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Abstract—The CUDA and OpenCL programming models have
facilitated the widespread adoption of general-purpose GPU
programming for data-parallel applications. GPUs accelerate
these applications by assigning groups of threads to SIMD units,
which execute the same instruction for all threads in a group.
Individual group threads might diverge and follow different paths
of execution. Divergent branches cause performance degradation
by under-utilizing the execution pipeline, resulting in a major
performance bottleneck. The presence of unstructured control
flow in addition to divergent branches causes further degradation,
since it results in repeated execution of instructions.

In this paper, we propose a transformation which converts
unstructured to structured control flow. It only creates tail-
controlled loops, and properly nests all control flow splits and
joins by inserting predicates. We implement an additional pass
to NVIDIA’s CUDA compiler to experimentally evaluate our
transformation using synthetic unstructured control flow graphs,
as well as kernels in the Rodinia benchmark suite. Our approach
effectively eliminates redundant execution and potentially im-
proves execution time for the synthetic unstructured control flow
graphs. For the kernels in the benchmark suite, it only adds
a minor, average overhead of 2.1% to the execution time of
already structured kernels, and reduces execution time for the
only unstructured kernel by a factor of five. The representational
overhead at compile-time is linear in terms of instructions.

Keywords-GPGPU, Unstructured Control Flow, Control Flow
Graph, Control Flow Restructuring, Branch Divergence

I. INTRODUCTION

Programming models such as CUDA [1] and OpenCL [2]
allow developers to port applications to Graphic Processing
Units (GPUs) and use their computing power for general
purpose processing (GPGPU). GPUs accelerate data-parallel
applications by mapping groups of threads to parallel execu-
tion units. These thread groups run in lock-step, executing the
same instruction in Single Instruction Multiple Data (SIMD)
mode. Individual threads in a group can diverge by follow-
ing different paths of execution. Current GPUs handle these
divergent branches by executing all paths sequentially, and
masking out threads that do not take a path. Divergent threads
reconverge at the immediate post-dominator (IPDOM)1 of the
branch instruction [3].

Branch divergence causes performance degradation by
under-utilizing the execution pipeline. Moreover, IPDOM is
the earliest point of reconvergence for structured control flow

1See Section III for a definition of IPDOM

graphs (CFGs), but can result in redundant basic block execu-
tion with unstructured control flow. Branch divergence is there-
fore a major performance bottleneck [4], [5], [6], [7], exacer-
bated by unstructured control flow. The causes of unstructured
control flow are programming language constructs such as
goto, switch, and break statements, short circuiting operations,
and compiler optimizations such as function inlining. Trans-
forming unstructured control flow eliminates the redundant
execution caused by divergence, mitigating its performance
penalty. Moreover, compilers targeting AMD GPUs represent
programs in the AMD IL [8] intermediate representation (IR).
In contrast to NVIDIA’s PTX [9], it only supports structured
control flow, making transformations necessary.

In this paper, we propose a transformation to convert
unstructured to structured control flow. It is based on the
work from Bahmann et. al. [10] and consists of two phases:
loop restructuring and branch restructuring. Loop restruc-
turing converts all cyclic structures to tail-controlled loops,
while branch restructuring ensures proper nesting of control
flow splits and joins. This transformation works by adding
predicates and branches to CFGs. We modify the algorithm to
admit head-controlled loops, and separate the implementation
of the loop and branch restructuring phases. This seperation
is possible because the insertion order of additional predicates
and branches is irrelevant for GPUs. In contrast to previous
solutions [11], [12], [6], [13], the use of predication instead
of node splitting for restructuring CFGs avoids the risk of
exponential code inflation [14].

We implement control flow restructuring as an additional
pass to NVIDIA’s CUDA compiler, and evaluate it exper-
imentally using synthetic unstructured control flow graphs
(CFGs), as well as all kernels in the Rodinia benchmark
suite [15]. The synthetic unstructured CFGs demonstrate that
our approach effectively eliminates redundant execution and
potentially improves execution time for unstructured graphs
with branch divergence. We use the Rodinia benchmark suite
to evaluate transformation cost in terms of execution time
and representational overhead at compile-time. Control flow
restructuring adds a minor average overhead of 2.1% to the
execution time of already structured kernels, and reduces
execution time for the only unstructured kernel by a factor
of five. While the overhead for already structured kernels
is notable, it is significantly lower than previously reported
results [11], [12]. The representational overhead at compile-
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Fig. 1. Example illustrating the negative effect of unstructured control flow
in the presence of branch divergence. a): CFG for the pseudocode in Section
II. b): Control flow restructured CFG from a). c): Possible execution schedule
for the CFG in a). d): Possible execution schedule for the CFG in b).

time is linear in terms of instructions.
The paper is organized as follows: Section II describes

the problem of branch divergence for unstructured control
flow. Section III introduces terminology and definitions, while
Section IV describes our algorithm. We empirically evaluate it
using synthetic unstructured CFGs and the Rodinia benchmark
suite [15] in Section V. Section VI discusses related work,
and Section VII concludes and suggests further directions for
research.

