
Performance modeling of subdomain discretization techniques for
SPH proxy applications

Fredrik Ås

June 22, 2021

Problem Description

This study aims to quantify the performance of two subdomain discretization techniques for a
fluid proxy application and validate them experimentally with respect to parallel scaling.

i

Abstract

In this study we investigate the performance of two cell-grid discretization schemes for
a smoothed-particle hydrodynamics (SPH) proxy application that is applied to the two-
dimensional dam-break problem. The Cell+Table method uses persistent hash tables to imple-
ment grid cells. The Cell+List method uses volatile linked lists. We find that the Cell+Table
outperforms the Cell+List method with a performance increase of more than 24 % and 30 %
for two different test cases, respectively. We also model the SPH application using machine
metrics derived from synthetic benchmarks, and find that both the computational cost and
communication cost can be described according to a linear relationship. Furthermore, using the
Roofline model to classify the SPH application, we find that it is memory bound which makes it
suitable for subdomain discretization schemes that minimize memory traffic. We also provide a
suite of benchmarking programs to measure peak FLOPS, system bandwidth, and inter-process
communication cost.

ii

Contents

Problem Description i

Abstract i

1 Introduction 1

2 Background 3
2.1 Smoothed Particle Hydrodynamics . 3
2.2 The Dam-break Problem . 4
2.3 Application Scalability . 5
2.4 Communication Models . 7
2.5 Performance Models . 9
2.6 Architectural Models . 11
2.7 Programming Models . 13
2.8 Data Structures . 13
2.9 Statistical Analysis . 15

3 Methodology 17
3.1 Problem Domain . 17
3.2 Subdomain Discretization . 21
3.3 Grid Model: Cell+List . 22
3.4 Grid Model: Cell+Table . 29
3.5 Hardware . 35
3.6 Simulation Setup . 36
3.7 Program Metrics . 37
3.8 System Metrics . 38
3.9 Cell Performance . 40

4 Results and Discussion 41
4.1 Program Metrics . 41
4.2 System Metrics . 44
4.3 Cell Performance . 50
4.4 Model Validation . 52

iii

5 Conclusion 56

References 58

Appendix A 60

Appendix B 73

iv

Chapter 1

Introduction

Fluid simulations constitute an important part of scientific research and industry since they can
be used to prototype and develop tools and model physical phenomena. A common challange
with most fluid simulations however, is that they are computational intensive. Parallel methods
can be used for speeding up the execution time of such simulations. In this study we investigate
four aspects of a SPH proxy application with regards to parallel scaling:

Subdomain discretization

We develop and analyse the performance of two grid-cell schemes that we use to speed
up local execution.

Application performance

We investigate central performance bottlenecks of the SPH application with regards to
parallel scaling.

Performance modeling

We model the SPH application behaviour with regards to parallel resources.

Classification

We classify the SPH application based on its performance on three parallel systems and
evaluate system performance based on a set of synthetic benchmarks.

The fundamental equation of modeling, proposed by Barker et al. [1], forms the basis of our
analysis throughout this study. The equation models program performance as the sum of com-
putational cost and communication cost, minus any overlapping execution that can be performed
during communication,

T = TComp + TComm − TOverlap. (1.1)

We focus on the first two terms of Equation 1.1 in this study, namely TComp and TComm.

1

The chapters are organized as follows. Chapter 2 introduces the SPH model and the dam-break
problem that forms the experimental basis for the performance analysis, as well as performance
models, communication models, and architectural models that we used to analyse and validate
our results. Chapter 3 presents implementation details for two different cell-grid discretization
methods and synthetic benchmarks used to derive machine metrics. In Chapter 4 we present our
experimental findinds, performance models, and model validations. Chapter 5 gives a summary
of the main results and a set of recommendations based on our experimental results.

2

Chapter 2

Background

2.1 Smoothed Particle Hydrodynamics
Smoothed particle hydrodynamics (SPH) is a numerical method of simulating fluid using par-
ticles with fluid properties such as velocity, density, pressure, etc.. The method was first intro-
duced by Gingold and Monaghan [2] and Lucy [3] in 1977, who used the method to simulate
compressible flow problems in astrophysics. An extension to the SPH method was provided
by Monaghan [4] in 1994, which included a mathematical model for weakly compressible SPH
(WCSPH). A number of different SPH variations have been introduced so far. In this study we
focus on the method developed by Ozbulut [5] et al. in 2014, which applies the WCSPH method
to the two-dimensional dam-break problem. We will refer to this method as SPH throughout
the study.

SPH simulates fluid using interpolation points, called particles, with fluid properties that are
defined as a small fractions of a medium with finite volume. Two particles i and j may interact if
they are within the interaction radius rij . The interaction radius is normalized by the smoothing
length h and applied to a weighting function to determine the appropriate interaction force. The
weighting function is defined as,

W (R) = αd

(3−R)5 − 6(2−R)5 + 15(1−R)5, 0 ≤ R < 1

(3−R)5 − 6(2−R)5, 1 ≤ R < 2

(3−R)5, 2 ≤ R < 3

0 R ≥ 3

(2.1)

where R = rij/h is the normalized interaction radius between particle i and j. The αd coefficient
determines the dimensionality of the problem. For our implementation, αd is set to 7/(478πh2)
which corresponds to a two-dimensional simulation.

3

Figure 2.1 Particle interactions. Each field represents one step in the
normalized distance between particle i and j.

