RBH (i.e., c1 × RBHk + c2).

The architectural meaning of the learned constants c1 and
c2 is that c1 expresses the expected increase in bandwidth uti-
lization for a corresponding increase in RBH, while c2 is the
expected bandwidth utilization when all memory requests
are row buffer misses. We train the black-box model once
for each architecture by running a number of benchmarks
in private mode, recording their RBH and bandwidth uti-
lization, and then use least-mean square linear regression
to determine c1 and c2. We find that the values of the con-
stants is insensitive to the benchmarks used for training (see
Section 6.5).

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Xia Zhao, Magnus Jahre, and Lieven Eeckhout

Row
Buffers

I/O Buffer

Through-Silicon
Via (TSV)

Row A Row B Row C

Row G

Bank 3

Row H

Bank 4

Row D

Inter-Bank Bus

Bank 1

Row F

Bank 2

Row E

Row X

Figure 5. Internal organization of an HBM channel with the
initial state for the examples in Figures 6 and 7.

Data Precharge Activate Read

Bus util.

RBH

70%

100%

Case A

50%

20%

Case B
Request stream with high RBL: A1 B1 A2 B2 A3 B3 A4 B4

Data

Row CMD

Read latency (CL)

A1

A1 A2 A3 A4

Case A:

Col. CMD

B1 B2 B3 B4

B1 B2 B3 B4A2 A3 A4

Case B:
Steady-state request pattern with low RBL: E1 F G H E2 ...

Data

Row CMD

Col. CMD

H

H

HG

Row-to-Row lat. (RRD)

FE

GFE1

GFE1

Activate lat. (RCD) Read latency (CL)

E2

Four Activate Window (FAW)

E2

E F G

Requests of
previous FAW

Preparation for future FAWs
Activates for next FAW

Figure 6. Example explaining why RBH determines effective
bandwidth utilization (Insight #4).

3 Explaining HSM’s Memory System
Insights

In this section, we explain the architectural behavior that
leads to the performance trends captured by Insights #4 and
#5 in the context of a modern GPU with 3D-stacked High
Bandwidth Memory (HBM) [21, 22]. In HBM, DRAM chips
are placed on top of each other and memory accesses go
through Through Silicon Vias (TSVs). This organization en-
ables more channels and higher bandwidth per channel than
non-stacked organizations. To improve command bandwidth,
HBM memories have one bus for column commands (e.g.,
activates and precharges) and one for row commands (e.g.,
reads and writes). However, the internal organization of the
DRAM chips does not change: Each channel still consists of
rows, columns, and banks, and it is very efficient to access
rows that are already in the row buffers. Therefore, the in-
sights in this section are also relevant for GDDR memory
interfaces, and HSM works equally well for GDDR5 (see
Section 6.5).
Explaining Insight #4: Figure 6 explains why RBH deter-
mines bandwidth utilization potential by considering two
cases where different memory requests are queued in the
memory controller (see Figure 5 for the initial state). In Case
A, all requests access open rows (i.e., RBH is 100%). Thus, the
memory controller can directly issue read commands (using
the row command bus) to fully utilize memory bandwidth
once the start-up latency has been incurred. Bandwidth uti-
lization equals 70% which is lower than the expected value
of 86% in Figure 3 because of the start-up latency. A real-
istic GPU application will have sufficient in-flight memory
requests to sustain the steady-state memory bus utilization.
However, switching thememory bus from read towritemode

SM Status Register
Table (SSRT)

Kernel Status Register
Table (SSRT)

Preempted TB
Queues (PTBQ)

HSM

SM
Driver

SM

SM

SM

SM
...

...NPs

NoC

LLC

LLC

LLC

LLC

...
MC

MC

MC

MC

...

Memory Ctrl. (MC)

RBH and Util.

Scheduler

Architectural
support for HSM

Instruction counters

Figure 8.A block diagram showing the architectural support
for HSM-based SM allocation policies.

incurs a small latency which explains why the maximum
observed utilization in Figure 3 is 76%.
In Case B, we look at the steady-state bandwidth utiliza-

tion of a kernel with an RBH of 20% (i.e, one in five requests
is a row buffer hit). GPU memory controllers keep rows
open once activated to improve row buffer hit rate and only
precharges (closes) a row when a request needs another row
in that bank. The application in Case B has an unfavorable
access pattern where the requests cycle through rows in dif-
ferent banks. In this case, the memory controller uses the
column command bus (i.e., Col. CMD) intensively to activate
and precharge the banks’ row buffers — making HBM’s ca-
pability to quickly activate rows the performance bottleneck.
To limit the current draw of the HBM module, the bank acti-
vate rate is limited [23], and only four banks can be activated
within a Four Activate Window (FAW) (20 bus cycles in our
model). Figure 6 shows that the memory controller issues
activate commands at the maximum rate which results in
a data bus utilization of 50% within the FAW. A bus utiliza-
tion of 50% fits well with the results in Figure 3 where HSM
predicts an utilization of 46% when RBH is 20%.
Explaining Insight #5: Figure 7 explains why shared and
private-mode RBH are similar. We consider two applications
(BM1 and BM2); see Figure 5 for the initial channel state. Both
BM1 and BM2 have an RBH of 75% in private mode and retain
the exact same RBH in shared mode. The reason is that the
memory controller prioritizes row buffer hit requests over
row misses which means that BM1’s access to B2 and BM2’s
access to C2 remain hits in shared mode even if they are
interleaved behind other row miss requests in the memory
controller queue. BM1 and BM2 experience a row conflict in
Bank 1 since BM1 needs row E and BM2 row X . Since the
access for row E is the oldest, it is issued first. This does not
affect RBH since the controller issues both requests for row
E before closing the row and activating row X . However, the
row conflict significantly delays BM2’s accesses to rowX and
affects shared-mode memory bus utilization. This illustrates
that interference can significantly affect performance, and
indirectly motivates for HSM-based multitasking schemes.

