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ABSTRACT
A fundamental part of developing software is to understand what
the application spends time on. This is typically determined using
a performance profiler which essentially captures how execution
time is distributed across the instructions of a program. At the
same time, the highly parallel execution model of modern high-
performance processors means that it is difficult to reliably attribute
time to instructions — resulting in performance analysis being
unnecessarily challenging.

In this work, we first propose the Oracle profiler which is a
golden reference for performance profilers. Oracle is golden because
(i) it accounts every clock cycle and every dynamic instruction,
and (ii) it is time-proportional, i.e., it attributes a clock cycle to
the instruction(s) that the processor exposes the latency of. We
use Oracle to, for the first time, quantify the error of software-
level profiling, the dispatch-tagging heuristic used in AMD IBS
and Arm SPE, the Last-Committing Instruction (LCI) heuristic used
in external monitors, and the Next-Committing Instruction (NCI)
heuristic used in Intel PEBS, resulting in average instruction-level
profile errors of 61.8%, 53.1%, 55.4%, and 9.3%, respectively. The
reason for these errors is that all existing profilers have cases in
which they systematically attribute execution time to instructions
that are not the root cause of performance loss. To overcome this
issue, we propose Time-Proportional Instruction Profiling (TIP)which
combines Oracle’s time attribution policies with statistical sampling
to enable practical implementation. We implement TIP within the
Berkeley Out-of-Order Machine (BOOM) and find that TIP is highly
accurate. More specifically, TIP’s instruction-level profile error is
only 1.6% on average (maximally 5.0%) versus 9.3% on average
(maximally 21.0%) for state-of-the-art NCI. TIP’s improved accuracy
matters in practice, as we exemplify by using TIP to identify a
performance problem in the SPEC CPU2017 benchmark Imagick
that, once addressed, improves performance by 1.93×.
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1 INTRODUCTION
The imminent end of Moore’s law implies that software inefficien-
cies can no longer be hidden through technology scaling. Analyzing
performance-critical workloads in detail is extremely challenging
though given the high (and continuously increasing) complexity
of both software and hardware in modern-day computer systems.
Software developers thus critically need practical and accurate tools
to automatically attribute execution time to source code constructs
such as instructions, basic blocks, and functions [22].

A performance profile (statistically) attributes execution time to
application-level symbols. Depending on the use case, developers
can select symbols at different granularities, including functions,
basic blocks, and individual instructions. Gathering profiles without
hardware support is inherently inaccurate (see Figure 1). Software-
level profilers (e.g., Linux perf [34]1) interrupt the application and
retrieve the address of the instruction that execution will resume
from after the interrupt has been handled. Hence, the current in-
flight instructions will drain before the interrupt handler is executed
which means that the sampled instruction can be tens or even
hundreds of instructions away from the instruction(s) that the
processor was committing at the time the sample was taken. This
phenomenon is known as skid [52] and can be addressed by adding
hardware support for instruction sampling (e.g., Intel PEBS [26],
AMD IBS [15], or Arm SPE [2]).

Hardware-supported profiling enables sampling in-flight instruc-
tions without interrupting the application and hence eliminates
skid by (practically) removing the latency from sampling decision
to sample collection. While all hardware profilers rely on sampling,
i.e., collecting an instruction address at regular time intervals, their
instruction selection policies differ. Intel’s Processor Event-Based
Sampling (PEBS) [26] returns the address of the next instruction
that commits after the sample is taken, i.e., a Next Committing
Instruction (NCI) heuristic. Profiling approaches [14, 47] that use
debug interfaces, such as Arm CoreSight [3], systematically sample
the Last Committed Instruction (LCI). Finally, AMD’s Instruction-
Based Sampling (IBS) [15] and Arm’s Statistical Profiling Extension
(SPE) [2] tag an instruction at Dispatch and then retrieve the sample
when the instruction commits (which unlike the commit-focused
approaches enable gathering data about how this instruction flows

1Software-level profiling is the default for perf, but it can be configured to use PEBS
or IBS for instruction sampling when available.
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Figure 1: Instruction-level profile error of state-of-the-art
profilers compared to our Time-Proportional Instruction
Profiler (TIP). Existing profilers are inaccurate due to lack of ILP
support and systematic latency misattribution.

through the processor back-end [13]). Unfortunately, it is entirely
unclear if these heuristics result in accurate performance profiles
because we lack a golden reference — an unsolved problem that
has plagued researchers and practitioners [5, 37, 52].
Oracle Profiler. We hence propose the Oracle profiler as a golden
reference for performance profiling. The fundamental principle
when deriving the Oracle profiler is that a profiler must perform
time-proportional attribution, i.e., that every clock cycle is attributed
to the instruction(s) that the processor exposes the latency of. The
Oracle profiler hence focuses on the processor’s commit stage be-
cause this is where the latency cost of each instruction is resolved
and becomes visible to software. More specifically, the best-case
instruction latency in a processor that can commit𝑤 instructions
per cycle is 1/𝑤 cycles — meaning that the processor has been able
to hide all of the instruction latency except for 1/𝑤 cycles. If the
processor is unable to fully hide an instruction’s execution latency,
the instruction will stall at the head of the reorder buffer (ROB) and
thereby block forward progress; i.e., the time commit blocks is the
instruction’s contribution to the application’s execution time.

The Oracle profiler enables us to establish the accuracy of state-
of-the-art hardware performance profiling approaches. (Section 4
describes our experimental setup and error metric.) Figure 1a shows
that Software profiling, the Dispatch-tagging strategy used by
AMD’s IBS [15], and the LCI-strategy of external profilers [3, 14, 47]
all yield inaccurate instruction-level profiles with average errors of
61.8%, 53.1%, and 55.4%, respectively. The NCI-strategy used in Intel
PEBS [26] is more accurate, but still leaves room for improvement
(9.3% average error). These errors occur because existing profilers
are not time-proportional. More specifically, they (i) do not account
for ILP — i.e., incorrectly attributing the latency of co-committed
instructions to only one of the instructions — and (ii) all suffer from
systematic misattribution — i.e., attributing the latency of processor
stalls to a different instruction than the one that caused the stall. For
example, NCI systematically blames the instruction after a pipeline
flush for stalls due to misspeculation which results in a 21.0% error
on the flush-intensive Imagick benchmark (see Figure 1b). While
Oracle is time-proportional, it cannot be implemented in real sys-
tems because accounting every instruction and every clock cycle
generates an impractical amount of data (179GB/s in our setup).
Time-Proportional Instruction Profiler (TIP). TIP bridges the
gap between the state-of-the-art profilers and Oracle by combining
the time attribution policies of Oracle with statistical sampling,

thereby reducing the amount of profiling data by several orders of
magnitude compared to Oracle (i.e., 192 KB/s versus 179GB/s at
the commonly used 4KHz sampling frequency [34]) at the cost of
introducing statistical error. Interestingly, Figure 1 shows that sta-
tistical error is negligible in practice. More specifically, the average
instruction-level profile error of TIP is merely 1.6% — hence TIP
reduces average error by 5.8×, 34.6×, 33.2×, and 38.6× compared to
NCI, LCI, Dispatch, and Software profiling, respectively. We imple-
mented TIP in the Berkeley Out-of-Order Machine (BOOM) [57]
within the FireSim [28] simulation infrastructure.2

