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Abstract—Data-intensive applications put immense strain on
the memory systems of Graphics Processing Units (GPUs). To
cater to this need, GPU memory systems distribute requests
across independent units to provide high bandwidth by servicing
requests (mostly) in parallel. We find that this strategy breaks
down for shared data structures because the shared Last-Level
Cache (LLC) organization used by contemporary GPUs stores
shared data in a single LLC slice. Shared data requests are hence
serialized — resulting in data-intensive applications not being
provided with the bandwidth they require. A private LLC orga-
nization can provide high bandwidth, but it is often undesirable
since it significantly reduces the effective LLC capacity.

In this work, we propose the Selective Replication (SelRep)
LLC which selectively replicates shared read-only data across
LLC slices to improve bandwidth supply while ensuring that
the LLC retains sufficient capacity to keep shared data cached.
The compile-time component of SelRep LLC uses dataflow
analysis to identify read-only shared data structures and uses a
special-purpose load instruction for these accesses. The runtime
component of SelRep LLC then monitors the caching behavior
of these loads. Leveraging an analytical model, SelRep LLC
chooses a replication degree that carefully balances the effec-
tive LLC bandwidth benefits of replication against its capacity
cost. SelRep LLC consistently provides high performance to
replication-sensitive applications across different data set sizes.
More specifically, SelRep LLC improves performance by 19.7%
and 11.1% on average (and up to 61.6% and 31.0%) compared to
the shared LLC baseline and the state-of-the-art Adaptive LLC,
respectively.

I. INTRODUCTION

Data-intensive applications such as machine learning are
becoming critically important workloads across the computing
spectrum. In data centers, Graphics Processing Units (GPUs)
are commonly used to accelerate these and other workloads [5],
[21], [46]. To improve performance, modern GPUs contain
an ever-increasing number of Streaming Multiprocessors
(SMs) supported by a highly-parallel, often die-stacked, high-
bandwidth memory system. Unfortunately, the benefit of a
highly parallel memory system is void if architectural policies
cause serialization.

Data-intensive applications rely on shared data to globally
coordinate the thousands of threads that are in flight at any
given time. These global data structures are typically accessed
frequently. Hence, they have high locality and tend to be
cached in the GPU’s highly-distributed Last Level Cache
(LLC). Unfortunately, the shared LLC organization employed
in contemporary GPUs creates a serialization bottleneck. More
specifically, the requests for shared global data all go to the
same LLC slice — serializing memory requests and creating
significant congestion. Although LLC management has been
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studied extensively in the context of multi-core processors (e.g.,
[12], [13], [16], [19], [23], [25], [26], [37], [44], [63]), these
approaches are not directly applicable to GPUs since they focus
on reducing latency rather than increasing bandwidth.

One way of providing more bandwidth to shared data is
to adopt a private LLC organization in which the requests
from different (clusters of) SMs are routed to different LLC
slices. Unfortunately, this significantly reduces the effective
LLC capacity as copies of shared data are now stored in
multiple LLC slices. The state-of-the-art Adaptive LLC [75]
dynamically selects either a shared or private organization
based on application behavior. Unfortunately, this all-or-nothing
approach only addresses the LLC serialization problem when
the shared data set is small enough to fit in the LLC
with maximum replication. We find that a more fine-grained
approach to shared data replication in GPUs is needed. The key
challenge is to tune the replication degree such that bandwidth
is maximized — by routing requests for shared data to different
LLC slices — while protecting locality — to ensure that the
shared data set remains cached.

Our Selective Replication (SelRep) LLC approach answers
this call. SelRep LLC focuses on replicating shared read-only
data since (i) read-only data is common in GPU-compute
workloads (i.e., 97% of shared cache lines are read-only),
and (ii) read-only data can be replicated without creating
coherence issues. At compile time, SelRep LLC uses dataflow
analysis to identify read-only shared data structures and replaces
accesses to these structures with a special-purpose read-only
load instruction. At run time, we leverage a novel light-weight
hardware mechanism we call the Replication Degree Directory
(RDD) to analyze the behavior of these loads. More specifically,
the RDD concurrently predicts the LLC hit rates for all
replication degrees. These hit rates are fed to an analytical
model to predict and weigh the overall impact of the positive
effect (i.e., improved bandwidth) versus the negative effect
(i.e., more LLC misses) of increased replication. SelRep LLC’s
dynamic mechanism is extremely light-weight and requires
only 692 bytes of storage.

Our evaluation shows that SelRep LLC effectively identifies
appropriate replication degrees for our replication-sensitive
applications across a broad range of data set sizes. In particular,
SelRep LLC is within 2.3% (on average) of the performance
that can be achieved by exhaustively searching through all
static replication degrees and then selecting the top performer.
Unlike the shared and adaptive LLC organizations, SelRep LLC
consistently provides high performance across a broad range
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Fig. 1: GPU architecture with a hierarchical crossbar (H-
Xbar) NoC. To reduce the hardware overhead of the NoC,
the SMs (LLC slices) are clustered, and the SMs (MCs) of a
cluster share an SM-router (MC-router). All SM-routers have
direct links to all MC-routers.

of data sets for our replication-sensitive applications. More
specifically, SelRep LLC improves performance by 19.7% and
11.1% on average (and up to 61.6% and 31.0%) compared
to the baseline shared LLC organization and state-of-the-art
Adaptive LLC [75], respectively.

In summary, we make the following major contributions:

« We show, for the first time, that selective replication
enables making fine-grained trade-offs between bandwidth
to shared read-only data and LLC capacity.

« We propose a light-weight compiler pass that uses dataflow
analysis to identify shared read-only data structures and
communicate this information to hardware through a
special-purpose load instruction.

« We devise a light-weight dynamic measurement mech-
anism we call the Replication Degree Directory (RDD)
which we combine with an analytical bandwidth model
to identify the most appropriate replication degree while
only requiring 692 bytes of storage.

« SelRep LLC enables robust selective replication of shared
read-only data across a broad range of input sets for
our replication-sensitive applications. More specifically,
SelRep LLC improves performance by 19.7% and 11.1%
on average (and up to 61.6% and 31.0%) compared to
the shared LLC baseline and state-of-the-art Adaptive
LLC [75], respectively.

II. BACKGROUND AND MOTIVATION

In this section, we provide the necessary background for
understanding our SelRep LLC scheme. We first provide
background on the Network-on-Chip (NoC) and Last-Level
Cache (LLC) subsystems of high-performance GPUs and then
describe how these systems can be modified to enable adap-
tively switching between shared and private LLC organizations.
This discussion lays the foundation for describing our SelRep
LLC approach in Section III.