2.2 The Dam-break Problem
In this study the SPH method is used to simulate the two-dimensional dam-break problem.
Figure 2.2 shows the simulation for a few selected timesteps. At the start of the simulation, the
dam is arranged to the left of the tank in a rectangular shape of width L and height T . The
tank has a length B and infinite height so that there is no upper boundary to the tank. The
simulation begins by applying the SPH kernel such that the dam breaks and hits the rightmost
wall of the tank.

Figure 2.2 Two-dimensional dam break simulation.

4

Figure 2.3 Visualization of cell density, i.e. number of particles per cell.

2.3 Application Scalability
In this section we present the analytical framework used to discuss application scalability and
performance.

2.3.1 Parallel Speedup and Efficiency
Pacheco [6] defines parallel speedup as the relationship between an application’s serial execution
time TSerial and parallel execution time TParallel,

S =
TSerial

TParallel
. (2.2)

By incorporating the number of cores p into the model for parallel speedup, Pacheco defines
parallel efficiency as

E =
TSerial

p× TParallel
. (2.3)

We achieve perfect parallel efficiency in the ideal case where the serial execution time is reduced
by a factor equal to the number of cores. In this case we have linear speedup, where running the
application on p cores will be p times faster than its serial counterpart. The parallel efficiency
in this case is

TParallel = TSerial/p. (2.4)

5

Intuitively, parallel efficiency is a measure of how much each core contributes the overall speedup
of a parallel application. Low efficiency typically indicates that parallelism is introducing over-
head that diminish performance gains.

2.3.2 Amdahl’s Law
Amdahl’s law [7] models the parallel speedup of an application for a fixed problem size. Consider
an application consisting of a serial fraction s and a perfectly parallelizable fraction 1−s running
on a system with p cores, then Amdahl defines parallel speedup as

S =
s+ (1− s)
s+ (1− s)/p

=
1

s+ (1− s)/p
. (2.5)

An application is scaled in strong scaling mode if we increase the number of cores while keeping
the problem size constant. If the parallel efficiency for the application remains constant in strong
scaling mode, we say that the application is strongly scalable.

2.3.3 Gustafson’s Law
Gustafson’s law [8] models the parallel speedup of an application where the problem size is
scaled with the number of cores. Consider an application with a serial fraction s and a perfectly
parallelizable fraction 1−s running on a system with p cores, then Gustafson defines the parallel
speedup as

S =
s+ (1− s)p
s+ (1− s)

= s+ (1− s)p. (2.6)

An application is scaled in weak scaling mode if we increase both the number of cores and the
problem size. If the parallel efficiency for the application remains constant in strong weak mode,
we say that the application is weakly scalable.

6

Figure 2.4 Weak scaling (left). Strong scaling (right).

2.4 Communication Models

2.4.1 The Hockney Model
The Hockney model [9] describes communication cost as the sum of the setup latency α and
the inverse bandwidth β. The setup latency is the overhead of initializing the communication
channel between the sender and receiver. The inverse bandwidth is the time it takes to send M
bytes between the sender and receiver. The total cost of sending a message of size M can then
be modeled according to the following equation,

TComm = α+Mβ, (2.7)

where M is the message size in bytes. The machine parameters α and β can be estimated by
timing a series of message transmissions between the sender and receiver. We can adjust the
number of round-trips N and the message size M such that either the setup latency of the
inverse bandwidth becomes the dominating factor,

{α, β} =
t1 − t0
2MN

. (2.8)

The α and β parameters can be estimated in two ways. Both approaches uses a series of round-
trip communication measurements to derive the average communication latency L by sending a
message of size M back and forth between the sender and receiver N number of times,

Modern heterogeneous multi-node systems introduce machine parameters that may differ based
on the locality of the sender and receiver. Lastovetsky [10] extends the Hockney model to
account for heterogeneity by adding model parameters for each individual communication pair
(i, j),

7

T = αij +Mβij . (2.9)

The extended Hockney model provides a latency matrix that describes the communication cost
between every communication pair on the system.

2.4.2 BSP
The bulk-synchronous parallel (BSP) model, proposed by Valiant [11], is a communication model
for designing portable algorithms for parallel systems. The model describes communication
overhead in terms of three parameters; a number of processors performing local computation
or memory operations, a router that delivers point-to-point messages between processors, and
facilities for synchronizing all or some of the processors at regular time units L. Computations
are divided into a sequence of supersteps where each processor is assigned a task consisting
of a combination of local computation and message transmissions. Global synchronization is
performed at every unit L to determine if all processors have completed the current superstep.
If the superstep is not completed, all processors continue with the next superstep, otherwise a
period of L time units is allocated to continue the superstep. Every processor may send and
receive at most h messages in each superstep. This is called a h-relation. With an inverse
bandwidth g for point-to-point communication and a setup latency s, a total of gh + s time
units are required to realize such a h-relation. Since BSP is a synchronous model, messages
that are sent in a superstep may only be used in the next superstep, even if there is remaining
time in the current superstep. Another limitation of the BSP model is that is assumes hardware
support for synchronizing processors at the end of every superstep.

2.4.3 LogP
The LogP model, developed by Culler et al. [12], is a parallel bridging model for designing
and analyzing portable, parallel applications that run on distributed systems where processors
communicate through point-to-point messages. The model is an improved version of the BSP
model. The model predicts the communication latency in terms of latency (L), overhead (o), gap
per message (g), and number of processors (P). The latency, L, is the upper-bound setup delay
incurred by sending a single message between two points. The overhead, o, is defined as the
time period a processor is engaged in sending or receiving a message and cannot perform other
operations. The gap parameter, g, is the time delay between consecutive message transmissions.
A message is sent as a small number of data units (words) m. The model assumes finite network
capacity such that at most dL/ge messages can be in transit between any processor at any time.
If the limit is exceeded, the processors involved in the communication exchange is stalled until
the message can be sent without exceeding the limit. Processors work asynchronously and the
message latency is therefore considered unpredictable.