While low profile error is attractive, the real benefit of accu-
rate performance profiling comes from helping developers write
more efficient applications. To illustrate that TIP’s accuracy mat-
ters in practice, we use TIP and NCI to analyze the SPEC CPU2017
benchmark Imagick. We find that while both TIP and NCI are
accurate at the function-level (0.3% and 0.6% average error, res-
pectively), the function-level profile does not clearly identify the
performance problem; this is a common challenge with function-
level profiles as developers use functions to organize functionality
rather than performance. At the instruction-level, TIP correctly
attributes time to Control Status Register (CSR) instructions that
cause pipeline flushes whereas NCI misattributes execution time
to the next-committing instruction (see Section 6 for details). In-
terestingly, Imagick does not need to execute the CSR instructions,
and replacing them with nop instructions yields a 1.93× speed-up
compared to the original, mostly due to the second-order effect that
removing flushes improves the processor’s ability to hide latencies.
Key Contributions:

• We propose a golden reference — the Oracle profiler —which
enables quantifying performance profiler accuracy. To en-
sure that Oracle is robust, we implement it within a 4-wide
BOOM core [57], and use the FPGA-accelerated FireSim [28]
to simulate SPEC CPU2017 [44] and PARSEC [6] benchmarks
to completion in a full-system setup.

• We explain how time-proportional performance profiles can
be constructed, and show that existing profilers fall short
because they are not time-proportional, i.e., they do not
account for ILP and systematically misattribute latencies.
More specifically, software-level profiling [34], the dispatch-
tagging heuristic used in AMD IBS [15] and Arm SPE [2], the
LCI-heuristic used in external monitors [3, 14, 47], and the
NCI-heuristic used in Intel PEBS [26], yield average errors
of 61.8%, 53.1%, 55.4%, and 9.3%, respectively.

• We propose the Time-Proportional Instruction Profiler (TIP)
which combines Oracle’s time attribution policies with sta-
tistical sampling to retain high accuracy (1.6% average er-
ror) while enabling real-system implementation. TIP is sig-
nificantly more accurate than existing profilers, i.e., it re-
duces instruction-level profile error by 5.8×, 34.6×, 33.2×,
and 38.6× compared to NCI, LCI, Dispatch, and Software
profiling, respectively.

• We use TIP and NCI to analyze the SPEC CPU2017 bench-
mark Imagick. TIP pinpoints a performance problem that,
once addressed, improves performance by 1.93× whereas
NCI’s profile is inconclusive.

2Our tools are available at https://github.com/EECS-NTNU.

https://github.com/EECS-NTNU
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Figure 2: LCI, NCI and TIP sample instructions at commit
whereas Dispatch (Software) samples at dispatch (fetch). Dis-
patch and Software are biased because (i) different instructions spend
more time in some pipeline stages than others, and (ii) the time an
instruction spends at the head of the ROB directly impacts execution
time.

2 TIME-PROPORTIONAL PROFILING
Practical performance profilers rely on statistical sampling to create
a profile, i.e., they randomly retrieve the address(es) of (a) currently
executing instruction(s). Since sampling is random in time, the prob-
ability of sampling an instruction — and time hence being attributed
to it — should be proportional to the instruction’s impact on overall
execution time, and we refer to this property as time-proportional
attribution. Consider for example a processor that executes a single
instruction at a time: an instruction that takes two clock cycles to
execute should be attributed twice as much time as a single-cycle
instruction.

Understanding why sampling at the commit stage enables time-
proportional attribution requires going into some detail on how
an out-of-order processor operates (see Figure 2a). Out-of-order
processors consist of an in-order front-end that fetches and de-
codes instructions, predicts branches, performs register renaming,
and finally dispatches instructions to the reorder buffer (ROB) and
to the issue queues of the appropriate execution unit [19]. Then,
instructions are executed as soon as their inputs are available (pos-
sibly out-of-order). Instructions are typically committed in program
order to support precise exceptions, and the ROB is used to track in-
struction order. Sampling at commit hence enables time-proportional
attribution because this is where, not only an instruction’s execution
becomes visible to software, but also its latency impact on overall
execution time becomes visible.

Sampling at commit is a necessary but not sufficient condition for
achieving time-proportional attribution because the profiler must
also attribute time to the instruction that the processor spends time
on (e.g., the time spent resolving a mispredicted branch must be
attributed to the branch and not some other instruction). We find
that none of the existing profilers we consider in this work do time-
proportional attribution as Dispatch and Software do not sample
at commit whereas NCI and LCI misattribute time. We will first
exemplify why not sampling at commit is inaccurate in Section 2.1
before we explain why our Oracle profiler does time-proportional
attribution, and why NCI and LCI do not, in Section 2.2.

2.1 Dispatch and Software Profiling
Dispatch sampling (as used in AMD IBS [15], Arm SPE [2], and
ProfileMe [13]) selects the instruction to be profiled at the dispatch
stage and then tracks it through the processor back-end. While this
provides interesting insight regarding how an individual instruc-
tion progresses through the pipeline, it is not time-proportional.
Figure 2b shows the state of a processor that is currently stalling
on a load instruction (see 1 ). Since the processor has a number of
independent instructions to process, it is able to execute these in-
structions while the load is pending. However, this leads to the ROB
filling up with instructions which in turn stalls dispatch (see 2 ).
This results in instruction I10 getting stuck at dispatch due to the
back-pressure created by the load instruction. I10 will hence attract
samples under the dispatch sampling policy as it spends more time
in the dispatch stage than other instructions. Figure 2c shows the
situation in Figure 2b from the perspective of the commit stage. If
we sample at commit, the load instruction will attract samples as it
spends more time at the head of the ROB than the other instruc-
tions (see 3 ). Sampling at commit hence enables time-proportional
attribution, i.e., the load instruction is sampled more frequently
because the processor spends more time executing it. In fact, the
processor only exposes a half-clock-cycle latency for I10 because
its execution latency was almost completely hidden (see 4 ).

Software profiling is also not time-proportional due to a phe-
nomenon prior work referred to as skid [15, 52]. As with Dispatch,
long-latency instructions lead to commit stalls that attract samples,
but, unlike Dispatch, Software attributes time to instructions that
are fetched around the time the sample is taken. The reason is
that Software relies on interrupts. Upon an interrupt, the processor
stores the application’s current Program Counter (PC) and transfers
control to the interrupt handler which then attributes the sample to
the instruction address in the PC. Software hence tends to attribute
latency to instructions that are even further away from the stalled
instruction in the instruction stream than Dispatch.