II. MOTIVATION

The IPDOM of a branch is the earliest possible point
of reconvergence in structured CFGs, causing no redundant
execution. In unstructured graphs, however, it is possible to
introduce earlier points of reconvergence in order to avoid
multiple executions of basic blocks. The following pseudocode
shows a simple if-then-else statement with a short circuited
condition:

i f ( c | | d ) {
S1 ;

} e l s e {
S2 ;

}
S3 ;

Figure 1a depicts the corresponding CFG. The CFG is
unstructured due to splits and joins not being properly nested.

Consider a warp of four threads executing this code
segment, with threads T1 and T2 taking execution path
(c?, S1, S3), thread T3 execution path (c?, d?, S1, S3), and

thread T4 execution path (c?, d?, S2, S3) (see Figure 1a).
The threads only reconverge before executing basic block S3.
Thus, the basic block S1 would be executed twice, once for
threads T1 and T2, and once for thread T3 as shown in the
example schedule in Figure 1c.

Figure 1b depicts the CFG after control flow restructuring.
The basic idea is to insert predicate assignments (p := 0 and
p := 1) and branches (p?) such that all splits and joins are
properly nested, and the resulting CFG is structured. This
results in threads T3 and T4 reconverging at NULL and
threads T1, T2, T3, and T4 at p?, avoiding the duplicated
execution of S1 as shown in the schedule of Figure 1d.
The problem of repeated basic block execution compounds
in bigger subgraphs, possibly resulting in more than two
executions of individual nodes.

Structured graphs do not result in redundant code execution
on GPUs, because nested divergent branches always recon-
verge in the inverse order of their execution, i.e. the inner
branch reconverges before the outer branch. Our transforma-
tion converts kernels to structured graphs which consist only
of tail-controlled loops and properly nested control flow splits
and joins. For tail-controlled loops, divergent branches recon-
verge at the loop’s epilogue, while divergent splits reconverge
at the corresponding join. Thus, our transformation always
produces graphs which preclude redundant code execution.

Developers are aware of the potential disadvantages of
unstructured control flow for GPUs, and therefore try to
avoid it. A compiler supporting control flow restructuring
in combination with divergence analysis [16] would allow a
greater class of programs to be automatically translated into
efficient GPU code.

III. TERMS AND DEFINITIONS

A control flow graph is a directed graph consisting of
nodes containing statements and edges representing transitions
between statements. Outgoing edges are numbered with unique
consecutive indices starting from zero (although we will omit
writing out the index if a node has only one outgoing edge).
Statements take the following form:
• v := expr designates an assignment statement. The

right hand side expression is evaluated and the result is
assigned to the variable named on the left.

• v? designates a branch statement. The variable is evalu-
ated and execution resumes at the node reached through
the correspondingly numbered edge.

• Other kinds of statements corresponding to original pro-
gram behavior (observable side-effects) are allowed as
well. We omit their discussion, as they are irrelevant for
the control flow behavior discussed in this paper.

Only branch statements may have more than one outgo-
ing edge. Furthermore, we require that each CFG has two
designated nodes: The entry node without a predecessor, and
the exit node without a successor. CFGs represent programs
in imperative form: Starting at the entry node, successively
evaluate each statement, until reaching the exit node.



Nodes are generally denoted by n with sub- and super-
scripts. Edges denoted by e with sub- and superscripts. An
edge from a node n1 to a node n2 is written as n1 → n2. We
call n1 the edge’s source and n2 its target.

Definition 1: A CFG is called single-entry/single-exit
(SESE) if its shape can be contracted into a single node by
repeatedly applying the following steps:

1) If n′ is unique successor of n, and n is unique prede-
cessor of n′, then remove edge n → n′ and merge n
and n′.

2) If n has only successors n0, n1, . . . and possibly n′, n′

has only predecessors n0, n1, . . . and possibly n, and
each of n0, n1, . . . has only a single predecessor and
successor, then remove all arcs n → ni, ni → n′, n →
n′ and merge all vertices.

3) If n has an edge pointing to itself and only one other
successor, remove the edge n→ n.