Lastovetsky et al. [10] describes large message transmissions with the LogP model as a series
of small data-unit transfers with constant time delay between each transfer. The total com-
munication latency, T , for transmitting a series of small messages, m, can then be expressed
as

8

T = L+ 2o+ (m− 1)g. (2.10)

Alexandrov et al. [13] proposes the LogGP model which extends the original LogP model
by incorporating large messages. The extended model introduces a gap-per-byte parameter, G,
which is the latency of sendingM bytes between two points. The model includes the original gap
parameter, g, to represent the constant time delay between consecutive message transmissions
m. The total communication latency as described by the extended LogGP model can then be
expressed as

T = L+ 2o+ (m− 1)g + (M − 1)G. (2.11)

Kielmann et al. [14] proposes another extension, the PLogP model, where all parameters except
for the latency, L, are piecewise linear functions of the message size and their definitions differ
slightly from the original LogP model.

2.5 Performance Models

2.5.1 Stream
Stream is a synthetic benchmark developed by McCalpin [15]. The benchmark measures the
bandwidth between the top-level cache (L3 on most current systems) and main memory by
timing four strided vector kernels with large operands. The kernels are listed in Equation 2.12.
The timings of Triad kernel is used as the basis for the bandwidth results as well as to calculate
the machine balance of the system.

(Copy) ci = ai

(Scale) bi = kci

(Add) ci = ai + bi

(Triad) ai = bi + kci

(2.12)

McCalpin defines machine balance as the ratio of the number of peak float-point operations
per cycle to the number of sustained memory operations per cycle. The machine balance of a
system is a measure of its latency tolerance. High-throughput applications typically have high
latency tolerance since they perform a high number of floating-point operations per memory
operation. Conversely, low-throughput applications that have more memory traffic have low
latency tolerance. A system with high machine balance is capable of performing a large number
of floating-point operations per memory operation, which in turns makes the system inclined
towards high-throughput applications. Extra thread-level parallelism typically yields increased
latency tolerance in parallel applications on shared memory systems, albeit at the expense of
increased machine balance.

9

2.5.2 Roofline
The Roofline model, developed by Williams et al. [16], is a visual performance model for
comparing and identifying kernel optimizations on different systems. The Roofline performance
equation is given by

P = min{π, βI}, (2.13)

where π is the system’s theoretical peak floating-point performance per unit time and β is the
system’s theoretical peak bandwidth. I is the kernel’s operational intensity, which describes the
kernel’s performance in terms of floating-point operations per byte. The kernel’s operational
intensity determines its constraints in relation to the target system, i.e. if it is memory bound,
I < π/β, or compute bound, I > π/β.

Figure 2.5 Roofline model for two applications on a theoretical system.
Application A is memory bound. Application B is compute bound.

2.5.3 DGEMM
The DGEMM benchmark measures the peak floating-point performance of a system by timing
a level 3 BLAS kernel [17] of the form

C = αAB + βC. (2.14)

General matrix-matrix multiplications are common in scientific applications and the DGEMM
benchmark is therefore a useful metric for describing the system in terms of floating-performance.
Both hardware and software optimizations are required to obtain a reasonable percentage of the

10

system’s theoretical floating-point performance. There exist multiple libraries suitable for the
task, e.g. OpenBLAS [18], which is an open-source implementation of the BLAS and LAPACK
APIs that utilizes software and hardware optimizations for specific hardware architectures. By
timing the execution of a DGEMM kernel with three matrices A (M × N), B (N × Q), and
Q (M ×Q), we get the system performance by dividing the number of floating-point operations
by the total execution time,

2MNQ

t1 − t0
. (2.15)

2.6 Architectural Models

2.6.1 Multiprocessors
A multiprocessor, as defined by Hennessy and Patterson [19], is a processor with multiple cores
that are coordinated and controlled by a single operating system and share memory through
a shared address space. Multiprocessors can be categorized by memory organization and in-
terconnect strategy. Uniform memory access (UMA) multiprocessors, also called symmetric
multiprocessors (SMP), typically have a small number of cores. With this memory organization
the memory is centralized, and thus the memory access time is independent of the memory
location relative to the core. Non-uniform memory access (NUMA) multiprocessors, also called
distributed shared-memory multiprocessors, typically have a large number of cores compared to
UMA multiprocessors. With this memory organization, memory is distributed among multiple
cores, and thus the memory access time depends on the memory location relative to the core.
The main advantage with NUMA architectures is that they offer higher memory bandwidth
compared to UMA systems, and thus facilitate higher core counts. All multi-socket systems
are NUMA architectures, however single-socket NUMA system are also quite common. Both
UMA and NUMA architectures utilize thread-level parallelism through a shared address space.
Therefore, a memory reference can be made by any core to any memory location as long as it
has the correct access privileges. This is not the case for cluster and warehouse-scale computers,
where multiple nodes are connected through a network. Such systems rely on message-passing
protocols to transfer data between nodes, discussed later.

2.6.2 Memory Organization
A common type of memory organization in modern computers is dividing memory into a hierar-
chy where the smaller and faster (more expensive) memory typically sits close to the processor,
while the larger and slower (less expensive) memory sits farther away from the processor. Regis-
ters and cache memory are embedded into the processor itself, while main memory is connected
to the processor through a memory bus. Disk or flash storage is typically connected to RAM
through an I/O bus. Figure 2.6 shows a hierarchical memory configuration. Registers are the
fastest memory available to the processor. Data written to a register is typically available at
the next processor clock cycle. The cache is commonly divided into three levels where L1 and
L2 are local to a single core and L3 is shared between all cores on the same socket.