2.2 Oracle Profiling
In this section, we present Oracle which is time-proportional by
design, i.e., it attributes each clock cycle during program execution
to the instruction(s) which the processor exposed the latency of
in this cycle. While NCI and LCI both sample at commit, they
employ different instruction selection policies. More specifically,
NCI (as supported by Intel PEBS [26]) samples the next-committing
instruction, whereas LCI (as supported by external monitors [4, 14,
25, 42, 47]) samples the last-committed instruction, and we will
now explain why neither policy is time-proportional.
Oracle overview. Oracle leverages the fundamental insight that
the commit stage is in one of four possible states in each clock
cycle. Hence, every clock cycle, the Oracle first checks if the ROB
contains instructions (i.e., it is not empty). If the ROB contains
(an) instruction(s), the Oracle profiler checks if the processor is
committing (an) instruction(s) in this cycle. If so, the processor is in
the Computing state (State 1 in Figure 3), and the Oracle attributes
1/𝑛 clock cycles to each of the 𝑛 committing instructions. If the
processor is not committing instructions and there are instructions
in the ROB, it is in the Stalled state (State 2 in Figure 3). In this
case, there is an instruction at the head of the ROB but it cannot
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Figure 3: Oracle profiler clock cycle attribution overview.

be committed as it has not yet fully executed. The Oracle hence
attributes the cycle to the instruction at the head of the ROB as it
is blocking commit.

If the ROB is empty, Oracle attributes the clock cycle to the
instruction that cleared the ROB. If the ROB is empty due to mis-
speculation, the processor is in the Flushed state (State 3 in Figure 3).
More specifically, the processor is in the flushed state if it commit-
ted all non-speculative in-flight instructions before the ROB could
be refilled. In this case, the Oracle attributes the cycle to the in-
struction that caused the flush (e.g., a mispredicted branch). The
ROB can also be empty because the front-end is not supplying
instructions, typically due to an instruction cache or instruction
Translation Lookaside Buffer (TLB) miss. In this case, the processor
is in the Drained state (State 4 in Figure 3), and the Oracle attributes
the cycle to the first instruction that enters the ROB after the stall
as this instruction delayed the front-end.
Comparing Oracle against NCI and LCI. We now explain Or-
acle in more detail for the four fundamental states, and compare
against NCI and LCI to explain in which cases they do or do not
misattribute clock cycles.
State 1: Computing. In the computing state, Oracle accounts 1/𝑛
cycles to each committed instruction where 𝑛 is the number of
instructions committed in that cycle (i.e., 𝑛 is a number between
1 and the processor’s commit width). Figure 4a illustrates this be-
havior by showing the four oldest ROB-entries of a processor with
2-wide commit. In cycle 1, instructions I1 and I2 are committing
and Oracle hence accounts 0.5 cycles to both. In contrast, NCI and
LCI select a single instruction to attribute the clock cycle to. This is
undesirable as it overly attributes cycles to some instructions while
missing others — possibly to the extent that certain instructions
are executed but not represented in the profile. Oracle, on the other
hand, accounts for every clock cycle and every dynamic instruction.

Not acknowledging ILP within the commit stage renders the NCI
and LCI profiles difficult to interpret. The key reason is that many
applications execute similar instruction sequences over and over.
Since NCI and LCI select instructions to sample with a fixed policy,
they will be biased towards selecting certain instructions at the
expense of others. It is hence difficult for developers to ascertain
if a latency difference between instructions in straight-line code
segments is due to a performance issue (e.g., some instructions
stalling more than others) or attribution bias.

State 2: Stalled. Figure 4b illustrates how Oracle, NCI, and LCI
handle pipeline stalls that occur when instructions reach the head
of the ROB before they have been executed. In this example, I1
is committed in cycle 1 before commit stalls for 40 cycles on the
load instruction from cycle 2 to 41; a 40-cycle latency is consistent
with a partially hidden Last-Level Cache (LLC) hit in our setup.
Oracle attributes the 40 cycles where the processor is stalled to the
oldest instruction in the ROB since this is the instruction that the
processor is stalling on, before attributing 0.5 cycles to the load and
0.5 cycles to I3 when they both commit in cycle 42. NCI agrees with
Oracle with the exception of missing I3 in cycle 42 because it does
not handle ILP. LCI, on the other hand, completely misattributes
the load stall as I1 is the last-committed instruction from cycle 1 to
cycle 41, i.e., LCI attributes 41 cycles to I1 and only a single cycle
to the load (when it commits in cycle 42).
State 3: Flushed. Pipeline flushes occur when the processor has spec-
ulatively fetched and (possibly) executed instructions that should
not be committed. Figure 4c illustrates how Oracle handles this case
for a mispredicted branch. Some cycles before the example starts,
the branch instruction was executed, and the processor discovered
that the branch was mispredicted. The processor hence squashed all
speculative instructions (e.g., I3 and I4). In cycle 1, I1 and the branch
are committed, and Oracle attributes 0.5 cycles to both instructions.
In parallel, the front-end fetches instructions along the correct path
which ultimately leads to instructions being dispatched in cycle
6; branch mispredicts lead to the ROB being empty for 3.5 cycles
on average in our setup. Oracle hence attributes the 4 cycles the
ROB is empty to the branch instruction and 1 cycle to I5 (since
the processor is stalling on it in cycle 6). LCI correctly attributes
the stall cycles to the mispredicted branch whereas NCI does not.
More specifically, NCI attributes the empty ROB cycles to I5 as it
will be the next instruction to commit. Moreover, it attributes zero
cycles to the branch instruction since it is committed in parallel
with I1. It will undoubtedly be challenging for a developer to un-
derstand that an instruction that appears to not take any time is in
fact responsible for the ROB being empty.

While the above attribution policy is sufficient to handle other
misspeculation cases such as load-store ordering (i.e., a younger
load was executed before an older store to the same address), flushes
due to exceptions need to be handled differently. More specifically,
an exception fires when the excepting instruction reaches the head
of the ROB which in turn results in the pipeline being flushed and
control transferred to the OS exception handler.When the exception
has been handled (e.g., the missing page has been installed in the
page table), the excepting instruction is re-executed. Hence, Oracle
attributes the cycles where the ROB is empty due to an exception to
the instruction that caused the exception. Once the instructions of
the exception handler are dispatched, the Oracle attributes cycles
to these instructions (i.e., the Oracle does not differentiate between
application and system code).
State 4: Drained. The ROB drains when the processor runs out of in-
structions to execute, for instance due to an instruction cache miss.
This situation differs from pipeline flushes in that all instructions
to be drained from the ROB are on the correct path and hence will
be executed and committed. Figure 4d exemplifies this situation. In
cycle 1, I1 and I2 are committed. This leaves the ROB empty until
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(a) Computing. (b) Stalled. (c) Flushed. (d) Drained.

Figure 4: Example illustrating the Oracle, NCI, and LCI profilers on a 2-wide out-of-order processor. NCI and LCI fall short because
they do not account for ILP at the commit stage and misattribute pipeline stall, flush and/or drain latencies.

cycle 42. The culprit is that the processor missed in the instruc-
tion cache when fetching I3, and that the latency of retrieving the
cache block and resuming execution was only partially hidden by
executing previously fetched instructions. Oracle hence attributes
0.5 cycles to I1 and I2 since they both commit in cycle 1. It also
attributes 41 cycles to I3; 40 cycles is due to the drain and one cycle
is attributed because I3 is stalled at the head of the ROB in cycle 42.
Similar to the stalled case, NCI is mostly correct since I3 is the next
instruction to commit when the instruction cache miss is resolved.
In contrast, LCI misattributes the empty ROB cycles to I2.
Putting-it-all-together. We have so far discussed the four fun-
damental states of the commit stage (mostly) independently, but
instructions often accumulate cycles across multiple states. For
example, I5moves from the Flushed state to the Stalled state within
the example in Figure 4c, and the processor will be in the Com-
puting state when I5 eventually commits. The same applies to I3
from Drained to Stalled (Figure 4d). This observation is critical
to understand how Oracle handles more complex situations, and
we now describe how the four states are sufficient for serialized
instructions (e.g., fences and atomic instructions) and page misses.