GPU Architecture. We first provide some background on the
high-level architecture of the memory systems of contemporary
GPUs. Since the GPU programming model is highly latency-
tolerant, the main objective is to maximize bandwidth. This
is achieved by creating a highly parallel memory system in
which the SMs are connected to a large number of LLC slices
through a NoC (see Figure 1). To increase bandwidth, the LLC

is divided into a number of equally-sized slices that each share
a memory controller.

Figure 1 also shows the internal structure of the NoC.
Since contemporary GPUs feature a large number of SMs,
a fully connected crossbar is not attractive due to its poor
scalability. More specifically, the hardware cost of the full
crossbar increases quadratically with the number of ports.
Prior work [74], [75] observed that a hierarchical crossbar (H-
Xbar) scales better than a full crossbar in terms of hardware
complexity and power efficiency while providing the same
bisection bandwidth. The H-Xbar achieves this through a two-
level router structure, i.e., the SM-router and the MC-router in
Figure 1, in which each router is shared by clusters of SMs
and LLC slices, respectively. Each SM-router has a direct link
to all MC-routers. Thus, each request coming from an SM has
to traverse two router hops in H-Xbar compared to a single
router hop in a fully connected crossbar.

Each Memory Controller (MC) has a number of associated
LLC slices to cache the data from the memory space provided
by that MC. The memory accesses of the SMs are routed
to the different LLC slices and MCs based on the memory
address. In this work, we use the recently proposed PAE
address mapping which evenly distributes memory requests to
different addresses across LLC slices and memory controllers
to maximize parallelism in the memory subsystem [42].

Shared versus Private LLC Organization. Figure 2 illus-
trates the different ways in which the LLC slices can be
organized. The most common organization is that LLC capacity
is shared among SMs since this maximizes LLC utilization,
i.e., each cache block is stored in at most one LLC slice.
Unfortunately, the shared LLC organization may be suboptimal
for read-only shared data (see Figure 2a). The problem is that
locating frequently accessed shared data in one LLC slice
concentrates memory traffic into this LLC slice, thus creating
a bandwidth bottleneck.

Figure 2b illustrates that a private cache organization can
improve bandwidth to read-only shared data by replicating
this data across LLC slices. In the shared LLC, the MC-router
determines the destination of memory requests based on a
subset of the memory address bits. To implement a private LLC
organization, this policy is simply changed to selecting the LLC
slice based on the SM-cluster from which the memory request
originates. Figure 3 illustrates this organization and shows that
the requests of each SM cluster is routed to a separate LLC
slice. In H-Xbar, a private organization is straightforwardly
implemented by selecting LLC slices based on the SM-cluster
the request was sent from [75].

A private LLC organization increases the effective LLC
bandwidth at the cost of decreasing the effective cache capacity.
Figure 2c illustrates the case where replication decreases the
effective cache capacity to the extent that the shared data set
no longer fits in the LLC. Thus, performance is significantly
reduced compared to a shared organization since memory
bandwidth, which is much lower than LLC bandwidth, becomes
the limiting factor.
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Fig. 2: Example illustrating the need for intelligent replication of shared data. In a shared LLC, SMs tend to access
shared read-only data in the same LLC slice around the same time which causes congestion. A private LLC organization can
improve performance by distributing requests for shared read-only data across LLC slices, but replicating too aggressively

destroys locality and incurs a significant performance penalty.

Cluster

Cluster

Cluster Cluster

S BE svsv] [Sv) WS EE
i I i I i !
L!! ,,,,, W e B
NoC (H-Xbar)
o mom e
‘ Memory Controller ‘ ‘ Memory Controller ‘ ‘ Memory Controller ‘ ‘ Memory Controller ‘

Fig. 3: Private LLC configuration. SMs are divided into
clusters; cluster count equals the number of LLC slices per
memory controller. The colors illustrate LLC-slice to SM-cluster
allocation (e.g., red SMs access red LLC slices).

Adaptive LLC. The recently proposed Adaptive LLC [75]
dynamically chooses either a shared or a private LLC organi-
zation using a coarse-grained approach, i.e., the shared data
set is either fully replicated across all slices (a private LLC
organization) or there is no replication at all (a shared LLC
organization). For a small shared data set size, it is beneficial to
replicate the shared data set across all LLC slices to maximize
the effective LLC bandwidth — as achieved under a private
LLC organization. At the other end of the spectrum, i.e., for a
large shared data set, it is best to not replicate to avoid cache
thrashing — as achieved under a shared LLC organization.
The Adaptive LLC dynamically chooses the best performing
LLC organization for the given workload at hand. By doing
so, it achieves the best of both worlds: the Adaptive LL.C
reverts to a private LLC when the shared data set is small and
reverts to a shared LLC when the shared data set is large. This
strategy enables the Adaptive LLC to dynamically adopt the
best performing LLC organization.

Towards Selective Replication. Unfortunately, the Adaptive
LLC leaves significant performance on the table. The funda-
mental reason is that the Adaptive LLC is too coarse-grained,
i.e., it is an all-or-nothing approach. Ideally, one would want to
selectively replicate data to carefully balance the effective LLC
capacity and bandwidth as a function of the shared data set
size. It is expected that selective replication performs equally
good as a private LLC for small shared data sets. On the other
hand, it is expected that selective replication performance is
equally good as a shared LLC for large data sets. However, for
the important range of medium-sized shared data sets, selective
replication should significantly outperform either approach. In
other words, selective replication should be robust across data
set sizes.
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Fig. 4: Shared data set memory access breakdown. The
shared data set typically exceeds the LI cache capacity and
needs to be fetched from the LLC.
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Fig. 5: Accesses to read-only cache lines from different
SMs within a 1000-cycle time window. On average, over
80% of the LLC cache lines are accessed by at least 2 SMs
within the 1000-cycle time window.

Percentage of LLC
cache lines

Shared Data Set Characteristics. We now characterize the
shared data set to further support selective replication in the
LLC. We further find that the shared data set is too large to
fit in the L1 caches. More specifically, more than half the
shared data set is accessed in the LLC, by 50.9% on average
and up to 78.2% for SN (see Figure 4). (See Section IV for
details regarding the experimental setup.) Moreover, we find
that multiple SMs access the same cache lines in the LLC
around the same time. In particular, we find that 83.3% of the
read-only cache lines in the LLC are accessed by more than 2
SMs within a 1000-cycle time window, and 32.8% of the LLC
cache lines are accessed by more than 9 SMs (see Figure 5).
The fact that the majority of the shared data set is located in the
LLC, combined with the fact that multiple SMs access the same
shared data elements around the same time, leads to intermittent
request camping in LLC slices. Selectively replicating shared
read-only cache lines across LLC slices alleviates the camping
problem and improves overall performance by increasing the
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Fig. 6: Selective replication example. Se/Rep LLC improves
performance compared to a shared and private LLC by
selectively replicating shared data across LLC slices to improve
bandwidth while simultaneously ensuring that shared data
remains cached.

effective LLC bandwidth.