11

Figure 2.6 Memory hierarchy.

2.6.3 Locality
The principle of locality is the observation that subsequent memory references made by the
processor tend to be close in space and time. There are two main types of reference locality:
spatial and temporal. A piece of code that makes subsequent memory references to locations
that are close to together within a short period of time is said to exhibit spatial locality. A piece
of code that makes subsequent memory references to the same location within a short period
of time is said to exhibit temporal locality. A third type of locality called network locality
is typically seen on NUMA systems where the memory access time depends on the memory
location relative to the processor.

2.6.4 Affinity
Affinity is the scheme of which threads or processes are mapped to individual cores. With a
compact affinity scheme, consecutive threads are mapped to the same socket. With a scattered
affinity scheme, consecutive threads are mapped to different sockets. Applications with a high
degree of data sharing between consecutive threads may benefit from a compact affinity scheme
due to increased cache accuracy. Applications with a low degree of sharing between threads
may benefit from a scattered affinity scheme to avoid increased cache-miss rates caused by
cache contention. In general, the performance benefits of a specific affinity scheme depends on
both the memory access pattern of the application and the target architecture. Other affinity
schemes are also possible, but they are beyond the scope of this study.

(a) (b)

Figure 2.7 (a) Scattered affinity scheme. (b) Compact affinity scheme.

12

2.7 Programming Models

2.7.1 MPI
The message-passing interface (MPI) project [20] is a an open-source point-to-point commu-
nication protocol for distributed memory systems. There exists multiple implementations of
the protocol, e.g. Intel MPI, MPICH, and OpenMPI. OpenMPI and MPICH are open-source
implementations while Intel MPI is developed by Intel. We hereby assume OpenMPI as the im-
plementation in question when discussing implementation specific details of the MPI protocol.

MPI enables data-level parallelism by giving each process, or rank, its own designated
memory area. Upon initialization, all ranks are associated with a default communicator,
MPI_COMM_WORLD. A communicator specifies a group of ranks that can transmit messages
to each other. The default communicator holds all ranks that were created upon program
initialization. Custom communicators may be used, e.g., to specify a subset of ranks to be
included in a collective communication routine or synchronization barrier. Since ranks are not
aware of each other and only have access to their own separate memory areas, data must be
explicitly transmitted between ranks through point-to-point communication. This also means
that the problem domain of the application needs to be decomposed and distributed among
ranks at program initialization.

Unlike in thread-level parallelism, race conditions cannot occur due to data-level parallelism
since memory is not shared between ranks. Deadlocks may occur however, e.g., if a rank for
some reason fails to enter a synchronization barrier. (Usually caused by a bug introduced by
the programmer.)

2.7.2 OpenMP
OpenMP [21] is a industry standard API for shared-memory programming. OpenMP enables
thread-level parallelism in the form of compiler directives that are inserted by the programmer
to tell the compiler to execute the code in parallel. All directives starts with #pragma omp,
followed by a construct and other options needed to execute the code in parallel. A common
construct in the parallel construct, used to execute loops in parallel.

2.8 Data Structures

2.8.1 Structures
A structure, or struct for short, is a native C data type that groups a collection of variables,
called members, together into a single unit. Member names do not conflict with other variable
names since they are uniquely identified in conjunction with the struct tag. The compiler may
insert padding to align struct members to their natural address boundaries. The order in which
struct members are declare therefore affects the size of the struct, as shown in Figure 2.8.

13

Figure 2.8 Memory layout of a C struct. The struct to the left is 32
bytes; the struct to the right is 24 bytes.

2.8.2 Linked Lists
A linked list is a linear collection of elements that are linked together in the order they are
inserted. In C, a linked list is typically implemented by series of structs that are linked together
by pointers. For a singly linked list, each struct contains a pointer to the next struct in the list,
and other optional members for storing data, as well as a head pointer that points to the start of
the list. A doubly linked list has an extra pointer in the opposite direction between each struct
in the list. This may increase the performance of certain list functions. The insertion order in
a linked list is preserved since the position of every struct depends only on the insertion index.
The linked list data structure forms the basis for many other data structures such as stacks,
queues, and associative arrays.

Figure 2.9 Singly linked list.

2.8.3 Hash Tables
A hash table is a collection of key-value elements where every value is uniquely identified by its
corresponding key. In C, a hash table can be implemented using an array of linked lists. A hash
function is used to select a list to append a new entry. A hash table does not preserve insertion
order since the hash function determines the placement of each key-value element.

14

Figure 2.10 Hash table.

Table 2.1 Average asymptotic data-structure performance.

Data type Search Insert Delete

Array O(n) O(n) O(n)

Singly linked list O(n) O(1) O(1)

Hash table O(1) O(1) O(1)

2.9 Statistical Analysis
In this section we define various statistical methods that we use to evaluate our measurements.

2.9.1 Mean
The mean of a dataset is the average value of all the elements in the dataset. There are different
approached to compute the mean of a dataset, the most common one being the arithmetic mean
(AM). The arithmetic mean is the sum of all the elements in the dataset divided by its size, i.e.

ȳ =
1

n

n∑
i=1

xi. (2.16)

A second method for computing the average of dataset is the geometric mean (GM). The geo-
metric mean is the nth rooth of the product of all dataset elements, i.e.

ȳ =

(
n∏

i=1

xi

)1/n

, xi > 0. (2.17)

15

Another common method is called the harmonic mean (HM). The harmonic mean is the size of
the dataset divided by the reciprocal sum of each dataset element, i.e.