Serialized instructions require that (i) all prior instructions have
fully executed before they are dispatched, and (ii) that no other
instructions are dispatched until they have committed. While the
ROB drains, Oracle will account time to the preceding instructions
according to the time they spend at the head of the ROB. When
the last preceding instruction commits, the serialized instruction
is dispatched and hence immediately becomes the oldest in-flight
instruction. Oracle hence accounts time to this instruction as Stalled
while it executes and as Computing the cycle it commits. Once it
has committed, the subsequent instruction is dispatched and Oracle
will account it as Stalled while it executes.

Another example is a page miss on a load instruction. In this case,
the load accesses the data TLB and L1 data cache in parallel. This
results in a TLB miss which invokes the hardware page table walker.
Eventually, the page table walker concludes that the requested page
is not in memory which causes the exception bit to be set in the
load’s ROB-entry. If the load reaches the head of the ROB before
the page table walk completes, the Oracle starts accounting time as
stalled. When the page table walk completes, the load is marked
as executed and the exception is triggered once it reaches the head
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Figure 5: Structural overview of our Time-Proportional In-
struction Profiler (TIP). TIP is triggered by the PMU, collects a
sample, and finally exposes the sample to software.

of the ROB. The cycles from the exception to dispatching the first
instruction in the OS exception handler are attributed to the load.
Once the OS has handled the exception by installing the missing
page in memory, the load is re-executed. The load will then incur
more stall cycles as it waits at the ROB head for its page mapping
to be installed in the TLB and its data to be fetched from memory.

3 TIP: TIME-PROPORTIONAL AND
PRACTICAL PROFILING

We now build upon the cycle-level attribution insights of Oracle
to design our practical and accurate Time-Proportional Instruction
Profiler (TIP).

3.1 Implementing TIP
Figure 5 shows that TIP is located between the Performance Moni-
toring Unit (PMU) and the ROB. We now describe in detail how TIP
captures samples, as well as how profiling software such as Linux
perf [34] retrieves TIP’s samples at runtime and, once the applica-
tion terminates, post-processes the samples to create a performance
profile.
Sample collection. As TIP is tightly coupled to the processor’s
ROB, we first quickly explain its main operation. In the BOOM
core [57], the ROB consists of 𝑏 banks, and up to one instruction
per bank can be committed in each clock cycle (i.e., 𝑏 is the commit
width). Instructions are allocated to banks in the order of the bank
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Figure 6: TIP sample selection logic. TIP classifies samples based
on the the core state, ROB-flags, and OIR-flags.

identifiers. The instruction in bank 𝑖 is hence always older than
the instruction in bank 𝑖 + 1 within a column, but the 𝑏 oldest
ROB-entries may be distributed across two columns (see Figure 5).
Identifying the head of the ROB hence requires a pointer to the head
bank and another pointer to the head column. The core can commit
𝑏 instructions each cycle since the 𝑏 oldest instructions will always
be allocated in different banks. Similarly, 𝑏 ROB-entries can be
allocated concurrently at dispatch as long as 𝑏 entries are available
between the tail pointers and the current head pointers. When there
are no invalid entries between the tail and head pointers, the ROB
is full and dispatch stalls until one or more instructions commit.
While the exact ROB realization may differ between architectures,
it must fundamentally allow 𝑏-wide reads (which TIP exploits).

Figure 5 shows that TIP consists of an Offending Instruction
Register (OIR) and two functional units (OIR Update and Sample
Selection), and Figure 6 fleshes out the details of the Sample Selection
unit. (The color-coding maps the components of Figure 6 to units
in Figure 5.) When the ROB is not empty, TIP simply copies the
addresses3 of the head ROB-entries into its address registers (see
1 ). To enable identifying the oldest ROB-entry, TIP stores the
ROB bank pointer in the Oldest ID register (see 2 ). The address
valid bits are selected from the commit and valid signals (see 3 )
in the Computing state and Stall state, respectively (see Figure 3).
During post-processing, these states are identified by inspecting
TIP’s Stalled flagwhich is 1 when no instructions are committed (see
4 ). If the Stalled bit is 0, the core is in the Computing state, and the
sample should be attributed to all valid address CSRs. Conversely,
the sample should be attributed to the address identified by the
Oldest ID flag if the Stalled flag is 1. TIP only needs to record that
the core stalled on this particular instruction since the stall type
can be identified by inspecting the instruction type in the binary
during post-processing.

If the processor is neither committing nor stalling, the ROB is
empty due to a flush or a drain. TIP’s OIR Update unit hence contin-
uously tracks the last-committed and last-excepting instruction (see

3Architectures commonly divide instructions into one or more µOps. In such imple-
mentations, TIP exploits that processors track the µOp-to-instruction mapping to
handle interrupts and exceptions.

Figure 5). More specifically, TIP updates the OIR with the address
and relevant ROB-flags of the youngest committing ROB-entry
every cycle; the relevant flags record if the instruction is a mispre-
dicted branch or triggered a pipeline flush. If the processor is not
committing instructions, TIP checks if the core is about to trigger an
exception. If it is, TIP writes the address of the excepting instruction
and an exception flag into the OIR. Returning to Figure 6, we see
that when all head ROB-entries are invalid, TIP (i) places the OIR
address in the Address 0 CSR, (ii) sets the oldest ID to 0 (see 5 ), (iii)
sets V0 to 1 and remaining valid bits to 0 (see 6 ), and (iv) sets the
Exception, Flush, or Mispredicted TIP-flags based on the OIR-flags
(see 7 ). If one of these flags is set, the core is in the Flushed state.

If the ROB is not empty due to a flush, it must have drained (see
Figure 3). TIP hence immediately sets the Front-end flag as (i) the
ROB is empty, and (ii) none of the Exception, Flush, or Mispredicted
flags are set (see 8 ). TIP then deasserts the write enable signal of
the flags to prevent further updates, but keeps the write enable
signal of the address-related CSRs and flags asserted. When the first
instruction (eventually) dispatches, its ROB-entry becomes valid
and TIP copies this address into the address CSR corresponding to
the ROB-bank the entry is dispatched to (and sets the Oldest ID and
valid bits accordingly). TIP then deasserts the address-related write
enable signal to prevent further updates.
Creating an application profile. We have designed TIP to inter-
face cleanly with Linux perf [34]. When using hardware support
for profiling, perf configures the PMU to collect samples at a certain
frequency (4 KHz is the default), and the profiler issues an interrupt
when a new sample is ready. This interrupt invokes perf’s interrupt
handler which simply copies the profiler’s CSRs into a memory
buffer; the profile is written to non-volatile storage when the buffer
is full. At the end of application execution, perf has written the
raw samples to a file which then needs to be post-processed. To
build the profile, we use a data structure in which a zero-initialized
counter is assigned to each unique instruction address in the pro-
file. For each sample, we then add 1/𝑛 of the value in the cycles
register to each instruction’s counter when the sample contains
𝑛 instructions. We also track the total number of cycles to enable
normalizing the profile.