4) If n has an outgoing edge targeting n′ and n′ has only
one outgoing edge targeting n, then remove n→ n′, n′,
and n′ → n.

Single-entry/single-exit CFGs are a subset of reducible
CFGs and can be characterized by allowing only the following
constructs:

• Straight line code.
• Properly nested conditionals (“if/then/else” or

“switch/case” statements without fall-throughs).
• Tail-controlled loops (“do/while” loops without

“break” or “continue” statements).
• Head-controlled loops (“for” or “while” loops without

“break” or “continue” statements).

Definition 2: A CFG is called tail-structured if its shape
can be contracted into a single node by repeatedly applying
rule 1, 2, and 3 from Definition 1.

Tail-structured CFGs are a subset of SESE CFGs and
correspond to programs with only straight line code, properly
nested conditionals, and tail-controlled loops.

Definition 3: A CFG is called linear if every vertex has
exactly one incoming and outgoing edge.

Linear CFGs are a subset of tail-structured CFGs and
correspond to programs with only straight line code.

Definition 4: A CFG is called minimal if it does not contain
any nodes n and n′ such that n′ is the unique successor of
n, and n the unique predecessor of n′. Thus, a minimal CFG
contains no linear subgraphs.

Definition 5: An edge n1 → n2 dominates node n if

1) n2 6= n and both n1 and n2 dominate n, or
2) n2 = n and n1 dominates n.

The dominator graph of edge e is the subgraph of all nodes
dominated by e.

Intuitively, the dominator graph of an edge e is the subgraph
where every path from the entry node to every node in this
subgraph must pass through edge e.

Definition 6: A node n′ is said to be the immediate post-
dominator (IPDOM) of another node n iff:

• n′ post-dominates each immediate successor n0, n1, . . .
of n, and

• for each other node n′′ which also post-dominates each
of n0, n1, . . . it holds that either n′′ = n′ or that n′′ post-
dominates n′.

Intuitively, the immediate post-dominator is the earliest
point in a CFG where all paths starting at some node n
necessarily reconverge.

IV. CONTROL FLOW RESTRUCTURING

Regularization of control flow can be facilitated by node
cloning, predication or a combination of both techniques. Here
we follow the approach laid out by Bahmann et al. [10] using
predication only. Assume a CFG with a single entry and exit
node. We restructure it using the procedures described below.
The approach consists of two phases:
• Loops are detected and (possibly) transformed into a tail-

controlled loop.
• Branches are restructured such that branch and join points

are symmetric.

A. Loop Restructuring

We start by identifying all strongly connected components
(SCCs) and process each of them according to the procedure
below. By necessity, neither entry nor exit node are part of
any SCC. First, identify the following nodes and edges:
• Entry edges eE0 , e

E
1 , . . .: All edges from a node outside

the SCC into the SCC
• Entry nodes nE0 , n

E
1 , . . . , n

E
k−1: All nodes that are target

of at least one entry edge
• Exit edges eX0 , e

X
1 , . . .: All edges from a node inside the

SCC out of the SCC
• Exit nodes nX0 , n

X
1 , . . . , n

X
l−1: All nodes that are target

of at least one exit edge
• Repetition edges eR0 , e

R
1 , . . .: All edges inside the SCC

that have one entry node as target
See Figure 2 for illustration. We denote the set of nodes

belonging to SCC by L. Initially, L induces the SCC subgraph.
The following modifies the original graph, and we updates L
as well such that it eventually induces a suitable structured
loop subgraph. When we say “create a node within L” (as
opposed to just “create a node”) in the following, it means:
Create the node in the CFG and update L such that it also has
this node as member.

1) Pick two unused variables q and r to identify continua-
tion location and loop repetition state, respectively.

2) If there are multiple entry nodes:
a) Create a branch node bE within L that evaluates q

and continues at eEm iff q = m.
b) Replace each entry edge: If the edge originally

pointed to eEm, create an assignment statement
q := m, divert the original entry edge to it, and
continue control flow to bE from there.

c) Replace each repetition edge: If the edge originally
pointed to eEm, create an assignment node q := m
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Fig. 2. Loop restructuring. Left: A CFG with an unstructured loop. Nodes and subgraphs identified by restructuring algorithm are marked as per algorithm
description. Center: Intermediate state of loop restructuring after remodeling entry/exit control flow. Right: Final state after converting the loop to a single
repetition and exit edge. Inserted nodes remodeling the original control flow are marked in red.

within L, divert the original repetition edge to it,
and continue control flow to bE from here. Record
the newly recorded edges as repetition edges in lieu
of the replaced ones.

After this step there is only one entry node: Either the
newly created node bE or the single original entry node.
Denote it by nE .