III. ENABLING SELECTIVE REPLICATION

We now describe our SelRep LLC approach which addresses
the shortcomings of the current state-of-the-art LLC manage-
ment schemes by selectively replicating read-only shared data
across LLC slices to maximize bandwidth while avoiding LLC
thrashing. Figure 6 illustrates selective replication in which
a cache line that contains shared read-only data elements
is replicated across 2 of the 4 LLC slices. SM clusters 0
and 1 access the shared data structure in the first LLC slice,
whereas SM clusters 2 and 3 access the third LLC slice.
Selective replication increases the effective LLC bandwidth
while balancing LLC miss rate.

We first provide a general overview of SelRep LLC in
Section III-A before we describe in detail how SelRep LLC
predicts LLC misses and performance across different LLC
organizations in Section III-B and III-C, respectively. We
then discuss the potential overheads of SelRep LLC in
Section III-D before we illustrate how we can leverage its
compiler support to simplify the coherence protocol and support
for atomic operations compared to prior adaptive and private
LLC organizations in Section III-E.

A. SelRep LLC Overview

Compile-time analysis. SelRep LLC’s compiler analysis
marks data structures as read-only within a kernel boundary.
We accomplish this by using data flow analysis at the level
of the PTX intermediate representation [50] to identify all
accesses to each data structure and then determine if they are
reads or writes. A data structure is read-only within a particular
kernel if its elements are never written within its boundaries.
Otherwise, we mark the data structure as read-write. Note that
a data structure that is read-only in one kernel may be read-
write in a different kernel (e.g., one kernel writes the input
data for a subsequent kernel to read).

After identifying read-only data structures, the compiler
replaces its loads of global data (i.e., 1d.global in-
structions) with a special load read-only instruction (i.e.,
1d.global.ro). To exploit this information at runtime, we
add a read-only bit to the metadata of memory requests. Thus,
SelRep LLC identifies the memory requests that are eligible
for replication by inspecting this metadata bit. This extra bit
does not add overhead because a read request only needs to
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Fig. 7: Fraction of read-only versus read-write shared

cache lines. The key take-away is that more than 97% of
the shared cache lines are read-only on average.
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Fig. 8: A block diagram of an MC-router that supports
SelRep LLC. SelRep LLC minorly modifies the router by
adding the RDD and bandwidth model logic (both structures
are off the critical path).

transmit the address to be fetched while a write request needs
to transmit both the address and the data. In other words, a
read request only uses a few of the wires in the request links
(i.e., 8 bytes out of 32 bytes in our setup).

The style in which GPU-compute applications are pro-
grammed work in favor of SelRep LLC. First, GPU kernels
often have regular memory access behavior which makes
dataflow analysis straightforward. Second, shared read-only
data structures are typically used for kernel inputs and are hence
common. Figure 7 supports this observation for the replication-
sensitive benchmarks in this study, i.e., on average more than
97% of the shared cache lines are read-only. Third, aliasing
is not common [41]. In fact, our dataflow analysis correctly
identifies all read-only data structures within the benchmarks
we consider in this work.

Run-time support. Figure 8 shows that SelRep LLC can be
implemented with minor modifications to the MC-router. The
Replication Degree Directory (RDD) predicts if a read-only
memory request will hit in the LLC with different degrees of
replication as well as a shared and private organization. The
memory address is available within the Routing Computation
(RC) unit, and we forward the address of the request to the
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Fig. 9: Example illustrating SelRep LLC’s run-time operation. Se/Rep LLC seamlessly adapts to new LLC organizations

by lazily and selectively replicating cache blocks.

RDD if the read-only bit is set.

SelRep LLC divides time into fixed-length epochs (e.g.,
20 K clock cycles) and re-evaluates the policy’s selection at
epoch boundaries. At the end of an epoch, hit rates for all
replication degrees are retrieved from the RDD and provided
to the bandwidth model (Section III-B). SelRep LLC uses an
analytical bandwidth model to predict which LLC organization
maximizes bandwidth (Section III-C). This configuration is
then selected for the next epoch. Since memory-intensive GPU
applications are typically sensitive to bandwidth, improving
bandwidth tends to increase performance.

Run-time example. Figure 9 drills down into the LLC behavior

when SelRep LLC dynamically adjusts the replication degree.

Similarly to Figure 6, we assume 4 SM clusters and 4 LL.C
slices. To limit the complexity of the example, we focus on
the LLC slices of a single memory controller.

Initially (see 0. SelRep LLC has chosen a shared cache
organization, and cache line X is stored in LLC slice 0. SelRep
LLC then chooses an LLC organization with replication degree
2 (see @). This means that requests from SM-cluster 0 and
1 (2 and 3) are routed to LLC slice 0 and 1 (2 and 3). At
this point, SM-cluster 1 and SM-cluster 3 both issue memory
requests for cache line X. The request from SM-cluster 1 is
routed to LLC slice 0 which results in a cache hit. SM-cluster

3’s request on the other hand is now routed to LLC slice 2.

This LLC slice does not currently contain cache line X which
results in a cache miss. The LLC services this miss as it would
with any other miss and thereby installs a replica of cache line
X in LLC slice 2 (see €).

SM-clusters 0 and 2 now access cache line X (see @), and
both requests hit in LLC slice 0 and 2, respectively. This
alleviates congestion in LLC slice 0 as requests for line X
are now distributed across slice 0 and 2. Finally, SelRep LLC
decides to revert to the shared LLC organization (see @). All
requests for cache line X are now routed to LLC slice 0 (see
the cache hit request from SM-cluster 3). The replica in LLC
slice 2 is no longer reachable and will eventually be evicted. By
relying on the regular insertion and replacement policies of the
LLC, SelRep LLC quickly adjusts to new cache organizations
while limiting complexity and overheads.