To help developers understandwhy some instructions take longer
than others, TIP combines the information provided by its status
flags with analysis of the application binary. We label cycles where
the application is committing (an) instruction(s) as execution cycles
and cycles where the ROB has drained as front-end cycles. If the
processor is stalled, TIP uses the application binary to determine the
instruction type and thereby understand if the oldest instruction is
an ALU-instruction, a load, or a store. Moreover, we differentiate be-
tween flushes due to branch mispredicts and miscellaneous flushes
based on TIP’s status flags. (We group the miscellaneous flushes as
they only account for 1.4% of application execution time on aver-
age.) While this categorization serves our purpose for this work,
TIP can easily support more fine-grained categories if necessary.

3.2 TIP Overhead Analysis
Hardware overhead. TIP is extremely lean as it mostly relies on
functionality that is already available either in the ROB or the PMU.
The storage overhead of TIP is the OIR register (64-bit address and
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a 3-bit flag) and the CSRs (i.e., cycle, flags, and 𝑏 address CSRs); we
merge all TIP flags into a single CSR. All CSRs are 64-bit since RISC-
V’s CSR instructions operate on the full architectural bit width,
resulting in an overall storage overhead of 57 B for our 4-wide
BOOM core (9 B for the OIR and 48 B for the six CSRs). The logic
complexity for collecting the samples is also negligible; the main
overhead is two multiplexors, one to select the oldest ROB-entry in
OIR Update and one to choose between the OIR and the address in
ROB-bank 0 in Sample Selection (see Figure 5). TIP’s logic is not on
the critical path of our BOOM core. If necessary, the logic can be
pipelined.
Sampling overhead. As aforementioned, we assume that TIP in-
terrupts the core when a new sample is ready. Another possible
approach would be for TIP to write samples to a buffer in memory
and then interrupt the core once the buffer is full. This requires
more hardware support (i.e., inserting memory requests and man-
aging the memory buffer), but reduces the number of interrupts.
However, the interrupts become longer (as more data needs to be
copied), so the total time spent copying samples is similar.

For each sample, perf reads the OS kernel structures to deter-
mine key metadata including core, process, and thread identifiers
which account for 40 B per sample in total. For our 4-wide BOOM
core, the non-ILP-aware profilers (e.g., NCI) capture a single in-
struction address and the cycle counter (an additional 16 B) whereas
TIP captures four instruction addresses, the cycle counter, and the
flags CSR (an additional 48 B). At perf’s default 4 KHz sampling
frequency, TIP hence generates data at 352 KB/s whereas the data
rate of the non-ILP-aware profilers is 224KB/s. To quantify the
performance overhead of TIP, we compare PEBS’ default sample
size (i.e., 56 B per sample) to a configuration with TIP-sized samples
on an Intel Core i7-4770. We mimic TIP by including additional
general-purpose registers from the PEBS record to reach TIP’s 88 B
sample size. We find that the increased data rate of TIP adds negli-
gible overhead. More specifically, it increases application runtime
by 1.1% compared to a configuration with profiling disabled; the
performance overhead with PEBS’ default sample size is 1.0%.
Multi-threading. Although we have so far described TIP in the
context of single-threaded applications, this is not a fundamental
limitation. More specifically, perf adds the core, process, and thread
identifiers to each sample; the core identifier maps to a logical core
under Simultaneous Multithreading (SMT). Apart from this, TIP
will attribute time to (an) instruction(s) as in the single-threaded
case. For example, if a physical core is committing instruction I1
on logical core C1 and instruction I2 on logical core C2 in the same
cycle, TIP attributes half of the time to I1 and half to I2. Each physical
core needs its own TIP unit.

4 EXPERIMENTAL SETUP
Simulator.We use the FireSim cycle-accurate FPGA-accelerated
full-system simulator [28] to evaluate the different performance
profiling strategies. The simulated model uses the BOOM 4-way
superscalar out-of-order core [57], see Table 1 for its configuration,
which runs a common buildroot 5.7.0 Linux kernel. The BOOM
core is synthesized to and run on the FPGAs in the Amazon’s EC2
F1 nodes [1]. We account for the frequency difference between the
FPGA-realization of the BOOMcore and the FPGA’smemory system

Table 1: Simulated Configuration.

Part Configuration

Core OoO BOOM: RV64IMAFDCSUX @ 3.2 GHz
Front-end 8-wide fetch, 32-entry fetch buffer, 4-wide decode, 28 KB TAGE

branch predictor, 40-entry fetch target queue, max 20 outstanding
branches

Execute 128-entry ROB, 128 int/fp physical registers, 24-entry dual-issueMEM
queue, 40-entry 4-issue INT queue, 32-entry dual-issue FP queue

LSU 32-entry load/store queue
L1 32 KB 8-way I-cache, 32 KB 8-way D-cache w/ 8 MSHRs, next-line

prefetcher from L2
L2/LLC 512 KB 8-way L2 w/ 12 MSHRs, 4 MB 8-way LLC w/ 8 MSHRs
TLB Page Table Walker, 32-entry fully-assoc L1 D-TLB, 32-entry fully-

assoc L1 I-TLB, 512-entry direct-mapped L2 TLB
Memory 16 GB DDR3 FR-FCFS quad-rank, 25.6 GB/s maximum bandwidth,

14-14-14 (CAS-RCD-RP) latencies @ 1 GHz, 8 queue depth, 32 max
reads/writes

OS Buildroot, Linux 5.7.0
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Figure 7: Normalized cycle stacks collected at commit.

using FireSim’s token mechanism.We enable the hardware profilers
when the system boots and profile until the system shuts down
after the benchmark has terminated. However, we only include the
samples that hit application code in our profiles as (i) the time our
benchmarks spend in OS code (e.g., syscalls) is limited (1.1% on
average), and (ii) we do not want to include boot and shutdown
time in the profiles.

We modified FireSim to trace out the instruction address and
the valid, commit, exception, flush, and mispredicted flags of the
head ROB-entry in each ROB bank every cycle; the trace includes
the ROB’s head and tail pointers which we need to model Dispatch.
We feed this trace to a highly parallel framework on the CPU-side
to enable on-the-fly processing with only minimal simulation slow-
down. The profilers are hence modeled on the CPUs that operate in
lock-step with the FPGA by processing the traces. This allows us to
simulate and evaluate multiple profiler configurations out-of-band
in a single simulation run; we run up to 19 profiler configurations
on 8 CPUs per FPGA simulation run. For this paper, the total time
spent on Amazon EC2 amounts to 5,459 FPGA hours and 30,778
CPU hours. We evaluate multiple profilers with a single simulation
run because (i) it enables fairly comparing profilers as they sample
in the exact same cycle, and (ii) it reduces the evaluation time (and
cost) on Amazon EC2.
Benchmarks. We run 27 SPEC CPU2017 [44] and PARSEC 3.0 [6]
benchmarks that are compatible with our setup. (We use x264 from
PARSEC). We simulate the benchmarks to completion using the
reference inputs for CPU2017 and the native inputs for PARSEC;
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we run single-threaded versions of PARSEC. We compile all bench-
marks using GCC 10.1 with the -O3 -g compilation flags and static
linking.