3) If there are multiple exit nodes:
a) Insert a branch node bX that evaluates q and

continues at eXm iff q = m.
b) Replace each exit edge: If the edge originally

pointed to eXm, create an assignment node q := m
within L, divert the original repetition edge to it,
and continue control flow to bX .

After this step there is only one exit node: Either the
newly created node bX or the single original exit node.
Denote it by nX .

4) If there are any two distinct nodes that are origin of
either repetition and/or exit edges2:

a) Create a branch node bR within L evaluating r that
continues at nX if r = 0 and at nE otherwise.

b) Create an assignment node r := 0 within L and an
edge from it to bR. Divert all exit edges to it.

c) Create an assignment node r := 1 within L, create
an edge from it to bR. Divert all repetition edges
to it.

Note that the algorithm above does not actually modify the
graph if it is already tail-structured. After this processing is
complete, L contains two marked nodes:
• nE is the unique entry node; all edges from outside L

into L will have this node as target
• nL is the unique last node; there is only one edge leaving
L, it originates in nL

nE has only one predecessor node within L, the node nL.
The edge nL → nE is the unique repetition edge of this loop.

2Note that this includes the cases of two or more repetition or exit edges

Temporarily remove this repetition edge, keeping track of the
two nodes it used to connect. We repeatedly apply this whole
loop transformation algorithm for any other SCC in the graph.

After all SCCs have been transformed as above, the resulting
graph is acyclic. We process this acyclic graph according to the
algorithm in the next section, and then re-insert all repetition
edges that were set aside.

B. Branch Restructuring

First, construct the “head” subgraph H as follows: Add
the entry node to H . If the last node added has exactly one
outgoing edge, add it as well as its target node to H . There
are now two cases to consider:
• H covers the entire original graph.
• H covers only a portion of the original graph. There is

a node b that was added to H last that has at least two
outgoing edges.

In the first case the algorithm terminates: The original CFG
is linear.

In the second case, record the outgoing edges of b as
f0, f1, . . . , fm−1. Compute the dominator graphs of each fk
as Bk: This is the set of nodes and their connecting edges
reachable from the entry node only through fk. We call these
the “branch” subgraphs. Record the remaining nodes and their
connecting edges as the “tail” subgraph T . Some Bk may
be empty, the corresponding edge fk would in this case go
directly to some node in T ; in this case, create a “dummy”
node in Bk and route the path through it. (See left of Figure
3 for illustration.)

We denote by c0, c1, . . . , cn−1 the continuation points in
the tail subgraph: These are the nodes with T with at least
one edge from either branch subgraph. There must be at
least one such continuation point, and if there is exactly one
then this branching construct has already a suitable structure.
Otherwise, restructure T and Bk as follows:
• Choose an unused auxiliary variable, denote it by p.
• Turn T into a graph with a single entry point e: Set up

branches such that control resumes at ck if p evaluates to
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k on entry.
• Turn each Bj into a graph with a single exit point: Divert

edges pointing to ck into statements that assign k to p,
rejoin control flow for this in a single node that then
proceeds to e.

Now, all edges leaving any Bj point to e. Finally, if some
Bj has multiple exit paths, join all these paths into a single
“dummy” node within Bj , and create a single exit edge from
this node to e.

Recursively apply the same algorithm to each Bj as well
as T . The control flow of the resulting graph is then tail-
structured.

In the specification above, we utilized “n-way” branches: a
single variable is used to identify one of n possible branch
destination points. A subsequent pass can introduce addi-
tional auxiliary variables to reduce these constructs to 2-way
branches. Additionally, superfluous dummy nodes in straight
line code can be eliminated.

C. Loop Restructuring with Copying

The loop restructuring algorithm in Section IV-A transforms
all loops into tail-controlled loops by inserting additional
branches and assignments. Only loops that are already tail-
controlled, i.e. do-while loops, are not altered. However, pro-
grammers express loops commonly as head-controlled loops,
i.e. for and while loops. Loop restructuring would restructure
these loops and introduce additional overhead. Figure 4 shows
a simple head-controlled loop on the left and its equivalent af-
ter loop restructuring in the middle. The algorithm transforms
an unconditional branch to a conditional one, and inserts two
assignments, one of them being executed every loop iteration.
This could potentially lead to overhead in execution time (see
Section V).

In order to mitigate the effect of loop restructuring on head-
controlled loops, we employ loop inversion [17]. Basically,
loop inversion transforms a head-controlled loop to an if-
statement that surrounds a tail-controlled loop. Compilers
perform this optimization in order to reduce the impact of
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branches at the expense of code duplication: a head-controlled
loop features two branches, one conditional and one un-
conditional, while a tail-controlled loop features only one
conditional branch.