HSM: A Hybrid Slowdown Model for Multitasking GPUs ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Benchmark 1 (BM1)
in the private mode

BM1 and BM2
in the shared mode

Row CMD B1 E2B2 E1

Col. CMD A E

Memory controller requests: B1 E1 B2 E2
Data B1 B2 E1 E2

Benchmark 2 (BM2)
in the private mode

Row CMD C1 X2C2 X1

Col. CMD A X

Memory controller requests: C1 X1 C2 X2
Data C1 C2 X1 X2

Private Mode RBH

Shared Mode RBH

75%

75%

BM1

75%

75%

BM2 Legend

Precharge

BM2 Data

Activate

Read

BM1 Data

Memory controller requests: B1 C1 E1 X1 B2 C2 E2 X2
Data C1 C2 E1 E2B1 B2 X1 X2

Col. CMD A E E X

Row CMD C1 E2C2 E1B1 B2 X2X1

Precharge latency (RAS) Activate latency (RCD) Read latency (CL)

Figure 7. Example explaining why RBH is similar in shared and private mode (Insight #5).

4 Fairness/QoS-Aware Multitasking
We now leverage HSM for fairness- and QoS-aware multi-
tasking. HSM enables this because NP is a key component of
widely-used system performance metrics including System
Throughput (STP), Average Normalized Turn-around Time
(ANTT), and fairness. More specifically, STP is the sum of
NPs, while ANTT is the harmonic mean of NPs [24]. Fairness
is the ratio of the minimum and maximum NPs [7]. QoS tar-
gets can be defined as an NP lower-bound for a high-priority
application.

We assume a GPU that supports spatial multitasking with
a similar architecture to [5, 6] (see Figure 8). Supporting
multitasking requires adding two tables — the SM Status
Register Table (SSRT) and the Kernel Status Register Table
(KSRT) — and queues for storing the handlers of preempted
TBs for each kernel. The SM driver schedules TBs onto SMs
and uses the SSRT and KSRT to keep track of kernel and TB
execution. We implement HSM-driven policies within the
SM driver to optimize for fairness or QoS.

4.1 Architectural Support for HSM
HSM measures RBH by adding a memory request counter
and a row buffer hit counter for each co-runner in all mem-
ory controllers (see Figure 8). We find that 16-bit counters
are sufficient to capture the maximum number of memory re-
quests issued by a kernel within an epoch. Thus, the storage
overhead of the row counters amounts to 2×16×k×c where
k is the maximum number of co-running kernels and c is the
number of memory channels. Similarly, shared-mode band-
width utilization can be captured with a 19-bit counter for
each kernel and co-runner. For our 32-channel HBM-based
configuration, we support up to 4 co-running kernels which
leads to a storage overhead of 0.8 KB. To count the executed
instructions, we reuse the performance counter infrastruc-
ture already available within the SMs. A single counter per
SM is sufficient since only the TBs of a single kernel can run
on a particular SM within one epoch.

HSM assumes that the number of shared-mode LLCmisses
sufficiently accurately predicts private-mode LLCmisses. We
also investigated if accuracy can be improved by using Auxil-
iary Tag Directories (ATDs) [25]. HSM with ATDs accurately
predicts private-mode miss rates (average error 1.8%), but

only improves performance prediction accuracy minorly
compared to HSM without ATDs (from 6.8% to 6.4% on av-
erage). Since even our aggressively sampled ATDs require
roughly 1 KB of storage, we conclude that the accuracy ben-
efit does not outweigh the cost.

4.2 Implementing HSM-based SM Allocation
All our SM allocation policies start by distributing the SMs
evenly across kernels. At the end of an epoch (e.g., 500K clock
cycles), HSM retrieves the executed instructions, bandwidth
utilization, and the number of row hits and accesses for each
co-runner, and uses these values to predict the current NP of
all co-running kernels (see Figure 1). The HSM-based alloca-
tion policies use these NP predictions to (possibly) repartition
the SMs into a configuration that is more favorable for the
system performance objective. This epoch-based allocation
strategy works because TBs within a kernel typically exhibit
similar behavior, i.e., the last epoch is generally represen-
tative of the next epoch. However, if a kernel completes its
execution, we end the current epoch and start a new one
with an even SM allocation because behavior can be very
different across kernels. To reduce the preemption overhead,
we adaptively choose between a draining versus context
switching policy [5, 26]. If, during the epoch, the number of
TBs finished on one SM is larger than the number of TBs
that can be concurrently executed on one SM, we follow a
draining policy; if not, we adopt the context switching policy.
Prediction Latency: PredictingNP involves some arithmetic
operations, and HSM has a fixed-function hardware unit for
this purpose (see Figure 8). It contains a single ALU to per-
form additions and comparisons in 1 cycle, multiplications in
3 cycles, and divisions in 25 cycles. For memory-bound ker-
nels (worst case), we first need to perform 32 additions on the
hit and access counters (64 in total) before dividing the val-
ues to obtain RBH. Then, we perform an add and a multiply
to predict private-mode bandwidth utilization. Computing
the bandwidth demand and utilization potential requires
four multiplications and two divisions, and classifying the
kernel requires a compare operation. Finally, predicting NP
requires a single division (since utilization has already been
computed). In total, this procedure takes 181 cycles for a

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Xia Zhao, Magnus Jahre, and Lieven Eeckhout

Saturation SMs

NP

Number of SMs

1

Sk

NP̂k

Gradient:
NP̂k

Sk

Saturation Region

Figure 9. Normalized progress as a linear function of the
number of SMs allocated to a kernel.

single kernel. The performance impact of prediction latency
is negligible, and we account for it in our evaluation.
Predicting the NP-impact of SM Allocations: The pre-
cise SM allocation procedure depends on the system per-
formance target. However, all allocation schemes need to
predict how changing the SM allocation will affect the NP
of each kernel. Our key insight is that performance is lin-
ear in SM count for compute-bound applications and linear
in effective memory bandwidth for memory-bound applica-
tions. Since allocating more SMs to a memory-bound kernel
increases its MLP, it will also have a proportional effect on
the bandwidth share of the kernel until performance sat-
urates (see Figure 2b). Thus, NP improves proportionally
to the number of SMs allocated to a kernel outside of the
saturation region (see Figure 9).
Although NP is linear with SM allocation outside of the

saturation region, the gradient is highly application depen-
dent. To solve this problem, we leverage that we know the
predicted N̂Pk of kernel k and the number of SMs allocated
to k in the last epoch (i.e., Sk). We also know that if we al-
locate zero SMs to k , the kernel will not be able to execute
any TBs and its NP will be zero. In other words, the linear
function must pass through the origin. Thus, the gradient д̂k
is simply N̂Pk/Sk . Architecturally, д̂k expresses the benefit
in terms of improvement in NP of allocating an additional
SM to k .