B. Predicting LLC Misses

To predict the LLC misses for all possible replication degrees
we devise a light-weight mechanism we call the Replication

Degree Directory (RDD). The RDD is inspired by the Auxiliary
Tag Directory (ATD) [55] which is an independent tag directory
commonly used to predict per-application cache misses as a
function of allocated ways in shared LLCs (see e.g., [27],
[76]). Unlike an ATD, the RRD is (i) located within an MC-
router rather than an LLC slice, and (ii) predicts misses across
replication degrees and not miss curves. The RDD contains a
collection of bit vectors which we call ClusterID along with
each tag to predict the hit rates for different replication degrees
(see Figure 10). There is up to one bit for each SM-cluster in
the ClusterID structure. When the tag is first brought into the
RDD, the bits that represent the SM-cluster that accessed the
tag is set and all others are zero. For each subsequent access,
the bits representing the SM-cluster that accessed the cache
block is set to 1.

For each RDD access, we determine if it would hit or miss
in the LLC for a particular cache organization. For the shared
LLC, the request is a hit if the tag matches. The other extreme
is the private cache in which the tag needs to match and the
memory access must come from the same SM-cluster. Hence,
the ClusterID vector needs as many bits as there are SM-
clusters. Selective replication works similarly to the private
cache except that each SM-cluster can access more than one
LLC slice (i.e., there are fewer bits in the ClusterID vectors).
The RDD counts the number of accesses and keeps a separate
hit counter for each policy and can thus predict the LLC hit
rates of all policies concurrently.

We use Figure 10 to describe the operation of the RDD. The
example RDD samples two sets and has the same associativity
as the LLC slices (16 in the example). We further assume that
there are 8 SM clusters and 8 LLC-slices per MC-router. Thus,
the ClusterID vector for the private LLC configuration contains
8 bits. A request from SM-cluster 3 with a matching tag will
be a hit in the private LLC organization in the example since
ClusterID bit 3 is set to 1. A request from SM-cluster 2 with
a matching tag will be a miss in the private LLC organization,
but a hit with replication degree 4 (2) since the bits for clusters
2 and 3 (0 to 3) are set to 1.

Adaptive LLC [75] also uses a hardware mechanism to
select a private or shared LLC organization. Unlike SelRep
LLC, it is not able to predict LLC hit rates for selective
replication. Further, it can only predict LLC hit rates when the
shared LLC organization is used. The reason is that Adaptive
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LLC locates its predictor in an LLC slice which results in it
only seeing the accesses of a single SM-cluster in the private
configuration. Thus, Adaptive LLC needs to return to the shared
LLC organization periodically to account for phase behavior.
SelRep LLC avoids this problem by placing the RDD in an
MC-router which enables it to monitor all accesses regardless
of LLC organization.

C. Predicting Performance

We now describe the analytical bandwidth model that SelRep
LLC uses to dynamically select the replication degree. We first
compute the LLC Slice Parallelism (LSP):

S—1 R;

LSP = .
,g(’) max(Ro,R1,...,Rs 1)

—_—

6]

LSP is the sum of the requests R; to slice i divided by the
maximum number of requests to any cache slice; there are S
LLC slices in total. LSP expresses how balanced the read-only
shared LLC requests are. More specifically, LSP equals § if
the requests are evenly distributed, and LSP equals 1 if all
requests go to a single LLC slice.

The total effective bandwidth B is a function of the LSP
and the bandwidth each LLC slice can provide. In turn, the
bandwidth offered by an LLC slice depends on its hit rate H:

2

More specifically, the effective bandwidth is the sum of the
bandwidth provided to LLC hits (i.e., H X By c where By c is
the maximum bandwidth of each LLC slice) and LLC misses.
If the bandwidth demand of the LLC misses is less than the
memory bandwidth, the memory system will be able to hide
the LLC miss impact. Thus, the LLC misses are effectively
receiving the same bandwidth as the LLC hits. Otherwise, the
miss bandwidth is determined by the LLC slice’s proportional
share of the total DRAM bandwidth Bpyem.

Equation 2 precisely captures the bandwidth versus LLC ca-
pacity trade-off that is central to effectively leveraging selective
replication. More specifically, increasing the replication degree
increases LSP and Ry,iss, and Equation 2 enables SelRep LLC
to intelligently balance these conflicting effects.

At runtime, SelRep LLC computes Equation 1 and 2 for all
sharing degrees at the end of each epoch. To accomplish this,
SelRep LLC maintains counters for the number of requests
to each LLC slice (i.e., R; in Equation 1). In addition, the
RDD supplies the predicted number of hits (i.e., Ry;) for all

B=LSP x (H X Bric +Ml}’l{(1 7H) XBLLC;Bmem})-

possible replication degrees. Byyc and Bpen are architectural
constants and Rpy;ss can be computed from the predicted hits
and accesses. Finally, SelRep LLC finds the replication degree
with the highest predicted bandwidth B and instructs the MC-
routers to use this replication degree in the next epoch.

The replication selection procedure is off the critical path.
Thus, application execution continues with the old replication
degree while SelRep LLC determines the (new) replication
degree. Regardless, the latency of computing the bandwidth
model is low because the number of LLC slices per MC-router
and replication degrees are limited. More specifically, the GPU
we model in this work has 16 LLC slices per MC-router (i.e.,
S is 16 in Equation 1), and we consider 5 replication degrees
(i.e., Equation 2 is computed 5 times).

D. Overheads

Hardware Overhead. SelRep LLC is lean. To limit the
overheads, we only add the RDD to a single MC-router and
apply set sampling aggressively. More specifically, the RDD
contains only 2 sets with 16 ways each, which results in an
overall storage cost of 520 bytes. In addition, SelRep LLC
needs to count the number of requests to each LLC slice as well
as the hits and accesses for the different LLC organizations.
We find that 16-bit counters are sufficient, which adds a storage
overhead of 172 bytes. The total storage overhead of the RDD
and the analytical model is hence 692 bytes.

Enabling replication also requires increasing the size of the
LLC tags since address bits that are constant in the shared LLC
case (as they are used for slice selection) can change in the
private case. Assuming a 30-bit physical address [42], a 4-bit
larger LLC tag increases the storage overhead of our default
LLC by less than 0.4% because the tags are small compared
to the data. Since this overhead is due to enabling replication,
it affects Adaptive LLC [75] and SelRep LLC equally.

Routing Latency. SelRep LLC potentially re-routes memory
requests to different LLC slices. Thus, it needs to consider the
SM-cluster the requests was sent from, the current replication
degree, and the memory address during the routing computation.
In contrast, the baseline shared LLC organization only considers
the memory address. SelRep LLC may therefore increase the
latency of the routing computation. However, the virtual channel
or switch allocation is usually the critical path of the router [35].
Since the logic required to perform SelRep LLC’s routing
computation is simple, we do not expect that it increases the
latency enough for it to become the critical path. Regardless,
we show that SelRep LLC performs well across a range of
router latencies in Section V-C.