In order to identify head-controlled loops, we inspect the
entry, repetition, and exit nodes/edges of an SCC. We consider
an SCC head-controlled, if it fulfills the following criteria:
• a single entry edge eE0 , repetition edge eR0 , and exit edge
eX0

• the target of eE0 , namely nES , is the first node of a linear
subgraph S

• the source of eX0 , namely nXS , has two outgoing edges,
eX0 and eB , and is the last node of subgraph S

The left image in Figure 4 illustrates the used notation. The
linear subgraph S represents the condition of the loop, with
edge eB leading to the loop’s body, and edge eX0 exiting it.

We restructure such a loop as follows:
• copy linear subgraph S. We further denote to this copy

as Sc with its first node nESc and last node nXSc

• divert edge eR0 to nESc

• insert a new repetition edge from nXSc to the target of eB

• insert a new exit edge from nXSc to the target of eX0
Basically, the condition of the head-controlled loop is

copied, and represents together with its body the new tail-
controlled loop. The final result is shown in the right image of
Figure 4. Note, even though we facilitate copying throughout
this approach, it cannot lead to exponential code bloat [14].

V. EXPERIMENTAL EVALUATION

The transformation of unstructured control flow can elim-
inate redundant execution caused by branch divergence and
therefore improve performance. This section describes the
results of applying control flow restructuring to synthetic
unstructured CFGs and kernels from the Rodinia benchmark
suite [15]. The synthetic unstructured CFGs are used to
demonstrate that our approach effectively eliminates redundant
execution for unstructured graphs with branch divergence. We
evaluate the dynamic overhead of branch restructuring and
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its potential impact on execution time. The benchmark suite
consists mostly of SESE graphs, and we use it to evaluate the
overhead of our transformations on these graphs in terms of
execution time and representational overhead at compile-time.

A. Compiler Implementation

We evaluated control flow restructuring by implementing it
as an additional pass to NVIDIA’s CUDA compiler. The pass
takes PTX as input, restructures all CFGs, and produces PTX
for further processing as output. We extracted the grammar
for parsing PTX from the Ocelot compiler framework [18]
and create an AST with it. This AST is converted to a
CFG, restructured with our algorithms from Section IV, and
converted back to PTX.

A necessary constraint of control flow restructuring on a
CFG is the support of n-way branches. These need to be
resolved to cascades of 2-way branches with the help of
additional auxiliary variables in order to make a conversion
to PTX possible. Different cascades, such as breadth-first or
depth-first as shown in Figure 5, or a mix of both, are possible.
For our experiments, we resolve n-way branches with depth-
first cascades of 2-way branches.

B. Experimental Platform and Setup

The evaluation is performed on a system with an Intel
Core i7-3770K CPU @3.5 GHz, an NVIDIA Tesla K20,
and NVIDIA’s driver version 346.46. We use the CUDA 7.0
toolkit, running on Ubuntu 12.04. We perform our experiments
on a NVIDIA platform, since it allows us to experiment with
structured and unstructured control flow. An AMD platform
would have given us only the possibility to execute structured
control flow, and would have made it impossible to quantify
the difference between structured and unstructured control
flow.

All programs were compiled with -Xcicc=-O0 and
-Xptxas=-O0 to ensure no interference from other com-
pilation stages. Ideally, control flow restructuring should be
carried out as late in the compilation pipeline as possible in
order to avoid side effects from other compilation stages.

Each benchmark in Section V-D is run 10 times, and we
report the average kernel execution time of all runs. We
measured execution times using the CUDA profiler. In case
benchmarks consists of multiple kernels, we add the execution
time of all kernels in each run before computing the average.
Benchmark results were verified to equal their results when
restructuring is disabled.
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C. Synthetic Control Flow Graphs

This section demonstrates that our approach effectively
eliminates redundant basic block exections for unstructured
graphs with branch divergence. We evaluate the dynamic
overhead of branch restructuring and its potential impact on
execution time.

1) Experimental Setup: We evaluate the dynamic overhead
of control flow restructuring by generating the incidence
matrices for all acyclic CFGs with binary branches for a given
dimension. We filter out all minimal unstructured CFGs and
convert these matrices to CUDA code. All branches were
made divergent to ensure redundant execution of basic blocks.
The other basic blocks contained no computation, in order to
ensure accurate dynamic overhead measurements.

We compile the CFGs with and without branch restruc-
turing, and count the redundant executions of basic blocks
for the unstructured case as well as the number of executed
instructions for both cases using the CUDA profiler. We
compute the dynamic instruction overhead for each graph
by subtracting the number of executed instructions of the
restructured CFG from the corresponding unstructured CFG.