4.3 HSM-based SM Allocation Policies
HSM-driven SM allocation directly manages compute re-
sources — by allocating SMs to applications — and indirectly
manages NoC and memory bandwidth — since the effective
bandwidth share of each application is roughly proportional
to its memory access rate outside of the saturation region.
The key insight is that providing more SMs to an application
causes it to issue a larger number of concurrent memory re-
quests and proportionally increase the application’s memory
bandwidth share. The reason is that requests are serviced in
order in the NoC and mostly in order in the memory con-
trollers, resulting in queue occupancy being proportional to
offered bandwidth.
HSM-Fair: The objective of HSM-Fair is to improve fair-
ness by ensuring that the NPs of co-running kernels are

approximately equal. To accomplish this, we use HSM to pre-
dict the current fairness. If fairness is below a user-specified
threshold (e.g., 0.9), the HSM unit instructs the SM driver to
repartition the SMs to improve it (see Figure 8). First, HSM-
Fair finds the kernel with the maximum NP and the kernel
with the minimum NP. Then, it uses the linear NP model
(see Figure 9) to compute how many SMs should be taken
from the high-NP kernel and given to the low-NP kernel to
result in similar NP for both kernels. If the current fairness
value is higher than the threshold, we keep the current SM
allocation. The reason is that we do not want to incur the
preemption overhead unless fairness needs to improve.
Figure 2b shows that many memory-bound kernels ex-

hibit a pattern of diminishing returns as the number of SMs
approach the saturation region. This means our linear model
will predict NP inaccurately if the current number of SMs
allocated to the kernel is close to the saturation region. HSM
is robust to this situation since it will decide to decrease the
number of SMs allocated to the memory-bound kernel if this
is favorable in terms of fairness. In the next epoch, the SM al-
location will be further away from the saturation region, and
the linear model will become more accurate. Thus, HSM-Fair
quickly converges to a favorable SM allocation.
HSM-QoS: This policy maintains the NP of the kernels
of a high-priority application at a certain level (e.g., 0.8),
and then uses the remaining resources to maximize STP.
Implementing a QoS policy on top of HSM is straightforward.
First, we check if the high-priority kernel meets its NP target.
If not, we use the NP model (see Figure 9) to predict the
number of SMs necessary to reach the target and take these
SMs from the low-priority kernels. If the current NP of the
high-priority application is above a user-defined threshold
(e.g., 0.9), we use the model to predict the number of SMs
it needs to marginally outperform its performance target.
Then, we give the freed SMs to the low-priority kernels such
that the sum of their NP values, and thus system throughput,
is maximized. Note that HSM-QoS does not guarantee a that
particular QoS level will be met, as the model (even if it
is accurate) has some residual error. However, if a specific
QoS level (e.g., 0.8) is required, a target can be set that is
slightly above the requirement (e.g., 0.9) to account for model
inaccuracies.

5 Methodology
Simulated System: We modified GPGPU-sim v3.2.2 [34]
by adding support for spatial multitasking of co-executing
programs on different SMs. GPGPU-sim is further extended
with Ramulator [27], a detailed memory simulator, to model
an HBM-based memory system. We model a GPU with 80
SMs that are connected through a crossbar to 32 memory
channels (8 channels per stack) and two 96 KB LLC slices
per channel. We use the state-of-the-art PAE randomized
address mapping scheme to uniformly distribute memory

HSM: A Hybrid Slowdown Model for Multitasking GPUs ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Table 1. Simulated GPU architecture.

Baseline HBM-based Configuration
No. SMs 80 SMs

SM resources 1.4 GHz, 32 SIMT width, 96 KB shared memory
Max. 2048 threads (64 warps/SM, 32 threads/warp)

Scheduler 2 warp schedulers per SM, GTO policy

L1 data cache 48 KB per SM (6-way, 64 sets),
128 B block, 128 MSHR entries

LLC 6 MB in total (64 slices, 16-way, 48 sets),
120 clock cycles latency

NoC 80 × 64 crossbar, 32-byte channel width
Memory stack
configuration

440 MHz, 4 memory stacks, 8 channels /stack, open page,
FR-FCFS, 64 entries/queue, 16 banks/chan., 900 GB/s

HBM Timing [21, 27]
tRC=24, tRCD=7, tRP=7, tCL=7,

tWL=2, tRAS=17,tRRDl=5, tRRDs=4, tFAW=20
tRTP=7, tCCDl=1, tCCDs=1, tWTRl=4, tWTRs=2

GDDR5-based Configuration
No. SMs 40 SMs

LLC 2.75 MB in total (22 slices, 16-way, 64 sets),
120 clock cycles latency

NoC 40 × 22 crossbar, 32-byte channel width
DRAM Timing Hynix GDDR5 [28]

DRAM configuration
2750 MHz, 11 Memory Controllers (MC),

16 banks/MC, FR-FCFS [19], open page mode
484 GB/s, 12-12-12 (CL-tRCD-tRP) timing

Table 2.GPU-compute benchmarks considered in this study.