The benchmarks’ execution characteristics are shown in Figure 7
which reports normalized cycle stacks captured at commit [18], i.e.,
we attribute every cycle to a specific type, and we then represent the
cycle types as a stacked bar with the execute component shown at
the bottom, followed by the other cycle types on top; we introduced
the categories in Section 3.1. We use the cycle stacks to classify our
benchmarks: (i) a benchmark is classified as Compute-Intensive if it
spendsmore than 50% of its execution time committing instructions;
(ii) if not, and if the benchmark spends more than 3% of its time
on pipeline flushing, the benchmark is classified as Flush-Intensive;
and (iii) the rest of the benchmarks are classified as Stall-Intensive
as they spend a major fraction of their execution time on processor
stalls.
Quantifying profile error. Practical profilers incur inaccuracies
compared to the (impractical) Oracle since they rely on statistical
sampling and hence record a small percentage of instruction ad-
dresses, which are then attributed to symbols in the application
binary; the symbols are individual instructions, basic blocks or
functions, depending on profile granularity. There are two funda-
mental sources of error. Unsystematic errors occur because sampling
is random and the distribution of sampled symbols does not exactly
match the distribution obtained with Oracle. Unsystematic errors
can be reduced by increasing sampling rate, as we will quantify in
the evaluation. Systematic errors, on the other hand, occur because
the profiling strategy attributes samples to the wrong symbol. We
focus on systematic error in the evaluation by quantifying to what
extent the different profilers attribute samples to the correct symbol
as determined by the Oracle. Because we sample the exact same
cycle for all the practical profilers in a single simulation run, we
can precisely quantify and compare a profiler’s systematic error.

Each sample is taken as a representative for the entire time pe-
riod since the last sample. By comparing the symbol the sample is
attributed to by the practical profiler against the symbol identified
by Oracle, we determine whether a sample is correctly or incor-
rectly attributed. By aggregating the cycles correctly attributed to
symbols (i.e., 𝑐correct) and relating this to the total number of cycles
it takes to execute the application (i.e., 𝑐total), we can compute the
relative error 𝑒 (i.e., 𝑒 = (𝑐total − 𝑐correct)/𝑐total). Error is a lower-
is-better metric varying between 100% and 0%, where 100% means
that all samples were incorrectly attributed, while 0% means that
the practical profiler attributes each sample to the same symbol as
Oracle. Profile error can be computed at any granularity, i.e., instruc-
tion, basic block, or function level; incorrect attribution at lower
granularity can be correct at higher granularity (e.g., misattributing
a sample to an instruction within the function that contains the
correct instruction). We aggregate errors across benchmarks using
the arithmetic mean.

5 RESULTS
We compare the following profilers:

• Software generates an interrupt and samples the instruction
after the interrupt (e.g., Linux perf [34]).

• Dispatch tags an instruction at dispatch and samples when
it commits (e.g., AMD IBS [15] and Arm SPE [2]).

• Last Committed Instruction (LCI) selects the last-com-
mitted instruction (e.g., Arm CoreSight [3])

• NextCommitting Instruction (NCI) selects the next-com-
mitting instruction (e.g., Intel PEBS [26]).

• ILP-ObliviousTime-Proportional InstructionProfiling
(TIP ‘minus’ ILP, or TIP-ILP) follows TIP (see Section 3),
but omits ILP accounting, i.e., when multiple instructions
commit in the sampled cycle, the sample is attributed to a
single instruction.

• Time-Proportional InstructionProfiling (TIP) is the pro-
filer proposed in Section 3.

We compare against Oracle which attributes every cycle to the
symbol at the profiling granularity of interest, using the policy
described in Section 2.2. As mentioned before, the error differences
between the hardware profiling strategies (i.e., all profilers except
Software) are due to systematic inaccuracies only as we sample
in the exact same cycle. We assume periodic sampling at a typical
sampling frequency of 4 KHz, unless mentioned otherwise. We
explore the impact of periodic versus random sampling and the
impact of sampling frequency in our sensitivity analyses.

5.1 Profile Error
Function-level profiling. Figure 8 reports error at the function
level across all the profilers considered in this work. While TIP is
the most accurate profiler (average error 0.3%), TIP-ILP, NCI, and
LCI are also accurate with average errors of 0.4%, 0.6%, and 1.6%,
respectively. (Note there are some outliers though for LCI up to
10.9%.) Software and Dispatch are much less accurate (9.1% and
5.8% average error, and up to 31.7% and 27.4%, respectively) because
tagging instructions at fetch and dispatch creates significant bias.
More specifically, samples are attracted to the instructions that are
being fetched or dispatched while the processor is experiencing
long-latency stalls. The overall conclusion is that all profilers, except
Software and Dispatch, are accurate at function-level granularity.
Since Software and Dispatch are inherently inaccurate, we will
exclude them for the smaller profiling granularities to more clearly
show the differences between the more accurate profilers. However,
we will report their average errors in the text for completeness.
Basic-block-level profiling.Correctly attributing samples to func-
tions does not necessarily mean that a performance analyst will
be able to identify the most performance-critical basic blocks. We
hence need to dive deeper and evaluate our profilers at the basic
block level. Figure 9 shows profile errors at the basic block level
for all profiling strategies, except Software and Dispatch which are
largely inaccurate (average error of 29.9% and 22.4%, respectively).
TIP and TIP-ILP are most accurate with average errors of 0.7% and
1.2%, respectively. NCI is also reasonably accurate with an average
error of 2.3%, whereas LCI is inaccurate at this level with an average
error of 11.9% and up to 56.1%. The reason is that LCI incorrectly
attributes stalls on long-latency instructions (e.g., LLC load misses)
to the instruction that last committed before the stall. For example,
load stalls and functional unit stalls dominate lbm’s runtime (66.2%
and 15.6%, respectively). The performance-critical loop nest in lbm
also contains significant control flow which leads LCI to attribute
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Figure 8: Function-level errors for the different profilers. TIP, TIP-ILP, NCI, and LCI are accurate at the function level, while Software
and Dispatch are largely inaccurate.
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Figure 9: Basic-block-level errors for the different profilers. (Software and Dispatch are not shown because of their high error.)
TIP, TIP-ILP, and NCI are accurate at the basic block level, whereas LCI (and Software and Dispatch) are not.

samples to the wrong basic block, which results in an overall error
of 56.1%. The overall conclusion is that TIP, TIP-ILP, and NCI are
accurate at the basic block level, whereas Software, Dispatch, and LCI
are not.