2) Key Observations: We produce all synthetic CFGs up to
7 nodes, resulting in 1447 CFGs after filtering. We restrict our
experiments to synthetic CFGs of this size, because it produces
a sufficient number of unstructured graphs to demonstrate the
effect of branch restructuring. Figure 6 shows the dynamic
instruction overhead for these graphs. We group the CFGs by
their number of redundantly executed basic blocks and count
the number of CFGs for each group. For example, as shown in
Figure 6, we count 449 CFGs which execute one basic block



redundantly, and only 2 CFGs which execute 12 basic blocks
redundantly. We plot a box and whisker plot for each group.
The bottom and top of the boxes represent the first and third
quartile, and the line inside the box the median. The ends of
the whiskers indicate 1.5 times the interquartile range, and all
points not within that range are outliers plotted as small dots.

Unstructured control flow in combination with branch diver-
gence leads to redundant execution of basic blocks. Figure 6
shows that 73% of the synthetic CFGs have up to 3 redundant
executions, and that the maximum number of redundantly ex-
ecuted basic blocks is 14. The maximum dynamic instruction
overhead is 35, indicating that the added dynamic overhead
of branch restructuring in the presence of branch divergence
is small. Thus, in our experiments branch restructuring is
desirable as long as the combined instruction count of the
redundant executions exceeds 35. Moreover, Figure 6 clearly
shows that the dynamic overhead of branch restructuring
becomes smaller, the more redundant executions a graph
contains. The dynamic instruction overhead is always negative
for graphs with more than 7 redundant executions, indicating
that fewer instructions are executed in the restructured than
the corresponding unstructured graph. For these graphs, the
number of redundantly executed instructions in the unstruc-
tured graphs always exceeds the overhead inserted by branch
restructuring. Thus, branch restructuring is always desirable
for these graphs even without any computation contained in
the basic blocks.

D. Benchmarks

This section describes the results of applying control flow
restructuring to kernels from the Rodinia benchmark suite
[15]. We evaluate the overhead of our transformations on
these kernels in terms of execution time and representational
overhead at compile-time.

1) Structural Analysis: In order to obtain an overview of
the structural complexity of the benchmarks, we classified
CFGs as Linear per Definition 3, Tail-structured per Definition
2, single-entry/single-exit (SESE) per Definition 1, reducible
or irreducible. Tail-structured and SESE were identified by
structural analysis [19], and irreducibility was determined by
T1/T2 analysis [20]. A graph’s cyclicity was identified by
determining the presence of SCCs [21].

Table I shows the distribution of each class. The majority of
the CFGs are single-entry/single-exit, and most acyclic SESE
graphs are also tail-structured. Thus, the majority of programs
in the Rodinia benchmark suite are expressed using simple if-
then-else statements and head-controlled loops. Control flow
restructuring introduces no overhead for the acyclic graphs, but
transforms head-controlled loops to tail-controlled ones. We
expect therefore an overhead associated with loop restructur-
ing. Only a minority of the CFGs are in the reducible class. We
inspected the source code for these graphs and found that the
acyclic one is due to a switch statement with return statements
in its cases. It is part of mummergpu. The cyclic graphs are due
to loops with multiple exits and are part of hotspot, hybridsort,
mummergpu, myocyte, particlefilter, and pathfinder.

acyclic cyclic

Linear 28 -

Tail-structured 56 3

SESE 3 139

Reducible 1 10

Irreducible - -

Total 240

TABLE I
PROGRAM CLASSIFICATION FOR THE RODINIA BENCHMARK SUITE.

CLASSES ARE RELATED AS FOLLOWS: LINEAR ⊂ TAIL-STRUCTURED ⊂
SESE ⊂ REDUCIBLE

Overall, the Rodinia benchmark suite consists mostly of
SESE graphs, which can always be executed efficiently on
GPUs. It offers little opportunity for improvements through
control flow restructuring, considering that the presence of
branch divergence is also required. This is rather unsurprising,
since developers are aware of the potential disadvantages of
unstructured control flow for GPUs and therefore try to avoid
it. A compiler supporting control flow restructuring would
be able to remove unstructured control flow altogether. This
would allow programmers to delegate this task to the compiler
and spend their time on tuning other aspects of a program.

2) Execution Times: Figure 7 shows the measured exe-
cution times for the Rodinia benchmark suite. We use six
different restructurer configurations:

• nvcc: The benchmarks were compiled with the unmodi-
fied nvcc compilation pipeline.