Benchmark Abbr. MPKI #Knls #Insns
Page View Count [29] PVC 4.79 1 1.35 B

Lattice-Boltzmann Method [30] LBM 6.09 3 1.24 B
BlackScholes [31] BH 1.54 14 5.41 B
DWT2D [32] DWT2D 2.72 1 3.47 B
EULER3D [32] EULER3D 4.39 7 2.24 B

FastWalshTransform [31] FWT 2.23 4 3.63 B
2D-convolution [33] 2DCONV 1.21 1 11.03 B
Streamcluster [32] SC 3.42 2 3.17 B

Convolution Separable [31] CONVS 1.14 4 7.54 B
Srad_v2 [32] SRAD 1.09 1 5.27 B
DXTC [31] DXTC 0.0004 2 18.68 B

HOTSPOT [32] HOTSPOT 0.08 1 18.28 B
PATHFINDER [32] PF 0.06 5 10.83 B
BinomialOptions[31] BINO 0.02 1 23.6 B

MRI-Q [30] MRI-Q 0.01 3 9.95 B

accesses across LLC slices, memory channels, and banks [18].
In the FR-FCFSmemory controller, we cap the number of row
buffer hits at 5 to avoid starvation [35], unless mentioned
otherwise. Details regarding the simulated GPU architecture
are provided in Table 1.
Workloads: We use a wide range of GPU benchmarks cov-
ering different domains. These benchmarks are selected from
Rodinia [32], Parboil [30], CUDA SDK [31], PolyBench [33],
and Mars [29], and are listed in Table 2. These benchmarks
are classified as memory-bound versus compute-bound us-
ing the procedure described in Section 2. The memory-bound
applications exhibit diverse memory behavior in terms of
MPKI, see Table 2, and sensitivity to allocated SM count, see
Figure 2b. We construct multi-program workloads by pair-
ing these applications to obtain a total of 105 multi-program
workload mixes. These 105 workloads consist of 50 hetero-
geneous mixes, pairing a memory-bound application with a
compute-bound application; plus 45 homogeneous memory-
bound mixes and 10 homogeneous compute-bound mixes.

We simulate five million cycles for each workload mix — this
is in line with prior GPU multi-tasking research [3, 14], and
we confirm that this is representative. If a benchmark finishes
before others, it is re-launched and re-executed from the be-
ginning. The reported performance results are gathered only
for the first run for each of the benchmarks. Private-mode
performance for each benchmark in the workload mix is
determined by simulating the benchmark in isolation for the
same number of instructions as in shared mode.
Metrics: We use three multi-program metrics: fairness, sys-
tem throughput (STP) and average normalized turnaround
time (ANTT) [24]. As in previous work [7], we define a sys-
tem to be fair if the NPs of equal-priority applications are the
same. STP quantifies overall system performance (higher-is-
better). ANTT focuses on per-application performance and
quantifies average per-application execution time (lower-is-
better).

6 Evaluation
In this section, we first compare the prediction accuracy of
the following private-mode GPU performance models:
• HSM: The HSM model as described in Section 2.
• DASE [14]: The state-of-the-art white-box approach.
• Themis [16]:The state-of-the-art black-box approach.

DASE and Themis sometimes grossly overestimate slow-
downs, hence we cap their predictions at SMax/Sk to improve
accuracy. SMax is the number of SMs in the GPU, and Sk is
the number of shared-mode SMs allocated to kernel k . Ap-
plying this optimization reduces DASE’s (Themis’) average
prediction error from 119.9% to 17.9% (69.9% to 33.8%).
We next evaluate HSM’s applicability for steering SM

allocation, for which we consider the following schemes:
• Baseline:TheEven scheme allocates SMs evenly among
the co-executing applications.
• Fairness: HSM-Fair uses HSM to allocate SMs to ap-
plications to improve fairness. Similarly, Themis-Fair
andDASE-Fair implement fairness schemes using the
Themis [16] and DASE [14] models, respectively.
• QoS: HSM-QoS uses HSM to allocate a sufficient num-
ber of SMs to a high-priority application so that its
NP is approximately equal to a user-supplied target
(e.g., 0.8). Themis-QoS and DASE-QoS implement
QoS policies with Themis [16] and DASE [14], respec-
tively.
• Bandwidth partitioning: Application-aware mem-
ory bandwidth partitioning [36] (BW-App) prioritizes
thememory requests of the applicationwith the lowest
bandwidth utilization within the memory controller.

6.1 HSM Accuracy
Figure 10 quantifies HSM’s NP prediction accuracy com-
pared to the state-of-the-art DASE and Themis. The average
prediction error equals 6.8% for HSM (max error of 30.3%),

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Xia Zhao, Magnus Jahre, and Lieven Eeckhout

0

0.2

0.4

0.6

0.8

1

F
a

ir
n

e
s
s

Sorted all workloads

Even DASE-Fair Themis HSM-Fair

(a) Fairness

0

0.5

1

1.5

2

S
T

P

Sorted all workloads

Even DASE-Fair Themis HSM-Fair

(b) STP

0

1

2

3

4

5

A
N

T
T

Sorted all workloads

Even DASE-Fair Themis HSM-Fair

(c) ANTT

Figure 11. Fairness-aware SM allocation for all workload categories. HSM-Fair significantly improves fairness compared to even
partitioning and DASE for all workload mixes, while improving STP and ANTT for many.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

N
o

rm
a
liz

e
d

 p
ro

g
re

s
s

Sorted all workloads

Naive DASE-QoS Themis HSM-QoS

(a) QoS (all workloads)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

S
T

P

Sorted all workloads

Naive DASE-QoS Themis HSM-QoS

(b) STP

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

N
o

rm
a

liz
e
d

 p
ro

g
re

s
s

Sorted heterogeneous workloads

Naive DASE-QoS Themis HSM-QoS

(c) QoS (heterogeneous workload mixes)

Figure 12. QoS-aware SM allocation for a QoS target of 0.8. HSM-QoS meets the 0.8 NP target for all workloads while improving
STP; even partitioning and DASE do not always meet the QoS target, and yield suboptimal STP.