ȳ = n

(
n∑

i=1

1

xi

)−1

, xi > 0. (2.18)

The inequality AM ≥ GM ≥ HM holds true for the same dataset.

2.9.2 Coefficient of Determination
We commonly use residuals to analyze the deviation between a predicted value and an observed
value, or to get a qualitative measure of the dispersion around the dataset mean. The total sum
of squares describes the dispersion around the dataset mean, i.e.

SSTotal =

n∑
i=n

(yi − ȳ)2. (2.19)

The standard deviation of a dataset is defined as the the root of the total sum of squares divided
by its size,

σ =

√
SSTotal

n
. (2.20)

The residual sum of squares gives a measure of the deviation between the dataset and dataset
prediction, i.e.

SSResidual =

n∑
i=n

(yi − ŷi)2. (2.21)

The coefficient of determination can then be defined as the relationship between Equation 2.21
and Equation 2.19,

R2 = 1− SSResidual

SSTotal
. (2.22)

The inequality SSResidual ≤ SSTotal holds such that R2 will always be in the range [0.0, 1.0]. A
high value (close to 1.0) implies little dispersion between the prediction model and the dataset,
while a low value indicates dispersion between observed and predicted values.

16

Chapter 3

Methodology

3.1 Problem Domain
Three variables decide the problem size of the application, namely the dam width L, the dam
height T , and the tank length B. These variables are multiplied by a scaling factor, Scale, which
allows for re-sizing the problem domain by adjusting a single parameter. The tank has no roof
that particles can collide with. Instead, the height of the tank, which is set to 1.5T , constitutes
a virtual upper boundary that particles are stored in if they move outside the domain.

Figure 3.1 Problem dimensions.

The resolution coefficient, Delta, determines the distribution density, i.e. the number of par-
ticles, within the initial dam geometry. The total number of particles, Nx × Ny, is given by
Equation 3.1.

Nx = 1 + L/Delta
Ny = 1 + T/Delta

(3.1)

17

Each subdomain is discretized into cells. The cell size, RCell, is set equal to the particle inter-
action radius, RParticle. Thus, any particle may interact with particles in 9 cells, as shown in
Figure 3.2.

Figure 3.2 Particle interaction radius.

The number of ranks, Size, is limited by the cell size RCell and the tank width B, such that

1 ≤ Size ≤ ceil
{

B

RCell

}
. (3.2)

With Scale set to 1.0, the maximum number of ranks is 81, with Scale set to 2.0, the maximum
number of ranks is 162, and so forth. Thus, the maximum number of possible ranks equals the
number of horizontal cells in the tank. Increasing the number of ranks even further would not
be possible since that would require two or more ranks to share the same cell. Implementation
specific parameters are discussed in the following sections. Figure 3.3 shows the relationship
between the scale, the maximum number of ranks, and the number of particles.

18

Figure 3.3

The tank is vertically decomposed among ranks in increasing order according to Figure 3.4a.
This decomposition scheme is the most beneficial for this specific problem domain since it assures
that the workload is distributed evenly among every rank. A horizontal distribution would lead
to an unbalanced workload distribution since most of the simulation takes place in the lower
portion of the tank, leaving several ranks with little or no work as the dam stabilizes. Another
disadvantage with a horizontal decomposition for this specific problem domain, is that each
subdomain would be smaller compared to the same rank count with a vertical decomposition.

Each rank has one neighbor east and one neighbor west, except for the first and last ranks which
have only one one neighbor due to the tank boundaries. The communication pattern for this
rank topology is shown in Figure 3.5. We use MPI_PROC_NULL as a placeholder for the source
and destination for the edges of the tank. MPI_PROC_NULL is a dummy value that, when used
with point-to-point communication routines, returns as soon as possible without modifying the
source or destination buffers in any way. This simplifies the implementation details concerning
communication around the tank boundaries.

19

(a)

(b)

Figure 3.4 Two domain-decomposition schemes. (a) Vertical
decomposition. (b) Horizontal decomposition.

Figure 3.5 Rank communication pattern where every rank has two
adjacent neighbors.

20

Table 3.1 SPH applicaton parameters.

Variable Description

B Tank length
T Dam height
L Dam width
H Smoothing length
RParticle Interaction radius
RCell Cell size
Scale Scaling coefficient
Delta Resolution coefficient
Size Number of ranks
Rank Rank id
Idx Particle id

3.2 Subdomain Discretization
The subdomain of each rank is discretized into a cell grid to minimize the cost of searching for
particle interactions. With no cell grid we would have to parse n− 1 particles for every particle
in the subdomain, resulting n(n − 1) comparisons. With a cell grid we are able to reduce the
number of comparison significantly since we only need to check 9 other cells for ever cell in
the local grid. Figure 3.6 shows the discretization geometry for a single rank. Extra virtual
buffers, called ghost buffers, are added to provide storage for particles that are not shown in the
simulation. These buffers serve two main purposes. First, they provide storage for particles that
are imported from adjacent domains. Second, they provide storage for virtual particles around
the tank boundaries. Particles are classified according to three categories:

Field particles

Particles that are part of the medium that make up the dam in the fluid simulation.

Virtual particles

Particles stored in ghost buffers around the floor and walls of the tank to provide a
bounce-back effect when field particles interact with the tank boundaries.

Ghost particles

Particles that have been temporary imported from adjacent domains to enable interactions
between particles across ranks.

21

Figure 3.6 Subdomain discretization.