It is also interesting to note that the error is higher at the basic
block level compared to the function level; and this is true for all
profilers. The most striking example is lbm: the LCI’s function-level
error is merely 0.3% and then increases to 56.1% at the basic block
level. The reason is that a single function accounts for 99.7% of
lbm’s total runtime, which means that an incorrect attribution at
the basic block level most likely still leads to a correct attribution
at the function level. This reinforces our claim that fine-granularity
profiles are critical as knowing that 99.7% of runtime is spent in a
(non-trivial) function is too high-level to clearly identify optimiza-
tion opportunities.
Instruction-level profiling. Performance analysts need profiling
information that is even more detailed than the basic block (and
function) level, i.e., performance stranglers need to be identified at
the instruction level so that the performance analysts can under-
stand and hopefully mitigate these bottlenecks. Figure 10 reports
instruction-level profile error for TIP, TIP-ILP, and NCI. Software,
Dispatch, and LCI are not included here as they are largely inac-
curate (i.e., average error of 61.8%, 53.1%, and 55.4%, respectively).
The key conclusion is that TIP is the only accurate profiler at the
instruction level. Indeed, the average profile error for TIP equals
1.6%, while the errors for TIP-ILP and NCI are significantly higher,
namely 7.2% and 9.3%, respectively. Hence, TIP reduces average er-
ror by 5.8×, 34.6×, 33.2×, and 38.6× compared to NCI, LCI, Dispatch,
and Software, respectively. We observe the highest error under TIP

for gcc (5.0%), and find that the error can be reduced significantly
by increasing the sampling frequency, as we will discuss later.

There are two reasons why TIP is the most accurate profiler. First,
we observe a significant decrease in profile error when comparing
NCI versus TIP-ILP for the flush-intensive benchmarks (see Fig-
ure 10). The reason is TIP-ILP (and TIP) correctly attributes a sample
that hits a branch misprediction or pipeline flush to the instruction
that is responsible for refilling the pipeline, namely the mispre-
dicted branch or the flush instruction, which is the instruction that
was last committed. NCI on the other hand incorrectly attributes
the sample to the instruction that will be committed next. Second,
we observe the largest decrease in profile error between TIP-ILP
and TIP for the compute-intensive benchmarks (see Figure 10). The
compute-intensive benchmarks commit multiple instructions per
cycle, and hence attributing an equal share of the sample to all the
committing instructions is the correct approach. TIP-ILP and NCI
on the other hand attribute the sample to a single instruction which
leads to a biased performance profile.

5.2 Sensitivity Analyses
We now perform various sensitivity analyses with respect to sam-
pling rate, sampling method, and commit-ILP accounting. We focus
on instruction-level profiling and consider the most accurate profil-
ers only, namely TIP, TIP-ILP, and NCI.
Sampling rate. As mentioned before, our default sampling rate is
set to 4 KHz. We now focus on unsystematic error by evaluating
how profiling error varies with sampling frequency from 100Hz
to 20KHz, see Figure 11a. As expected, profiling error decreases
with increasing sampling frequency; and this is true for all pro-
filers. Moreover, the reduction in error is more significant for the
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Figure 10: Instruction-level errors for the different profilers. (Software, Dispatch, and LCI are omitted because of their large
errors.) TIP is the only accurate profiler at the instruction level.
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Figure 11: Sensitivity analyses. (a) TIP’s accuracy continues to measurably improve beyond 4KHz unlike the other profilers. (b) Periodic
sampling is only slightly more inaccurate than random sampling while being simpler to implement in hardware. (c) Making NCI commit-
parallelism-aware increases profile error, in contrast to TIP.

lower frequencies as these have more unsystematic error. The most
interesting observation is that TIP’s accuracy continues to mea-
surably improve as the sampling frequency is increased beyond
4KHz, while it saturates for the other profilers. The most notable
example is gcc for which the error decreases from 5.0% at 4 KHz (see
Figure 10) to 2.6% at 20 KHz. Profiling continues to decrease with
frequency under TIP because it, unlike TIP-ILP and NCI, attributes
high-ILP commit cycles to multiple instructions.
Sampling method. The sampling method used so far assumes
periodic sampling, i.e., we take a sample every 250 µs (sampling
frequency of 4 KHz). Periodic sampling may lead to an unrepresen-
tative profile if the sampling frequency aligns unfavorably with
the application’s time-varying execution behavior (cf. Shannon-
Nyquist sampling theorem). Random sampling may alleviate this
by selecting a random sample within each 250 µs sampling interval.
Figure 11b quantifies profile error for periodic versus random sam-
pling. We find that the impact is small for most benchmarks, except
for a handful stall-intensive benchmarks such as streamcluster, lbm,
and fotonik; these benchmarks exhibit repetitive time-varying exe-
cution behavior that is susceptible to sampling bias. On average, the
error decreases from 1.6% under periodic sampling to 1.1% under
random sampling. Because random sampling is more complicated
to implement in hardware, we opt for periodic sampling in this
work.

Commit-parallelism-aware NCI. TIP is more accurate than NCI
because it correctly accounts for pipeline flushes and commit paral-
lelism. Our results show that the biggest contribution comes from
correctly attributing commit parallelism, i.e., compare the decrease
in average instruction-level profile error from 9.3% (NCI) to 7.2%
(TIP-ILP) due to correctly attributing pipeline flushing, versus the
decrease in profile error from 7.2% (TIP-ILP) to 1.6% (TIP) due to
attributing commit parallelism. The question can be raised whether
accounting for commit parallelism in NCI would yield a level of
accuracy that is similar to TIP, and we hence make NCI commit-
parallelism-aware by simply attributing 1/𝑛 of the sample to the 𝑛
next-committing instructions.

Figure 11c presents box plots of the instruction-level error for
commit-parallelism-aware NCI, called NCI+ILP, versus TIP, TIP-
ILP, and NCI. Surprisingly, the average profile error increases with
NCI+ILP, from 9.3% (NCI) to 19.3% (NCI+ILP). The primary rea-
son is that NCI+ILP incorrectly attributes a sample to the 𝑛 next-
committing instructions after a long-latency stall (e.g., LLC miss),
instead of attributing the entire sample to the long-latency instruc-
tion as done by TIP. The key insight is that commit-parallelism
attribution is only beneficial when sample attribution is done in a
correct and principled way in the first place, as is the case for TIP.
Validation.We use FireSim for our evaluation because the profilers
considered in this work are platform-specific, hence it is impossible
to compare the different profilers without reimplementing on a
common platform. To evaluate our experimental setup, we conduct
a validation experiment for the most accurate profiler in prior work,
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Figure 12: Function and instruction-level profiles for Imagick
for TIP and NCI compared to Oracle.

namely NCI. Lacking an Oracle profiler on real hardware platforms,
we have to compare the relative difference among existing profilers
to gauge their accuracy. In particular, we compare Linux perf [34]
against PEBS [26] on an Intel i7-4770 system, versus our implemen-
tations of the Software profiler and NCI in FireSim, respectively.
Obviously, one cannot expect a perfect match because we are com-
paring across instruction-set architectures (x86-64 versus RISC-V)
and thus benchmark binaries. Yet, we still verify that the relative
difference (computed using our error metric) between the respec-
tive profilers indeed falls within the same ballpark across our set of
benchmarks, both at the instruction level and function level. At the
instruction level, the difference between PEBS and perf on Intel
amounts to 69% on average versus 57% on FireSim when comparing
NCI versus Software. At the function level, the difference equals
4% versus 7%, respectively.