0

0.5

1

P
re

d
ic

ti
o

n
 e

rr
o

r

Sorted all workloads

HSM DASE Themis

(a) S-curves

0

0.1

0.2

0.3

0.4

HSM DASE Themis

P
re

d
ic

ti
o

n
 e

rr
o

r

(b) Average error

Figure 10. HSM accuracy across all workload mixes. HSM
achieves significantly higher accuracy compared to state-of-
the-art DASE (white-box) and Themis (black-box).

whereas the average prediction errors of DASE and Themis
are 17.9% (75.3% max error) and 33.8% (99.8% max error),
respectively. We sort the prediction errors of each scheme in
Figure 10a to illustrate that HSM has a significantly better
error distribution than DASE and Themis. In fact, HSM is
more accurate than DASE and Themis in nearly all work-
loads; the exception is a few easily predictable workloads
where all schemes have less than 5% error.

DASE estimates application slowdown by modeling inter-
application interference within each individual shared re-
source, including the shared LLC, DRAMchannels, banks and
row buffers — as previously done for CPUs [35, 37, 38]. Un-
fortunately, predicting shared resource interference effects
at a per-request granularity leads to highly inaccurate predic-
tions because of the high degrees of parallelism observed in

GPU memory systems, i.e., memory requests heavily overlap
with each other and hence per-request latency predictions
do not accurately capture the effect of interference on overall
application performance. Themis’ neural network model is
too simple to fully learn the relationship between online per-
formance counters and slowdown. Therefore, it has decent
prediction accuracy for the relationships captured by the
model; otherwise, the errors are (much) larger.

6.2 Fairness-Aware SM Allocation
We now leverage HSM to steer SM allocation. As aforemen-
tioned, accurately predicting the normalized progress of an
application is at the foundation for model-based SM alloca-
tion. In this section, we focus on fairness-aware SM alloca-
tion, which means that we allocate SMs to applications to
fairly balance the applications’ normalized progress.

Figure 11 reports fairness, STP and ANTT when optimiz-
ing for fairness. HSM-Fair improves fairness for all workload
mixes. On average, we find that HSM-Fair achieves a fairness
of 84.1% compared to 52.7%, 61.9%, and 65.2% for even parti-
tioning, Themis, and DASE, respectively — an improvement
by 1.59×, 1.36×, and 1.29×, respectively. HSM-Fair, while
optimizing for fairness, also improves STP and ANTT for
heterogeneous workload mixes by allocating more SMs to
the compute-bound applications: we note an average im-
provement in STP by 7.2% and up to 12.2%; ANTT improves
by 15.8% on average and up to 20.4%.

HSM: A Hybrid Slowdown Model for Multitasking GPUs ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

6.3 QoS-Aware SM Allocation
QoS-aware SM allocation provides a user-specified QoS tar-
get for a high-priority application. The SMs not allocated to
the high-priority application are allocated to the other appli-
cation to improve STP. We randomly denote one of the appli-
cations in the workload mix as the high-priority application
in the homogeneous mixes; we denote the memory-bound
application as the high-priority application in the heteroge-
neous mixes. Figure 12 quantifies QoS and STP across all
workloads for a QoS target at 0.8 NP for the high-priority
application, and compares against a baseline that grants 80%
of the SMs (64 out of 80 SMs) to the high-priority application.
HSM-QoS meets the QoS target for all workloads whereas
the baseline (proportional partitioning), Themis, and DASE
do not. Moreover, HSM-QoS improves STP significantly by
providing the SMs that are not needed by the high-priority
application to meet its QoS target, to the low-priority applica-
tion. HSM-QoS improves STP by 7.7%, 4.4%, and 5.5% on av-
erage across all workloads compared to the baseline, Themis,
and DASE, respectively, while meeting the user-specified
QoS target; for the more challenging heterogeneous work-
loads, HSM-QoS improves STP by 18.9%, 13.0%, and 15.2%
compared to the baseline, Themis, and DASE, respectively.
Themis aggressively removes SMs from memory-bound ap-
plications, resulting in higher average STP than DASE for
the heterogeneous workloads at the cost of significant QoS
violations for mixes with two memory-bound applications
(see Figure 12a).

6.4 Memory Bandwidth Partitioning
We now compare HSM-Fair to application-aware memory
bandwidth partitioning [36] (i.e., BW-App) and even parti-
tioning across all workloads (see Figure 13). We conclude
that HSM-Fair outperforms BW-App in terms of fairness and
STP. We make a distinction between homogeneous memory-
bound workload mixes and heterogeneous mixes.

For memory-boundworkloads, BW-App improves fairness
by 18.1% on average compared to even partitioning. This
improvement is not as high as for HSM-Fair, which improves
fairness by 75% on average. Memory bandwidth partitioning
loses effect when memory requests from a highly memory-
bound application with a high memory access rate dominate
(or even worse, fully occupy) the memory controller queue,
leaving the controller little to no freedom to reorder requests
from other applications. In contrast, HSM-Fair moderates an
application’s memory access rate by repartitioning the SMs,
thereby also indirectly partitioning memory bandwidth.
For heterogeneous workloads, BW-App is not effective

because the compute-bound application needs more SMs to
improve fairness, not memory bandwidth. BW-App improves
fairness by 5.3% on average, whereas HSM-Fair improves
fairness by 55.5%4.
4TLP management techniques [39], which manage shared cache and mem-
ory bandwidth bymoderating the number of warps allocated per application

0
0.2
0.4
0.6
0.8

1

Fa
irn

es
s

Sorted all workloads

Even BW-App HSM-Fair

(a) Fairness

0
0.5

1
1.5

2

ST
P

Sorted all workloads

Even BW-App HSM-Fair

(b) STP

Figure 13. Fairness and STP compared to memory band-
width partitioning. HSM-Fair significantly improves fairness
compared to memory bandwidth partitioning.