RDD access and bandwidth model computation is off the
critical path. More specifically, the bandwidth model reads the
RDD hit and access counters once every epoch (e.g., 20 K
cycles). Then, it computes the most appropriate replication
degree for the next epoch which is finally communicated to
the MC-routers. The new LLC organization takes effect when
this information has reached all routers, typically after a few
tens of clock cycles. As SelRep LLC replicates cache blocks
lazily, it can easily tolerate this latency.



DRAM Organization. All SMs must be able to access
the whole memory address space regardless of the LLC
organization. To enable this, each LLC slice needs to be given
access to all channels managed by the respective memory
controller. For the recent commercial stacked High-Bandwidth
Memory (HBM) considered in our work [70], we therefore need
two crossbars (one for either direction) per memory controller
that connects all LLC slices to all respective memory channels.
If the memory controller does not contain such a crossbar, the
area overhead of adding it is limited. We use DSENT [61]
to estimate the active silicon area of the crossbar in a 22 nm
technology node. We account for the area of repeaters for long
links which we assume are 12.3 mm long (half of the Pascal
die length [48]). The links themselves are routed in the higher
metal layers and hence consume global wire area. We find
that the overall cost of the crossbars and all long links are
1.01 mm? and 0.42 mm?, respectively, which is approximately
0.2% of the GPU die area.

E. Cache Coherence Implications

While many GPUs only cache read-only data in the L1,
recent GPUs such as the Volta cache all data and adopt a write-
through policy [49]. In this case, cache coherence is typically
ensured by requiring that software flushes the L1 cache when
necessary [8], [45]. A conventional LLC does not need to be
flushed as it is shared between all SMs. This approach does not
work for prior private or adaptive LLC schemes (e.g., Adaptive
LLC [75]) as dirty copies of the same cache block may exist
in different LLC slices. Previous work addresses this issue by
making the LLC write-through as well as flushing the LLC on
synchronization boundaries (e.g., sync instructions or kernel
boundaries). This increases system complexity and results in
unnecessary writes to memory.

SelRep LLC’s compiler support guarantees that we only
replicate read-only data structures. Hence, dirty replicates
do not exist, and we can simplify cache coherence support
compared to prior work. In fact, SelRep LLC only needs to
flush the LLC on kernel boundaries as a data structure which
is read-only in one kernel might be read-write in a different
kernel (we account for this overhead in our evaluation).

Atomic instructions also need special consideration in prior
private and adaptive LLC schemes. These instructions are
typically implemented within the raster operations unit [2],
[20] and rely on all instructions accessing a common memory
location. To enable this, prior schemes contain an additional
(small) shared LLC for atomic instructions. In SelRep LLC,
the shared cache organization is used for all data that is
not explicitly marked as shared and read-only. Thus, atomic
operations work seamlessly within SelRep LLC.

IV. EXPERIMENTAL SETUP

Simulated System. We evaluate SelRep LLC through cycle-
level simulation and integrate GPGPU-sim [11] with Ramu-
lator [36] to model a high-end GPU system attached to an
HBM memory subsystem. The baseline GPU configuration
is listed in Table I. We consider a GPU with 64 SMs and a

TABLE I: Baseline GPU architecture.

Parameter Value

Streaming Multiprocessors | 64 SMs, 1400 MHz
Schedulers/Core 2 (GTO)

Number of Threads/Core 2,048
Registers/Core 65,536

Shared Memory/Core 64 KB

L1 Data Cache/Core
LLC

48 KB, 6-way, LRU, 128 B line

4 MB in total (64 slices, 16-way),
120 clock cycles latency

H-Xbar, 32B channel width

16 SM-routers, 4 MC-routers

4 VC per port — 8 flits/VC
VC/Switch allocator — Islip

Interconnection Network

HBM Memory 4 memory stacks, 8 channels/stack,
open-page policy, FR-FCFS,
16 banks/channel, 600 GB/s

HBM Timing tRC=24, tRCD=7, tRP=7,

tCL=7, tWL=2, tRAS=17,
tRRDI=5, tRRDs=4, tFAW=20,
tRTP=7, tCCDI=1, tCCDs=1

4MB LLC, which is similar to previous work and commercial
GPUs [6], [7], [8], [45], [48]. We assume 4 HBM stacks with
eight memory channels each, for a total of 32 memory channels
and an aggregate memory bandwidth of 600 GB/s. We further
assume two LLC slices per channel, and a total number of
64 LLC slices or 16 LLC slices per HBM stack. We use
the state-of-the-art PAE randomized address mapping scheme
to uniformly distribute memory accesses across LLC slices,
memory channels, and banks [42]. We further assume a typical
cache line size of 128 B. We find that a larger cache line size
exacerbates the LLC contention problem as the number of
sharers increases. The H-Xbar NoC consists of 16 SM-routers,
connecting to a cluster of 4 SMs each, and 4 MC-routers.
The SM- and MC-routers have a 4-stage pipeline. We adopt
two-level round-robin (2L-RR) CTA scheduling to balance
the workload across the different SM-routers, i.e., 2L-RR first
distributes CTAs across SM-routers and then across SMs within
an SM-router [74], [75]. Other CTA scheduling policies are
explored in the sensitivity analysis.

Compiler support for SelRep LLC analyzes PTX, CUDA’s
intermediate code representation, which is compiled by nvcc
v4.0 [47]. The compiler pass replaces 1d.global instructions
that operate on read-only data structures — read-only data
structures are identified through dataflow analysis — with
1d.global.ro instructions, our instruction set extension.
We use GPUWattch [40] to evaluate the GPU’s power con-
sumption assuming a 22 nm technology node; we model SelRep
LLC’s hardware extensions and account for their impact on
GPU power. We use DSENT [61] to estimate NoC power, and
assume long links to connect SM-routers and MC-routers, with
a long link length measuring 12.3 mm (half the Pascal die
size [48])." Activity factors from Ramulator are used as input
to GPUWattch to estimate overall system (GPU plus memory)
power.

The long link length is a conservative estimate which can be reduced
through optimized floorplanning [14], [18], [34].



TABLE II: Replication-sensitive GPU-compute bench-
marks with their configurations from small to large.