Ragunathan and Valstad [22] has implemented a subdomain discretization scheme, which we
refer to as the Cell+List method, that uses volatile linked lists to represent grid cells. We
use the Cell+List method as the basis for comparison for our Cell+Table method, which uses
persistent hash tables to represent grid cells. For both of these method we use the same SPH
kernel implementation originally implemented by Ragunathan and Valstad. Both discretization
scheme are presented in the following sections.

3.3 Grid Model: Cell+List

3.3.1 Program Overview
The Cell+List program overview is outlined in Figure 3.7. The program consists of three main
steps. Step 1 takes care of particle initialization and domain decomposition. In step 2, particles
are serialized and prepared for inter-process communication and kernel execution. Step 3 involves
creating particle pairs, mapping particles to the cell grid, and executing the SPH kernel.

Figure 3.7 Cell+List program overview.

22

3.3.2 Cell Implementation
With the Cell+List method every cell is implemented as a linked list of particles. Upon program
initialization, particles are first initialized and placed in a hash table. Then, at every iteration
of the main loop, all local particles are serialized from the hash table into a flat pointer array
according to their type. Field particles first, then ghost particles, followed by virtual particles.
This step is required for the SPH kernel to execute correctly. The array is then parsed and
every particle is mapped to a cell in the local grid. The cell grid is then processed for particle
interactions and the resulting particle pairs are stored in a particle-pair array for the SPH
kernel. When the SPH kernel has been applied, the hash table is updated with the new particle
positions. The reason for storing particles in a local hash table is to avoid array fragmentation
when particles migrate to other ranks.

Figure 3.8 Cell+List method. Particles are serialized from a local hash
table to flat pointer array. Particles are then placed into cells represented
by linked lists.

Listing 3.1 Code for mapping particles to cells.
#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < n_total; ++i)
{

particle_t *particle = &list[i];
int_t cellpos[2];
grid_pos2cell(particle->x, cellpos);
particle->local_idx = i;
particle->bucket_x = cellpos[0];
particle->bucket_y = cellpos[1];

23

}

#pragma omp for
for (int i = 0; i < n_total; ++i)
{

particle_t *particle = &list[i];

if ((particle->x[0] < subdomain[0] - RADIUS) ||
(particle->x[0] > subdomain[1] + RADIUS))
continue;

int_t x = list[i].bucket_x;
int_t y = list[i].bucket_y;
int_t bid = y * N_BUCKETS_X + x;

omp_set_lock(&(lock[bid]));

bucket_t *bucket = CELL(x, y);

if (bucket->particle == NULL)
{

bucket->particle = &list[i];
bucket->next = NULL;

}
else
{

bucket_t *new_bucket = (bucket_t *)malloc(sizeof(bucket_t));
new_bucket->particle = &list[i];
new_bucket->next = bucket;
CELL(x, y) = new_bucket;

}

omp_unset_lock(&(lock[bid]));
}

}

3.3.3 Virtual Particles
Virtual particles are generated by field particles that are within the interaction radius of the
tank boundaries. For the tank walls this happens when a particle is within a horizontal distance
of RParticle from the wall. For the floor this happens when a particle is within a vertical distance
of RParticle/2 from the floor. The purpose of generating virtual particles is to created an a
bounce-back effect when field particles hit the tank boundaries. The Cell+List method uses
Neumann boundary conditions, which means that virtual particles are clones of the particles
that created them, and hence possess identical particle properties. No field particle generates
more than five virtual particles since only one virtual particle is created for every interaction
with a ghost-buffer cell around the tank boundaries.

24

Figure 3.9 Virtual particles are created for a nearby field particle.

Listing 3.2 Routine for creating virtual particles.
void grid_create_virtuals(void)
{

n_virt = 0;
real_t boundary = RADIUS / 2;

/* No particle adds more than 5 virtual particles */
resize_list(n_field * 5);

#pragma omp parallel for shared(n_virt)
for (int_t k = 0; k < n_field; k++)
{

int_t current_n_virt;

/* Horizontal mirror left */
if (X(k) < boundary)
{

#pragma omp atomic capture
current_n_virt = n_virt++;

int_t gk = n_field + current_n_virt;
X(gk) = -X(k), VX(gk) = -VX(k);
Y(gk) = Y(k), VY(gk) = VY(k);
P(gk) = P(k), RHO(gk) = RHO(k), M(gk) = M(k);
TYPE(gk) = -2, HSML(gk) = H;

}

/* Horizontal mirror right */
if (X(k) > B - boundary)
{

#pragma omp atomic capture
current_n_virt = n_virt++;

int_t gk = n_field + current_n_virt;
X(gk) = 2 * B - X(k), VX(gk) = -VX(k);
Y(gk) = Y(k), VY(gk) = VY(k);
P(gk) = P(k), RHO(gk) = RHO(k);
M(gk) = M(k);

25

TYPE(gk) = -2, HSML(gk) = H;
}

/* Vertical mirror bottom */
if (Y(k) < boundary)
{

#pragma omp atomic capture
current_n_virt = n_virt++;

int_t gk = n_field + current_n_virt;
X(gk) = X(k), VX(gk) = VX(k);
Y(gk) = -Y(k), VY(gk) = -VY(k);
P(gk) = P(k), RHO(gk) = RHO(k), M(gk) = M(k);
TYPE(gk) = -2, HSML(gk) = H;

}

/* Lower left corner */
if (X(k) < boundary && Y(k) < boundary)
{

#pragma omp atomic capture
current_n_virt = n_virt++;

int_t gk = n_field + current_n_virt;
X(gk) = -X(k), VX(gk) = -VX(k);
Y(gk) = -Y(k), VY(gk) = -VY(k);
P(gk) = P(k), RHO(gk) = RHO(k), M(gk) = M(k);
TYPE(gk) = -2, HSML(gk) = H;