6.5 Sensitivity Analyses
Fairness threshold: Section 4.3 described how HSM-Fair
uses a fairness threshold to guide fairness-aware SM alloca-
tion. We evaluate HSM-Fair’s sensitivity to that threshold
(ranging from 0.7 to 0.95) and observe that as long as the
fairness threshold is set to at least 0.9, as done for all the re-
sults in the paper, HSM-Fair significantly improves fairness,
meanwhile improving ANTT and yielding stable STP.
Training the black-box model: HSM uses linear regres-
sion to predict memory bandwidth utilization (dependent
variable) as a function of row buffer hit rate (independent
variable). Constructing this model requires a number of train-
ing workloads. To evaluate the model’s robustness, we ran-
domly select couples of benchmarks (one benchmark with an
RBH below 0.3 and one benchmark with an RBH above 0.7)
to determine the model’s constants c1 and c2. We conclude
that the variation for both constants is less than 0.2%.
Memory controller parameters: Figure 14a explores the
accuracy impact of DRAM controller queue size, and Fig-
ure 14b analyzes the prediction accuracy impact of forcing
the FR-FCFS scheduler to service the oldest request after
5 consecutive row hits (i.e., capping [35]). Overall, HSM’s
prediction accuracy is robust across memory controller con-
figurations (average prediction error variability within 2%).
The reason is that memory-bound kernels issue a large num-
ber of requests. Thus, the memory controller can generally
find enough row hits to protect RBH. Further, we confirm
that the throughput-impact of capping is minor; average STP
with capping is within 2.5% of no capping.
GDDR5: The results presented so far assumed an HBM
memory system attached to an aggressive 80-SM GPU. HSM
is equally accurate and effective for a more moderate GPU
system with 40 SMs and a GDDR5 memory system. The
results are similar: HSM achieves an average prediction error
of 6.5%, and yields a fairness of 88.7% when used for fairness-
aware SM allocation.

within an SM, suffer from the same limitation. Because of even SM alloca-
tion, the attainable fairness is equally limited because a compute-bound
application needs more SMs, not memory bandwidth, to improve fairness.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Xia Zhao, Magnus Jahre, and Lieven Eeckhout

0%

2%

4%

6%

8%

10%

32 64 96

P
re

d
ic

ti
o
n

 e
rr

o
r

Queue length

(a)Memory controller queue length

0%

2%

4%

6%

8%

10%

Capping Without

capping

P
re

d
ic

ti
o
n

 e
rr

o
r

(b) FR-FCFS row hit capping

Figure 14. HSM accuracy sensitivity to memory controller
parameters. Overall, HSM’s accuracy robust to different mem-
ory controller configurations.

0

0.2

0.4

0.6

0.8

1

Fa
irn

es
s

Sorted Workloads

Even HSM

(a) Fairness

0

0.5

1

1.5

2

ST
P

Sorted Workloads

Even HSM

(b) STP

Figure 15. Fairness and STP for 4-programworkloads.Again,
HSM-Fair significantly improves fairness.

Four-programworkloadmixes: HSM is trivially extended
to multi-application workloads by iteratively focusing on
the two applications with the highest and lowest NP in each
epoch and balancing fairness among those. HSM-Fair im-
proves fairness by 2.2× compared to even partitioning, while
delivering similar STP, see Figure 15. The STP improvement
is not as high as for the two-program workloads because
compute-bound applications gets relatively fewer SMs allo-
cated.

7 Related Work
Slowdown prediction: Accurately predicting an applica-
tion’s slowdown is critical to fairness- and QoS-aware multi-
tasking GPUs. HSM is the first accurate and low-complexity
hybrid slowdown model. DASE [14] is a complex white-box
model which we have shown provides much lower predic-
tion accuracy than HSM. Similarly, we have compared to
black-box Themis [15, 16] and shown that its neural network
model is too simple to fully learn the relationship between
online performance counters and application slowdown.
Predicting the private-mode performance of co-runners

has been extensively studied in the CPU domain. MISE [12]
and ASM [13] predict private-mode performance by periodi-
cally giving each co-runner highest priority in the memory
controller. This approach is not suitable for GPUs since the

requests of a memory-intensive low-priority kernel will fill
the queues of the memory controller and thereby slow down
the high-priority kernel. GDP [10], PTCA [11], and ITCA [40]
are white-box approaches that use online counters and ar-
chitectural insights to predict private-mode latencies of indi-
vidual memory requests. Unfortunately, these CPU-oriented
proposals cannot be straightforwardly adapted to GPUs —
because of the high degree of overlap effects in GPUs and
their sensitivity to memory bandwidth rather than latency.
GPU resource management in multitasking GPUs: A
number of prior proposals rely on heuristics to manage mem-
ory bandwidth in multitasking GPUs. Jog et al. [36, 41] pro-
pose application-aware memory schedulers, while Wang et
al. [39] scale resources within an SM to manage memory
bandwidth. We find that (i) memory bandwidth partitioning
does not provide fairness for heterogeneous workloads, and
(ii) SM partitioning is a more effective solution managing
both compute and memory bandwidth resources.
Another class of related work uses offline profiling to

determine private-mode performance and dynamically allo-
cate resources. Aguilera et al. [4, 42] adjust the number of
SMs allocated to applications to improve fairness and QoS.
Wang et al. [43] use fine-grained sharing of SM-internal re-
sources to improve QoS. HSM would greatly benefit these
approaches as users would no longer be required to retrieve
representative private-mode performance numbers for all
applications.
Managing SMs among concurrent applications in multi-

tasking GPUs received significant attention recently [3, 4,
14, 15, 26, 42]. These approaches indirectly infer the perfor-
mance impact of a particular SM allocation; HSM, in contrast,
predicts the performance impact of a particular SM alloca-
tion.
Memory bandwidth management: A number of works
targetmemory controller scheduling policies in single-tasking
GPUs. Chatterjee et al. [44] introduce the warp-aware mem-
ory scheduler to reduce memory latency divergence within a
warp. MeDiC [45] focuses on inter-warp heterogeneity and
concurrently considers the memory controller scheduling
policy, LLC bypassing, and LLC insertion. Lakshminarayana
et al. [46] propose a scheduling policy to dynamically choose
between the shortest job first policy and FR-FCFS, while
Jog et al. [47] introduce a criticality-aware memory sched-
uler. Li et al. [48] propose an inter-core locality-aware mem-
ory scheduler which prioritizes memory requests with high
inter-core locality. This body of prior work considered single-
tasking GPUs, in contrast to this work. Moreover, we demon-
strate that HSM-enabled SM allocation holistically manages
both the SM and memory bandwidth resources.
A number of schemes have been proposed for managing

memory bandwidth in CPUs (e.g., [35, 49, 50]), but these are
not readily applicable to GPUs since they focus on latency
while GPUs are inherently latency-tolerant.