6 PROFILING CASE STUDY
We now perform a case study on the SPEC CPU2017 benchmark
Imagick to illustrate how TIP pinpoints the root cause of perfor-
mance issues. Figure 12 shows the function- and instruction-level
profiles of NCI, TIP, and Oracle for the ceil function in Imagick;
ceil is a math library function and the third hottest function in
Imagick. (We report the fraction of total runtime in the function-
level profile, and the fraction of time within the function in the
instruction-level profile.) The function-level profile does not clearly
identify any performance problem (see 1 ), suggesting to the de-
veloper that no further optimization is possible; a basic-block-level
profile suffers from the same limitation. The instruction-level NCI
profile attributes most of the execution time to the feq.d and the
ret instructions (see 2 and 3 , respectively), likely leading to the
conclusion that the floating point unit(s) are overloaded and that
the return address predictor is ineffective. Hence, the developer
will probably conclude that further software-level optimization is
difficult.
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Opt. Opt.
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Figure 13: Time breakdown for the four most runtime-
intensive functions in Imagick comparing the original to our
optimized version. The 1.93× speed-up is primarily due improved
processor utilization.

TIP, on the other hand, correctly reports that most of the time
in ceil is spent on the frflags and fsflags instructions, and the
purpose of these instructions is to mask any changes to the floating-
point status register that may occur within the function from the
calling code. These instructions are hence necessary if the calling
code relies on ceil being side-effect free. Interestingly, Imagick
never reads the floating-point status register which means that
the masking performed within ceil is unnecessary. Moreover, the
floor function suffers from exactly the same problem. We hence
optimized Imagick’s code by replacing frflags and fsflags in
ceil and floor with nop instructions to remove the unnecessary
status register operations.

Figure 13 presents a cycle stack that compares the original Imag-
ick benchmark (marked “Orig.”) to our optimized version (marked
“Opt.”) across the four hottest functions in the original version. As
expected, the original benchmark spends significant time in the
“Misc. flush” category because the BOOM core flushes the pipeline
after floating-point status register updates to guarantee that instruc-
tion dependencies are respected (the BOOM core does not rename
status registers) whereas our optimized version does not flush at
all. Overall, our optimized version improves performance by 1.93×
compared to the original version and hence clearly illustrates that
TIP identifies optimization opportunities that matter.

Interestingly, the speedup is (much) higher than expected based
on the fraction of time spent executing the frflags and fsflags
instructions (see Figure 12). More specifically, the instructions col-
lectively account for about 50% of the execution time of two func-
tions that each account for around 22% of overall execution time,
yielding an expected speedup of 1.28×. The reason is that the fre-
quent pipeline flushing induced by the floating-point status register
accesses has a detrimental effect on the processor’s ability to hide
latencies. For instance, both ceil and floor spend significant time
on ALU stalls and front-end stalls — since the processor does not
have sufficient instructions available to hide functional unit la-
tencies and instruction cache misses. Moreover, our optimization
improves IPC from 1.2 to 2.3 which leads to the processor spending
less time executing instructions. The effects of improved IPC and
reduced stalling carry over to the MeanShiftImage function from
which ceil and floor is called, reducing its execution time by
roughly one third.
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7 RELATEDWORK
Hardware-supported profiling. The most related work is the
hardware-based instruction profilers employed in current proces-
sors: Intel PEBS [26], AMD IBS [15], and Arm SPE [2]; IBS and
SPE are inspired by ProfileMe [13]. In addition, external profil-
ers [4, 14, 25, 42, 47] use debug interfaces such as Arm CoreSight [3]
to sample dynamic instructions. TIP is more accurate than these
schemes (see Section 5).
Software-level profiling. Software-level profilers [20, 34, 40] are
significantly less accurate than TIP and hence sacrifice profile ac-
curacy at the benefit of not requiring hardware support. While
TIP helps developers understand how time is distributed across
instructions, other performance aspects are also interesting. Ver-
tical profiling [23, 24] combines hardware performance counters
with software instrumentation to profile an application across deep
software stacks, while call-context profiling [59] efficiently iden-
tifies the common orders functions are called in. Causal profil-
ing [12, 37, 41, 54] is able to identify the criticality of program seg-
ments in parallel codes by artificially slowing down segments and
measuring their impact. Researchers have also devised approaches
for profiling highly optimized code [46], assessing input sensitiv-
ity [11, 55], profiling deployed applications [31], and function-level
energy attribution [36].
Performance Monitoring Units (PMUs). A large body of work
has investigated PMU design [32], and PMUs have a variety of
uses (e.g., runtime optimization [8], performance analysis in man-
aged languages [45, 51, 58], profile-guided compilation [9, 10], and
profile-guided meta-programming [7]). Eyerman et al. [16] propose
a PMU architecture that enables constructing CPI stacks. In contrast
to TIP, CPI stacks capture coarse-grain performance information
(e.g., across the entire application) whereas TIP precisely attributes
time to individual instructions. The top-down model [53] is also
coarse-grain and cannot attribute time to instructions. Researchers
have also investigated relating PMU events to application activi-
ties [5, 52] and how to make sense of PMU output [38, 49, 50, 56];
these issues are orthogonal to the problem TIP addresses (i.e., at-
tributing time to instructions).
Instrumentation, simulation, and modeling. Static instrumen-
tation modifies the binary to gather (extensive) application execu-
tion data at the cost of performance overhead [21, 22, 33, 43, 48].
Dynamic instrumentation (e.g., PIN [35] and Valgrind [39]) does not
modify the binary which leads to higher performance overheads
than static instrumentation. Statistical performance profilers (e.g.,
TIP and Intel PEBS) do not add instructions and hence have (much)
lower overhead than instrumentation-based approaches.

Simulation and modeling can also be used to understand key per-
formance issues. The most related approach to ours is FirePerf [29]
which uses FireSim [28] to non-intrusively gather extensive per-
formance statistics. Unlike TIP, which is straightforwardly imple-
mentable in an out-of-order core, FirePerf cannot be employed
outside of the simulator as it generates a similar amount of data to
Oracle. Our approach is also related to interval analysis [17, 30], but
interval analysis targets dispatch while we target commit. GDP [27]
applies interval modeling at commit, but focuses on slowdown pre-
diction and hence only considers memory loads.

8 CONCLUSION
We have presented our Oracle profiler, the first golden reference for
performance profiling, and used it to show that existing profilers
fall short because they are not time-proportional (i.e., they lack
ILP support and systematically misattribute instruction latencies).
We hence propose the Time-Proportional Instruction Profiler (TIP)
which combines the attribution policies of Oracle with statistical
sampling to enable practical implementation. TIP is highly accurate
(average instruction-level error of 1.6%), and this accuracy enabled
us to identify a performance issue in the SPEC CPU2017 benchmark
Imagick that, once addressed, yields a 1.93× speed-up.
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