}

/* Lower right corner */
if (X(k) > B - boundary && Y(k) < boundary)
{

#pragma omp atomic capture
current_n_virt = n_virt++;

int_t gk = n_field + current_n_virt;
X(gk) = 2 * B - X(k), VX(gk) = -VX(k);
Y(gk) = -Y(k), VY(gk) = -VY(k);
P(gk) = P(k), RHO(gk) = RHO(k), M(gk) = M(k);
TYPE(gk) = -2, HSML(gk) = H;

}
}

}

3.3.4 Ghost Particles
For each rank, the particle array is scanned and searched for particles that are within the inter-
action radius to adjacent domains. The number of export particles are counted and exchanged
between all ranks. The export particles are then placed into buffers and transmitted. The
import particles are stored to the right in the flat particle array.

Listing 3.3 Particle mirroring.
int_t w_idx = 0, e_idx = export_west;
int_t priv_w_idx, priv_e_idx;

26

#pragma omp parallel for private(priv_w_idx, priv_e_idx)
for (int_t k = 0; k < (n_field + n_virt); k++)
{

/* Export west */
if (((X(k) - subdomain[0]) < CELL_SIZE) && rank > 0)
{

#pragma omp atomic capture
priv_w_idx = w_idx++;
memcpy(&(transfer[priv_w_idx]), &(list[k]), sizeof(particle_t));

}
/* Export east */
if (((subdomain[1] - X(k)) < CELL_SIZE) && rank < size - 1)
{

#pragma omp atomic capture
priv_e_idx = e_idx++;
memcpy(&(transfer[priv_e_idx]), &(list[k]), sizeof(particle_t));

}
}

n_mirror = import_east + import_west;

resize_list(n_field + n_virt + n_mirror);

MPI_Sendrecv(transfer, export_west * sizeof(particle_t), MPI_BYTE, west, 0,
list + n_field + n_virt + import_west, import_east * sizeof(particle_t),
MPI_BYTE, east, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(transfer + export_west, export_east * sizeof(particle_t),
MPI_BYTE, east, 0, list + n_field + n_virt,
import_west * sizeof(particle_t), MPI_BYTE, west, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

3.3.5 Particle Pairs
Creating particles pairs involves traversing 9 linked lists (cells) for every particle in the subdo-
main. If the Idx of the current particle is less than the Idx of the other particle, then we check
if they are within interaction radius. If they are, we add them to the pair list. The counter for
particle pairs is incremented atomically to avoid race conditions.

Listing 3.4 Routine for creating particle pairs.
void cell_create_pairs(int x, int y, bucket_t **buckets, particle_t *particle,

int_t *n_pairs, int_t *interactions)
{

if (x >= N_BUCKETS_X || x < 0 || y >= N_BUCKETS_Y || y < 0 ||
particle == NULL)
return;

bucket_t *current = CELL(x, y);
while (current != NULL && current->particle != NULL)
{

if (current->particle->idx < particle->idx)
{

double distance =
sqrt(pow(particle->x[0] - current->particle->x[0], 2) +

pow(particle->x[1] - current->particle->x[1], 2));

27

if (distance <= RADIUS)
{

interactions[particle->local_idx]++;
interactions[current->particle->local_idx]++;

int pair_idx;
#pragma omp atomic capture
pair_idx = (*n_pairs)++;

pairs[pair_idx].ip = particle;
pairs[pair_idx].jp = current->particle;
pairs[pair_idx].r = distance;
pairs[pair_idx].q = distance / H;
pairs[pair_idx].w = 0.0;
pairs[pair_idx].dwdx[0] = pairs[pair_idx].dwdx[1] = 0.0;

}
}
current = current->next;

}
}

3.3.6 Particle Serialization
With the Cell+List method, particles are marshaled in and out of the local hash table between
iterations. At the beginning of every timestep, particles are serialized into a flat pointer array.
At the end of every timestep, the hash table is updated with the new particle positions.

Listing 3.5 Routines for marshaling particles in and out of the local hash
table.

void table_marshal(particle_t *list)
{

int_t n_total = table->size;
particle_t *pointerlist[n_total];
table_serialize(&(pointerlist[0]));
for (int_t i = 0; i < n_total; i++)

memcpy(&(list[i]), pointerlist[i], sizeof(particle_t));
}

void table_unmarshal(particle_t *list, int_t size)
{

for (int_t k = 0; k < size; k++)
{

particle_t *pi = &(list[k]);
particle_t *pj;
table_lookup(&pj, pi->idx);
memcpy(pj, pi, sizeof(particle_t));

}
}

3.3.7 Particle Migration
The migration step for the Cell+List method is very similar to the mirror step and is therefore
not listed here. The main difference between the two is that in the migration routine particles

28

are deleted from the pointer array; in the mirror routine particles are just transmitted without
modifying the local buffer.

3.4 Grid Model: Cell+Table

3.4.1 Program Overview
The Cell+Table method is outlined in Figure 3.10. The three main steps are as follows. Step
1 initializes field particles and virtual particles. Virtual particles are placed in ghost cells sur-
rounding the tank boundaries. In step 2, particles are serialized and prepared for inter-process
communication and kernel execution. Step 3 involves creating particle pairs and executing the
SPH kernel.

Figure 3.10 Cell+Table program overview.