HSM: A Hybrid Slowdown Model for Multitasking GPUs ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

8 Conclusion
This paper presented the Hybrid Slowdown Model (HSM)
to accurately predict the slowdown of co-running applica-
tions (average error of 6.8%) which provides a foundation
for interference-aware SM resource allocation policies in
multitasking GPUs. HSM combines a white-box model de-
rived from fundamental architectural insights — to reduce
training and implementation overheads — with a black-box
model that accounts for the highly concurrent GPU execu-
tion model — to achieve high accuracy. To showcase the
capabilities of HSM, we proposed two HSM-based fairness-
and QoS-aware SM-allocation policies: HSM-Fair and HSM-
QoS. HSM-Fair improves fairness by 1.59× on average com-
pared to even SM partitioning. HSM-QoS maintains the NP
target of the high-priority application while improving sys-
tem throughput by 18.9% on average compared to even SM
partitioning for challenging heterogeneous workload mixes.

Acknowledgements
We thank the anonymous reviewers for their valuable com-
ments. This work was supported in part by European Re-
search Council (ERC) Advanced Grant agreement no. 741097,
FWOprojects G.0434.16N andG.0144.17N, NSFC under Grants
no. 61572508, 61672526 and 61802427. Xia Zhao was sup-
ported through aCSC scholarship andUGent-BOF co-funding.
Magnus Jahre is supported by the Research Council of Nor-
way (Grant no. 286596).

A Artifact Appendix
A.1 Abstract
This appendix explains how we submitted our modified ver-
sion of GPGPU-sim v3.2.2 [34] to the ASPLOS’20 artifact
evaluation process. We provided our simulator infrastruc-
ture to the artifact evaluators as a virtual machine image
(Virtual Box). The image contained simulator sources, pre-
compiled simulator and benchmark binaries, input files, and
the complete result set.

A.2 Artifact check-list (meta-information)
• Program: CUDA programs on modified GPGPU-sim v3.2.2
• Compilation: gcc and nvcc
• Run-time environment: Ubuntu
• Hardware: x86-64 CPU with at least 16 GB
• Metrics: Instruction per cycle (IPC)
• Output: Simulation results
• Experiments: Single application and multi-application simu-
lation
• How much disk space required (approximately)?: >10 GB
• How much time is needed to prepare workflow (approxi-
mately)?: Less than one hour
• How much time is needed to complete experiments (approx-
imately)?: Most simulations finish within two days
• Publicly available?: No

References
[1] Amazon, “Amazon web services.” https://aws.amazon.com/cn/ec2/.
[2] Google, “Graphics Processing Unit (GPU) | Google Cloud.” https://

cloud.google.com/gpu/.
[3] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The Case

for GPGPU Spatial Multitasking,” in Proceedings of the International
Symposium on High-Performance Comp Architecture (HPCA), pp. 1–12,
February 2012.

[4] P. Aguilera, K. Morrow, and N. S. Kim, “Fair Share: Allocation of
GPU Resources for Both Performance and Fairness ,” in Proceedings of
the International Conference on Computer Design (ICCD), pp. 440–447,
October 2014.

[5] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative Preemp-
tion for Multitasking on a Shared GPU,” in Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 593–606, March 2015.

[6] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling Preemptive Multiprogramming on GPUs,” in Proceedings of
the International Symposium on Computer Architecture (ISCA), pp. 193–
204, June 2014.

[7] R. Gabor, S. Weiss, and A. Mendelson, “Fairness and Throughput in
Switch on Event Multithreading,” in Proceedings of the International
Symposium onMicroarchitecture (MICRO), pp. 149–160, December 2006.

[8] R. Iyer, “CQoS: A Framework for Enabling QoS in Shared Caches
of CMP Platforms,” in Proceedings of the International Conference on
Supercomputing (ICS), pp. 257–266, June 2004.

[9] K. Luo, J. Gummaraju, andM. Franklin, “Balancing Thoughput and Fair-
ness in SMT Processors,” in Proceedings of the International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 164–171,
November 2001.

[10] M. Jahre and L. Eeckhout, “GDP: Using Dataflow Properties to Accu-
rately Estimate Interference-Free Performance at Runtime,” in Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pp. 296–309, 2018.

[11] K. Du Bois, S. Eyerman, and L. Eeckhout, “Per-Thread Cycle Account-
ing in Multicore Processors,” ACM Transactions on Architecture and
Code Optimization, vol. 9, pp. 1–22, March 2013.

[12] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE:
Providing Performance Predictability and Improving Fairness in
Shared Main Memory Systems,” in International Symposium on High
Performance Computer Architecture (HPCA), pp. 639–650, February
2013.

[13] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The
Application SlowdownModel: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), pp. 62–75, December 2015.

[14] Q. Hu, J. Shu, J. Fan, and Y. Lu, “Run-Time Performance Estimation
and Fairness-Oriented Scheduling Policy for Concurrent GPGPU Ap-
plications,” in International Conference on Parallel Processing (ICPP),
pp. 57–66, August 2016.

[15] W. Zhao, Q. Chen, and M. Guo, “KSM: Online Application-Level Per-
formance Slowdown Prediction for Spatial Multitasking GPGPU,” IEEE
Computer Architecture Letters, vol. 17, pp. 187–191, July 2018.

[16] W. Zhao, Q. Chen, H. Lin, J. Zhang, J. Leng, C. Li, W. Zheng, L. Li,
and M. Guo, “Themis: Predicting and reining in application-level slow-
down on spatial multitasking GPUs,” in Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), 2019.

[17] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[18] Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo, and L. Eeckhout,
“Get Out of the Valley: Power-Efficient Address Mapping for GPUs,” in

https://aws.amazon.com/cn/ec2/
https://cloud.google.com/gpu/
https://cloud.google.com/gpu/

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Xia Zhao, Magnus Jahre, and Lieven Eeckhout

Proceedings of the International Symposium on Computer Architecture
(ISCA), pp. 166–179, June 2018.