• no restructuring: The PTX files are parsed, converted to
CFGs, and immediately reconverted. No restructuring is
performed.

• loop restructuring: Loop restructuring as described in
Section IV-A.

• loop copy restructuring: Loop restructuring with copying
as described in Section IV-C.

• loop + branch restructuring: Loop and branch restructur-
ing as described in Section IV-B.

• loop copy + branch restructuring: Loop restructuring
with copying and branch restructuring.

The no restructuring configuration serves as baseline, and
all other configurations are normalized to it. The reason for
using the no restructuring and not the nvcc configuration as
baseline is due to the conversion passes. The CFG to AST
conversion lays out basic blocks differently than they are in
the input PTX file. This results in a different basic block order
and therefore a different number of fall-through branches in
the output PTX. The effect alters execution time by no more
than 8%, except in the case of mummergpu, where we observe
a 5 fold increase. We found that the difference is due to an
additional basic block in the layout of nvcc. The basic block
contains no instructions and has one incoming and outgoing
edge and could therefore be safely removed without effecting
the computation. However, ptxas produces pbk and brk in-
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Fig. 7. Execution Times for different Control Flow Restructuring Configurations

structions for the inner kernel loop when it is present. These
instructions allow an early reconvergence of divergent threads
in the loop, making it possible to avoid redundant executions
for loops with multiple exits. Although these instructions allow
to reduce execution time when divergence is present, nvcc
seems not be able to reliably generate them.

Loop restructuring transforms all loops into tail-controlled
loops by inserting additional branches and assignments. Only
loops that are already tail-controlled are not altered. However,
the majority of the loops in the Rodinia benchmark suite are
head-controlled. These loops are converted to tail-controlled
loops by converting one unconditional to a conditional branch,
and inserting two assignments, with one of them being
executed every loop iteration. This results in a noticeable
execution time overhead for most benchmarks. The overhead
is particularly pronounced with over 5% for dwt2d, heartwall,
lud, nw, particlefilter, and streamcluster.

The benchmarks dwt2d, lud, nw, particlefilter, and stream-
cluster consist of very small kernels with an average execution
time of less than 1.5ms per invocation. Loop restructuring adds
additional instructions to the kernels of these benchmarks, and
therefore creates an overhead that is a noticeable fraction of
the execution time. For example, the average execution time
of streamcluster’s kernel is only 750µs, but it is invoked 1611
times. In case of heartwall, the average kernel execution time
is with 195ms significantly longer, but it consists of 48 head-
controlled loops which are responsible for the overhead in
execution time.

For most benchmarks, overhead is reduced using loop
restructuring with copying. It transforms head-controlled to
tail-controlled loops by employing loop inversion [17] instead
of inserting assignments and branches. Thus, no additional
assignment is executed every loop iteration. Another positive
effect on execution time can be observed for mummergpu.
Loop restructuring improves its performance 5 fold, rendering
it equivalent to the code produced by nvcc. It allows divergent
threads to reconvergence early and therefore reduces redundant
execution as the pbk and brk instructions.

Branch restructuring is employed after all loops have been
restructured and ensures proper nesting of splits and joins.

Figure 7 shows that it has no significant effect on the execu-
tion times, and performs similarly to the corresponding loop
restructuring. Most acyclic graphs are already tail-structured
and we suspect a proper nesting of splits and joins in the cyclic
ones as well. It is therefore no surprise that the execution times
show no significant change compared to the corresponding
loop restructuring configurations.

Overall, the experiments with the Rodinia benchmark suite
indicate that control flow restructuring adds minor and varying
overhead to the execution times of programs. It varies between
not measurable and 12%, with an average of 2.1% among all
benchmarks. The reason for this is that the Rodinia benchmark
suite consists mainly of SESE graphs, and control flow restruc-
turing only inflicts no overhead to the subset of tail-structured
graphs. While this overhead is not insignificant, it is much
lower than the 100 - 150% reported by Domı́nguez et al. [11],
[12]. On the other hand, when unstructured control flow and
branch divergence is present, control flow restructuring can
help to reduce execution time significantly as demonstrated
for mummergpu. This suggests that it should be applied more
selectively, e.g. in combination with structural analyses [19]
to discover unstructured subgraphs, and divergence analysis
[16] for detecting divergent branches. In contrast to other
restructuring methods [11], [12], [6], [13], it also does not
lead to exponential code inflation [14].

3) Compile-Time Overhead: Control flow restructuring can
add constructs to a CFG, causing representational overhead
at compile-time. This is quantified in Figure 8, which relates
the number of instructions before restructuring to the number
of instructions after restructuring for the loop copy + branch
restructuring configuration. The grey line marks the identity
function, representing points with no overhead.