[ Benchmark | Configurations (from small to large) |
AN an_0 an_1 an_2 an_3 an_4
Shared Data [MB] 1.0 1.0 1.0 1.0 1.0
LLC Size [MB] 4 1 0.5 0.25 0.125
RN rn_0 m_1 m_2 m_3 m_4
Shared Data [MB] 4.2 4.2 4.2 4.2 4.2
LLC size [MB] 4 1 0.5 0.25 0.125
SN sn_0 sn_1 sn_2 sn_3 sn_4
Shared Data [MB] 0.7 0.7 0.7 0.7 0.7
LLC size [MB] 8 6 4 2 1
NN nn_0 nn_1 nn_2 nn_3 nn_4
Shared Data [MB] 0.6 2.8 5.7 114 22.8
LLC size [MB] 4 4 4 4 4
MM mm_0 | mm_1 | mm_2 | mm_3 | mm_4
Shared Data [MB] | 0.04 0.1 0.6 1.9 3.8
LLC size [MB] 4 4 4 4 4

TABLE III: Non-replication-sensitive GPU benchmarks.

Benchmark Abbr. Shared | Preferred

Data [MB] LLC
LU Decomposition [17] | LUD 334 shared
Survey Propagation [15] | SP 17.0 shared
3D Convolution [22] 3DC 51.1 shared
B+TREE Search [17] BT 13.7 shared
GEMM [22] GEMM 1.8 shared
Backprop [17] BP 18.8 shared
BlackScholes [51] BS 0.001 neutral
DWT2D [17] DWT2D 0.001 neutral
Merge Sort [51] MS 0.001 neutral
BinomialOptions [51] BINO 0.017 neutral
Histogram [51] HG 0.003 neutral
Vector Add [51] VA 0.001 neutral

Workloads. We consider all benchmarks used in recent prior
work [75], including both replication-sensitive workloads as
well as non-replication-intensive workloads. Table II lists
the five replication-sensitive benchmarks: AlexNet (AN) [1],
ResNet (RN) [1], SqueezeNet (SN) [1], Neural Network
(NN) [11] and Matrix Multiply (MM) [51]. We consider five
configurations in which we vary the size of the shared data
set relative to the LLC size from small to large — this is
to show that SelRep LLC is robust across data set sizes. We
vary the input data set for the latter two benchmarks, NN and
MM, while keeping the LLC size constant at 4 MB. The shared
data set size varies between 600 KB and 22.8 MB for NN,
and between 40 KB and 3.8 MB for MM. It is impossible to
vary the input data set size for the other three benchmarks,
AN, RN and SN — the input data set is hard-coded in the
benchmark — nevertheless, these workloads will be executed
with different input data set sizes in production. We therefore
take a different approach for these benchmarks: instead of
varying the input data set size, we take a dual approach and
vary the LLC size. In particular, the shared data set size is
fixed for these benchmarks (1 MB for AN, 4.2 MB for RN,
and 0.7 MB for SN), and we vary the LLC size from 4 MB to
128 KB for AN and RN, and from 8 MB to 1 MB for SN.

The non-replication-intensive benchmarks are listed in Ta-
ble III. These benchmarks are insensitive to (selective) data
replication, yet we include these workloads in the analysis
to demonstrate that SelRep LLC is performance-neutral for
such workloads. We identify two categories: workloads with
a large shared data set (but low sharing degree) — these
workloads prefer a shared LLC organization because data
replication dramatically increases the LLC miss rate while
providing limited bandwidth benefits — versus workloads with
a very small shared data set — these workloads are neutral to
the LLC organization, i.e., a shared and private LLC perform
equally well for these workloads.

V. EVALUATION

We now evaluate SelRep LLC quantitatively and consider
the following LLC organizations:

o Shared LLC. This is the standard shared LLC organi-
zation, i.e., each LLC slice can be accessed by all SM
clusters. Shared data appears in at most one LLC slice.

o Private LLC. This is a private LLC organization in which
an LLC slice is private to an SM cluster. Shared data
appears in multiple LLC slices if accessed by multiple
SM clusters.

« Adaptive LLC. This is the state-of-the-art adaptive LLC
organization [75] which dynamically chooses between a
shared versus private LLC. Adaptive LLC is an all-or-
nothing approach, i.e., the data is either replicated across
all LLC slices or it is not replicated at all.

o SelRep LLC. This is the LLC organization proposed
in this work which determines the replication degree by
balancing LL.C capacity and bandwidth.

« Best Static Replication (BSR). This is a best-static
approach in which we determine the best replication
degree through offline profiling. We evaluate all power-
of-two replication degrees (0, 2, 4, 8 and 16) and
select the best one on a per-kernel, per-configuration
basis. Assuming the same configuration for profiling and
evaluation is unrealistic, hence BSR only serves as a point
of comparison.

A. Performance

We first evaluate SelRep LLC’s impact on performance.
Figure 11 compares the Shared, Private, Adaptive and SelRep
LLC organizations against the Best Static Replication (BSR)
approach, for each of the five replication-sensitive benchmarks
across all five configurations; the bottom-right figure reports
average performance. The Private LLC organization achieves
the best performance for the small configuration: because the
shared data set is small compared to the LLC size, replicating
it across LLC slices substantially increases the achievable
LLC bandwidth without overly penalizing the LLC miss rate.
In contrast, the Shared LLC organization achieves the best
performance for the large configurations: replicating a large
shared data set increases pressure on LLC capacity leading to
increased LLC miss rates, which offsets the increased LLC
bandwidth potential. Adaptive LLC achieves the best of both
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Fig. 12: Performance improvement for the Adaptive and
SelRep LLC organizations relative to a Shared LLC.
SelRep LLC improves performance by 19.7% on average
compared to 7.9% for the Adaptive LLC.

worlds and dynamically selects the Private or Shared LLC
organization that achieves the highest performance for the
given configuration.

Unfortunately, the Adaptive LLC leaves significant perfor-
mance on the table compared to BSR. Full replication (as in
Private LLC) versus no replication (as in Shared LLC) is a too
coarse-grained decision. Determining the optimum replication
degree for a given configuration, as obtained through BSR on a
per-kernel basis, is shown to provide a significant performance
benefit. Unfortunately, and as mentioned before, BSR assumes
offline profiling for the same configuration as for the evaluation,
which is unrealistic.