[19] S. Rixner,W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
Access Scheduling,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), pp. 128–138, June 2000.

[20] J. E. Smith, “Decoupled access/execute computer architectures,” ACM
Trans. Comput. Syst., vol. 2, no. 4, pp. 289–308, 1984.

[21] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler,
M. Rhu, and W. J. Dally, “Architecting an Energy-Efficient DRAM
System for GPUs,” in International Symposium on High Performance
Computer Architecture (HPCA), pp. 73–84, February 2017.

[22] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keck-
ler, and W. J. Dally, “Fine-Grained DRAM: Energy-Efficient DRAM
for Extreme Bandwidth Systems,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), pp. 41–54, December 2017.

[23] JEDEC, High Bandwidth Memory (HBM) DRAM. 2015.
[24] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for

Multiprogram Workloads,” IEEE Micro, vol. 28, pp. 42–53, May 2008.
[25] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A

Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in Proceedings of the International Symposium on Mi-
croarchitecture (MICRO), pp. 423–432, December 2006.

[26] X. Zhao, Z. Wang, and L. Eeckhout, “Classification-Driven Search for
Effective SM Partitioning in Multitasking GPUs,” in Proceedings of
the International Symposium on Supercomputing (ICS), pp. 65–75, June
2018.

[27] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Computer Architecture Letters, vol. 15, pp. 45–
49, January 2016.

[28] “Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0.” http:
//www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0)
.pdf, 2009. Hynix.

[29] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A
MapReduce Framework on Graphics Processors,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), pp. 260–269, October 2008.

[30] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A Revised Bench-
mark Suite for Scientific and Commercial Throughput Computing,”
tech. rep., March 2012.

[31] “NVIDIA CUDA SDK Code Samples.” https://developer.nvidia.com/
cuda-downloads.

[32] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), pp. 44–54, October 2009.

[33] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cava-
zos, “Auto-tuning a High-Level Language Targeted to GPU Codes,” in
Proceedings of Innovative Parallel Computing (InPar), pp. 1–10, May
2012.

[34] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
Proceeding of the International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 163–174, April 2009.

[35] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Sched-
uling for Chip Multiprocessors,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), pp. 146–160, December
2007.

[36] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S.W.
Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory
System for Multi-Application Execution,” in Proceedings of the 2015

International Symposium on Memory Systems (MEMSYS), pp. 223–234,
October 2015.

[37] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via Source
Throttling: A Configurable and High-Performance Fairness Substrate
for Multi-Core Memory Systems,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 335–346, March 2010.

[38] M. Jahre and L. Natvig, “A Light-Weight Fairness Mechanism for Chip
Multiprocessor Memory Systems,” in Proceedings of the Conference on
Computing Frontiers (CF), 2009.

[39] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “Efficient and Fair
Multi-programming in GPUs via Effective Bandwidth Management,”
in Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), pp. 247–258, February 2018.

[40] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu,
and M. Valero, “ITCA: Inter-Task Conflict-Aware CPU Accounting for
CMPs,” in Proceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pp. 203–213, September
2009.

[41] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T. Kandemir, and
C. R. Das, “Application-aware Memory System for Fair and Efficient
Execution of Concurrent GPGPU Applications,” in Proceedings of Work-
shop on General Purpose Processing Using GPUs (GPGPU), pp. 1:1–1:8,
March 2014.

[42] P. Aguilera, K. Morrow, and N. S. Kim, “QoS-Aware Dynamic Resource
Allocation for Spatial-Multitasking GPUs,” in Proceedings of the In-
ternational Conference on Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 726–731, January 2014.

[43] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of Service Support for Fine-Grained Sharing on GPUs,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), pp. 269–281, June 2017.

[44] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubra-
monian, “Managing DRAM Latency Divergence in Irregular GPGPU
Applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage andAnalysis (SC), pp. 128–
139, November 2014.

[45] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T.
Kandemir, and O. Mutlu, “Exploiting Inter-Warp Heterogeneity to
Improve GPGPU Performance,” in Proceedings of the International Con-
ference on Parallel Architecture and Compilation (PACT), pp. 25–38,
October 2015.

[46] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin, “DRAM Scheduling
Policy for GPGPU Architectures Based on a Potential Function,” IEEE
Computer Architecture Letters, vol. 11, pp. 33–36, July 2012.

[47] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and
C. R. Das, “Exploiting Core Criticality for Enhanced GPU Performance,”
in Proceedings of the International Conference on Measurement and
Modeling of Computer Science (SIGMETRICS), pp. 351–363, June 2016.

[48] D. Li and T. M. Aamodt, “Inter-Core Locality Aware Memory Sched-
uling,” IEEE Computer Architecture Letters, vol. 15, pp. 25–28, January
2016.

[49] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda, “Reducing Memory Interference in Multicore Systems
via Application-Aware Memory Channel Partitioning,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), pp. 374–
385, December 2011.

[50] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems,”
in Proceedings of the Annual International Symposium on Computer
Architecture (ISCA), pp. 63–74, June 2008.

http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1. 0).pdf
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1. 0).pdf
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1. 0).pdf
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

	Abstract
	1 Introduction
	2 The Hybrid Slowdown Model (HSM)
	2.1 HSM Overview
	2.2 HSM Classifier
	2.3 Predicting Normalized Progress (NP)

	3 Explaining HSM's Memory System Insights
	4 Fairness/QoS-Aware Multitasking
	4.1 Architectural Support for HSM
	4.2 Implementing HSM-based SM Allocation
	4.3 HSM-based SM Allocation Policies

	5 Methodology
	6 Evaluation
	6.1 HSM Accuracy
	6.2 Fairness-Aware SM Allocation
	6.3 QoS-Aware SM Allocation
	6.4 Memory Bandwidth Partitioning
	6.5 Sensitivity Analyses

	7 Related Work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)

	References