There is a clear linear relationship for all cases, suggesting
that control flow restructuring is practically feasible in terms
of space requirements. All linear and tail-structured graphs
lie exactly on the line, confirming that no representational
overhead is introduced. SESE and reducible graphs lie slightly
above the line, indicating the insertion of additional instruc-
tions. The average representational overhead for these graphs
in terms of instructions is 5.2%. Figure 8 is representative for
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all the other configurations, which exhibited similar behavior
for their representational overhead.

VI. RELATED WORK

Reducing the performance impact of thread divergence is
a topic of extensive and ongoing research. Several works
proposed changes to GPU hardware to ameliorate the problem.
ElTantawy et al. [22] replaced the traditional stack based
thread reconvergence mechanism with a set of tables, po-
tentially allowing warps to reconverge before the branch’s
IPDOM. They evaluated their approach on a set of benchmarks
with unstructured control flow and achieved a harmonic mean
speedup of 32% compared to traditional execution. Branch
herding was proposed by Sartori et al. [23]. It forces all threads
of a warp to take the path of the majority. This led to incorrect
results, but was acceptable for error tolerant applications such
as visual computing applications. Their hardware implemen-
tation improved performance for a set of benchmarks by 30%
on average. Brunie et al. [24] proposed to add additional
hardware to co-issue different instructions to disjoint sets of
the same warp, or to a subset of a different warp. Diamos et al.
[4] proposed thread frontiers, a combined hardware and soft-
ware approach. In this approach, the compiler finds potential
early reconvergence points, while additional hardware checks
whether a warp can reconverge at these points.

Two software based approaches were proposed by Han
et al. [5]. They reduce branch divergence through iteration
delaying and branch distribution. Iteration delaying reorders
loop iterations with branches so that branches taking the same
direction are executed together. Branch distribution factors
out similar code from branches. Both techniques require
manual code rewriting. Zhang et al. [25] removed divergence
through data reordering and job swapping, i.e. changing the
mapping between threads, data, and work. This must be
done asynchronously by the CPU at runtime, and therefore
requires to launch a kernel multiple times in a loop. Lee
et al. [26] proposed algorithms that remove all control flow
by predicating and linearizing different execution paths. They
implemented their algorithms in the CUDA LLVM compiler
and showed that a predication-only architecture based on their

algorithms is competitive in performance to one with hardware
support for tracking divergence.

Finally, like our method, several approaches transform
unstructured to structured control flow to reduce the im-
pact of branch divergence. Anantpur et al. [7] proposed a
technique for transforming unstructured to structured CFGs
by linearizing them with the help of guard variables. They
implemented it as PTX transformations and evaluated it on
a set of benchmarks. It increased code size by up to 10%
and execution time by up to 73%. Wu et al. [6], [13] use
adaptions of the transformations of Zhang et al. [27]. They
show that several Rodinia, Parboil, and Optix benchmarks,
as well as CUDA SDK samples contain unstructured control
flow. Applying their transformations increased static instruc-
tion count, and decreased performance by up to 1% due to
code expansion. Dominguez et al. [12], [11] developed a tool
for translating PTX to AMD IL in order to understand the
performance differences between structured and unstructured
control flow on GPUs. They also used the transformations of
Zhang et al. [27] to handle unstructured control flow. Their
tool produced code that performed 2.1 times worse on average
than a straightforward manual CUDA to OpenCL translation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a transformation for converting
unstructured to structured control flow. Our evaluation shows
that our approach effectively eliminates redundant basic block
execution and improves execution time for unstructured graphs
with branch divergence. It adds a minor average overhead of
2.1% to execution time of already structured kernels. While
this overhead is notable, it is significantly lower than the
100-150% reported by Domı́nguez et al. [11], [12]. This
suggests that our transformations should be applied more
selectively, e.g. in combination with structural analysis [19]
to discover unstructured subgraphs, and divergence analysis
[16] for detecting divergent branches. The representational
overhead at compile-time is linear in terms of instructions.
In contrast to other restructuring methods [11], [12], [6], [13],
exponential code inflation is impossible [14].



We also showed that the main increase in execution time in
structured kernels is due to restructuring of head-controlled
loops. Our main direction for future work is therefore to
extend our algorithm to SESE graphs in order to avoid the
added overhead and therefore the need for structural analysis.
Another direction for future work would be to combine
loop restructuring with loop merging [28]. This optimization
merges a divergent loop with one or more of its surrounding
loops in order to overlap the iteration spaces of the inner loop
for threads of different warps.
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