SelRep LLC closely approaches BSR for all benchmarks.
By selectively replicating the shared data set across LLC slices,
SelRep LLC is able to balance the LLC miss rate and effective
LLC bandwidth to maximize performance. We find that SelRep
LLC is within 2.3% compared to BSR on average (and by at
most 7.3% for NN). It is interesting to note that SelRep LLC
surpasses BSR for RN by 1.9%. The reason is that the optimum
replication degree varies dynamically during the execution.
Performance Improvement over Prior Work. Figure 12
reports the performance improvement through SelRep LLC
relative to a Shared LLC organization and compared against
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Fig. 13: Replication degree distribution. Se/lRep LLC dynam-
ically selects the replication degree for the given workload and
configuration at hand.

the state-of-the-art Adaptive LLC. SelRep LLC improves
performance by 19.7% on average (and up to 61.6%) relative
to the Shared LLC and by 11.1% on average compared to the
Adaptive LLC. Whereas the Adaptive LLC only improves
performance for the smallest configurations, SelRep LLC
improves performance across the broad range of configurations.
This demonstrates SelRep LLC’s key feature: SelRep LLC
robustly improves performance over a Shared and Adaptive
LLC organization, irrespective of the size of the shared data
set relative to the LLC. SelRep LLC significantly improves
performance upon both the Shared LLC and the Adaptive
LLC organizations for the medium-sized configurations (‘x_1’
through ‘»_3’), i.e., by up to 31.0% (RN), 29.6% (NN), 27.3%
(MM) and 16.5% (AN).

Replication Degree. Figure 13 reports the replication degree
for the different benchmarks and configurations under SelRep
LLC. These results are computed by recording the replication
degree for each epoch under SelRep LLC, out of which we
then compute a distribution of the replication degree. SelRep
LLC increases replication for smaller shared data sets. Also,
different applications prefer different replication degrees. In
particular, for AN and RN, we note the full swing from full
replication to no replication as we range from small to large
configurations. For SN, NN and MM on the other hand, the
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Fig. 15: Effective LLC bandwidth measured as LLC
response rate (replies/cycle). SelRep LLC achieves the highest
effective LLC bandwidth which explains why it outperforms
the other LLC organizations.

range is limited to 2-4, 4-16, and 0-8, respectively.

Discussion and Analysis. We now dive deeper and analyze
where the performance improvements are coming from. We
report the LLC miss rate and effective LLC bandwidth in
Figures 14 and 15, respectively. The effective LLC bandwidth
is measured as the LLC response rate, or the number of LLC
data replies per cycle. (We report average curves because of
space constraints — curves for the individual benchmarks
show similar trends.) The LLC miss rate increases sharply
from small to large configurations under the Private LLC
organization. Shared-data replication increases pressure on LLC
capacity which leads to a higher miss rate. The miss rate is
substantially lower under the Shared LLC organization because
only a single copy of the shared data set is maintained. For all
but the smallest configuration (i.e., avg_1 through avg_4),
the effective LLC bandwidth is higher for the Shared LLC
compared to the Private LLC organization, which explains why
the Shared LLC outperforms the Private LLC organization. The
situation is different for the smallest configuration (avg_J0).
Data replication leads to a higher effective LLC bandwidth for
the Private LLC while having a limited impact on the LLC
miss rate. This explains why the Private LLC outperforms
the Shared LLC organization by a significant margin for the
smallest configuration.

The Adaptive LLC organization combines the best of both
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Fig. 16: Normalized energy consumption. Se/Rep LLC
reduces energy consumption by 5.7% on average compared
relative to the shared cache configuration.

worlds by reverting to a Private LLC organization for shared
data sets that are small compared to the LLC size. In other
words, replicating a small shared data set across all LLC slices
has limited impact on the LLC miss rate, while at the same
time substantially increasing the effective LLC bandwidth. The
increase in LLC bandwidth outweighs the increase in LLC miss
rate, which leads to a substantial performance improvement
for the smallest configuration (avg_0).

SelRep LLC achieves the highest effective LLC bandwidth,
which explains why it outperforms the other LLC organizations
across all configurations. However, SelRep LLC increases the
LLC miss rate across all configurations compared to the Shared
LLC. This increase in LLC miss rate is offset by the increase in
effective LLC bandwidth. Note that SelRep LLC’s performance
improvement over the Shared LLC is higher for the smaller
configurations, which is explained by the larger gap in effective
LLC bandwidth. We observe a similarly large gap in effective
LLC bandwidth between SelRep LLC and Adaptive LLC for
the large configurations, which likewise explains SelRep LLC’s
performance improvements over the Adaptive LLC for those
large configurations.

In summary, the key insight behind SelRep LLC is that
replicating shared data across a select number of LLC slices
improves overall application performance by carefully balanc-
ing the increase in effective LLC bandwidth versus the increase
in LLC miss rate. In contrast to the state-of-the-art Adaptive
LLC, which dynamically selects between full replication across
all LLC slices or no replication, the SelRep LLC organization
dynamically controls the degree of replication to balance LLC
bandwidth and miss rate in a fine-grained manner to optimize
performance.

B. Energy Consumption

We now evaluate how the LLC organization affects energy
consumption. On the one hand, data replication increases the
LLC miss rate and therefore memory traffic, which in turn leads
to higher power consumption in the memory subsystem. On the
other hand, improved performance through increased effective
LLC bandwidth reduces execution time, which reduces energy
consumption. Figure 16 breaks down overall system (GPU and
memory) energy consumption (lower-is-better) for the Adaptive
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Fig. 17: Sensitivity analyses. (An asterisk denotes the base-
line configuration.) SelRep LLC yields higher performance
benefits with larger LLC sizes, higher memory bandwidth
(GB/s), larger SM count and smaller NoC/LLC bandwidth
(TB/s). The performance benefit dampens with a larger LI
cache size (KB) and the BCS CTA scheduling policy. SelRep
LLC is insensitive to increased MC-Router delay.

LLC and SelRep LLC organizations relative to a Shared LLC.
Overall, SelRep LLC reduces energy consumption by 4.6% and
5.7% on average compared to Adaptive LLC and the shared
cache, respectively. The reason is that SelRep LLC reduces
execution time significantly while only minorly increasing
power consumption.

C. Sensitivity Analyses

We now perform a number of sensitivity analyses to
demonstrate SelRep LLC’s effectiveness across the broader
design space, see also Figure 17. The design points with an
asterisk denote the baseline configuration.

LLC size. Selective replication is sensitive to LLC size. A
smaller LLC size decreases its hit rate and decreases the
opportunity from shared-data replication. A larger LLC size
on the other hand increases the opportunity: replicating shared
data across LLC slices increases the effective LLC bandwidth
without being offset by the increase in LLC miss rate. We report
a 26.9% average performance improvement over a Shared LLC
organization for an LLC size that is twice as big as the default
LLC size.

Memory bandwidth. SelRep LLC is also sensitive to memory
bandwidth. Reduced memory bandwidth dampens the per-
formance improvement through SelRep LLC because of a
reduction in the effective LLC bandwidth, which implies limited
data replication. In contrast, increasing memory bandwidth
increases the opportunity and improves performance by 22.7%
on average for a 900 GB/s memory system.

SM count. We now vary SM count while proportionally scaling
memory bandwidth and LLC slice count to maintain an overall
balanced system. We note that performance improves under the
SelRep LLC organization while scaling the system for higher
parallelism. The reason is that the concurrent access rate to
shared data increases with an increased number of SMs, i.e.,
a larger number of concurrently executing CTAs access the
same shared data set which increases pressure on the LLC.
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Fig. 18: Evaluating SelRep LLC for the non-replication-
sensitive benchmarks. SelRep LLC does not adversely impact
non-replication-sensitive workloads compared to the baseline
Shared LLC.

Selective replication increases the effective LLC bandwidth,
thereby improving overall performance. We report an average
performance improvement of 27.7% for a GPU with 128 SMs.
We thus conclude that SelRep LLC is a scalable solution for
future large-scale GPU systems.

L1 cache size. Increasing the L1 data cache size improves its
hit rate and decreases the number of LLC accesses. This in
turn decreases the performance opportunity for SelRep. Yet,
SelRep LLC still improves performance by 15.8% on average
for an increased L1 cache size of 96 KB.

CTA scheduling. In addition to the baseline two-level round-
robin CTA scheduling policy (2L-RR), we also consider block
CTA scheduling (BCS) which assigns consecutive CTAs to
the same SM to improve L1 cache locality [38]. SelRep LLC
improves performance by 14.5% on average, which is slightly
less than for the round-robin policy because of improved L1
cache performance.

NoC/LLC bandwidth. We decreased the data width of the
crossbar and LLC from 32 bytes to 16 bytes, thereby decreasing
NoC/LLC bandwidth from 2.9 TB/s to 1.4 TB/s. With less
NoC/LLC bandwidth, SelRep LLC improves performance by
25.7% on average compared to the Shared LLC configuration.
Lower NoC/LLC bandwidth creates more contention, hence
increasing the relative importance of SelRep LLC.

SelRep LLC delay. Supporting SelRep LLC may incur an
additional delay in the MC-routers. Adding (an) extra cycle(s)
however does not affect SelRep LLC’s achieved performance
improvement. The reason is that GPUs are mostly sensitive to
bandwidth and not latency, i.e., the extra cycle(s) do not affect
NoC bandwidth. Moreover, it affects memory request latency
and not the reply latency — and prior work has shown that GPU
performance is more sensitive to reply network performance
than request network performance [29], [78].

D. Other GPU workloads

Not all workloads are sensitive to data sharing and replication.
It is therefore important to demonstrate that the proposed
SelRep LLC organization does not adversely impact the perfor-
mance for such workloads. Figure 18 reports performance for
SelRep LLC normalized to Shared LLC for the non-replication-



sensitive benchmarks and shows that these workloads are
performance-neutral to SelRep LLC.

VI. RELATED WORK

GPU LLC organization. The most closely related work to
ours is the Adaptive LLC [75] which dynamically selects either
a shared or private LLC organization based on application
behavior. We show in Section V that the Adaptive LLC leaves
significant performance on the table since it, in contrast to
SelRep LLC, does not support selective replication.

CPU LLC organization. Private versus shared LLC organi-
zations have been studied extensively in the context of multi-
core processors with Non-Uniform Cache Access (NUCA)
LLCs. For instance, Beckmann et al. [12] replicate data blocks
based on probabilistic filtering, and Chang et al. [16] propose
cooperative caching. Chishti et al. [19] propose controlled
replication to intelligently place replicas to balance latency and
capacity, and Hossain et al. [25] leverage the cache coherence
protocol to provide larger LLC capacity with localized data
and metadata access for shared and private data. Kurian et
al. [37] build a locality classifier on top of Reactive-NUCA [23]
which only replicates the cache lines with high reuse, while
ESP-NUCA [44] uses replicas and victims to take advantage
of both private and shared cache organizations. A number of
other works also explore latency-capacity trade-offs in multi-
core LLCs (e.g., [13], [23], [26], [63]). These approaches are
fundamentally different from GPU-focused LLC management
because their key benefit comes from placing data close to the
cores that need it and thereby reduce latency. In contrast, GPUs
are latency-tolerant but bandwidth-sensitive, which means
that replication schemes like SelRep LLC need to increase
bandwidth rather than reduce latency.

A different direction of related work propose schemes that
dynamically change cache organization in multi-core processors.
Qureshi [54] proposes dynamic spill-receive to efficiently share
cache capacity between applications in private caches, and
Jaleel et al. [28] propose a thread-aware dynamic insertion
policy. PIPP [69] combines dynamic insertion and promotion
policies in shared caches, while Vantage [58] enables fine-
grained cache partitioning. Herrero et al. [24] use distributed
cache partitioning to optimize cache use, and MorphCache [60]
dynamically alters the cache topology to enable sharing multiple
cache slices between cores. GDP [27] allocates LL.C capacity
to processes based on slowdown predictions, while Rolan
et al. [57] propose adaptive set-granular cooperative caching.
These works are not directly applicable to GPUs as they exploit
that different threads (processes) in multi-threaded (multi-
programmed) workloads have different memory requirements.
In contrast, the SMs of the GPU typically execute CTAs from
the same kernel which results in limited diversity in memory
requirements across SMs.

GPU architecture. Other related work optimizes various
aspects of the GPU architecture, e.g., warp scheduling [33],
[39], [43], [56], [66], L1 cache management [31], [59], [65],
[68], register file design [3], [30], [32], NoC optimization [10],

[35], [73], [77], [78], and SM resource virtualization [64], [72].
Recent work also provides approaches for efficient multitasking
in GPUs [4], [52], [53], [62], [67], [71], [76], virtual memory
management [9], and design considerations for multi-module
GPUs [8], [45]. These approaches are all orthogonal to SelRep
LLC as they do not consider selective replication of shared
read-only data.

VII. CONCLUSION

We have now presented SelRep LLC which selectively
replicates shared read-only data across LLC slices to improve
bandwidth while preserving shared-data locality. SelRep LLC
achieves this by first identifying read-only shared data structures
at compile-time and accessing these with a special-purpose load
instruction. At runtime, SelRep LLC monitors these accesses
to determine the appropriate balance point where replication
improves bandwidth to shared data while ensuring that the
data set remains cached. We show that SelRep LLC, unlike
prior work, consistently provides high performance across
a broad range of shared data set sizes for our replication-
sensitive applications. More specifically, SelRep LLC improves
performance by 19.7% and 11.1% on average (and up to 61.6%
and 31.0%) compared to the shared LLC baseline and Adaptive
LLC [75], respectively.
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