3.4.2 Cell Implementation
The domain geometry of the Cell+Table method is similar to that of the Cell+List method,
but instead of representing cells using linked lists that are re-constructed at every timestep, the
Cell+Table method represents cells using persistent hash tables. Using this method, particles
are stored in grid cells between timesteps and may migrate to new cells when their position
is updated. When that happens, the particle in question is removed from its current cell and
inserted into a a new cell according to its new cell coordinates. Like the Cell+List method,
particles are serialized into a flat pointer array for the SPH kernel.

29

Figure 3.11 Cell+List discretized subdomain.

3.4.3 Virtual Particles
The Cell+Table method uses static virtual particles as tank boundaries, whereas the Cell+List
method generates new virtual particles at every timestep when field particles are within the
interaction radius to the tank boundaries. With this approach, virtual particle are created
only once at program initialization and remain in ghost buffers throughout the lifetime of the
application. This method uses Dirichlet boundary conditions, which means that virtual particles
are initialized with constant velocities.

Figure 3.12 Virtual particles are created at program initialization and
persists throughout the simulation.

3.4.4 Ghost Particles
For each rank, the east and west cell column is scanned and the number of export particles are
counted. The particle counts are then exchanged in both directions between all rank neighbors
to get the number of expected import particles. The export particles are then serialized and
transmitted. Import particles are received in a flat array and inserted into the east and west

30

ghost buffers while awaiting kernel execution. When kernel execution is completed, the ghost
particles are not needed anymore and are removed from the ghost cells.

Listing 3.6 Particle mirroring.
for (int_t y = 0; y < domain.n_cells_y; y++)
{

tlhash_t *c1 = CELL(0, y);
tlhash_t *c2 = CELL(domain.n_cells_x - 1, y);

if (c1->size > 0 && rank != 0)
{

tlhash_values(c1, (void **)&(buff_west[n1]));
n1 += c1->size;

}
if (c2->size > 0 && rank != size - 1)
{

tlhash_values(c2, (void **)&(buff_east[n2]));
n2 += c2->size;

}
}

#pragma omp parallel for
for (int_t i = 0; i < n_export_west; i++)

send_west[i] = *buff_west[i];
#pragma omp parallel for
for (int_t i = 0; i < n_export_east; i++)

send_east[i] = *buff_east[i];

int_t n_import = n_import_east + n_import_west;

particle_t *recv = (particle_t *)malloc(sizeof(particle_t) * n_import);

MPI_Request req_west, req_east;
if (n_export_west > 0)

MPI_Isend(send_west, n_export_west * sizeof(particle_t), MPI_BYTE, west,
0, MPI_COMM_WORLD, &req_west);

if (n_export_east > 0)
MPI_Isend(send_east, n_export_east * sizeof(particle_t), MPI_BYTE, east,

0, MPI_COMM_WORLD, &req_east);
if (n_import_west > 0)

MPI_Recv(recv, n_import_west * sizeof(particle_t), MPI_BYTE, west, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

if (n_import_east > 0)
MPI_Recv(&recv[n_import_west], n_import_east * sizeof(particle_t),

MPI_BYTE, east, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
if (n_export_west > 0)

MPI_Wait(&req_west, MPI_STATUS_IGNORE);
if (n_export_east > 0)

MPI_Wait(&req_east, MPI_STATUS_IGNORE);

for (int_t i = 0; i < n_import; i++)
{

particle_t *p = &(recv[i]);
p->type = P_GHOST;
grid_add_particle(p);

}

31

3.4.5 Particle Pairs
Creating particle pairs involves scanning every cell in the local domain and, for every particle
in the current cell, check for particle interactions in the surrounding cells and the current cell.
If at least one of the two particles is a field particle and the Idx of the current particle is less
than the Idx of the other particle, then we check if the distance between the particles are less
than RCell. If they are, we add them to the pair list. The number of particle interactions and
particle pairs is incremented in an atomic fashion to avoid race conditions.

Listing 3.7 Routine for creating particle pairs.
void cell_create_pairs(tlhash_t *cell1, int_t x, int_t y)
{

if (x < -1 || x > domain.n_cells_x || y < -1 || y >= domain.n_cells_y)
return;

tlhash_t *cell2 = CELL(x, y);

int_t size1 = cell1->size;
int_t size2 = cell2->size;
particle_t *particles1[size1];
particle_t *particles2[size2];

tlhash_values(cell1, (void **)particles1);
tlhash_values(cell2, (void **)particles2);

for (int_t i = 0; i < size1; i++)
{

particle_t *p1 = particles1[i];
for (int_t j = 0; j < size2; j++)
{

particle_t *p2 = particles2[j];
if (p1->type == P_VIRT && p2->type == P_VIRT)

continue;
if (p1->idx < p2->idx)
{

particle_t *p2 = particles2[j];
real_t dx = p1->x[0] - p2->x[0];
real_t dy = p1->x[1] - p2->x[1];
real_t d = sqrt(dx * dx + dy * dy);
if (d < RADIUS)
{

#pragma omp atomic update
p1->interactions++;
#pragma omp atomic update
p2->interactions++;

int_t i;
#pragma omp atomic capture
i = domain.n_pairs++;

domain.pairs[i].ip = p1;
domain.pairs[i].jp = p2;
domain.pairs[i].r = distance;
domain.pairs[i].q = distance / H;
domain.pairs[i].w = 0.0;
domain.pairs[i].dwdx[0] = domain.pairs[i].dwdx[1] = 0.0;

32

}
}

}
}

}

3.4.6 Particle Serialization
Particles are serialized from the cell-grid into a flat pointer array. This includes field particles,
ghost particles, and virtual particles. Field particles are placed first, followed by ghost particles
and virtual particles. The particles are arranged in this way to be able to differentiate between
the different particle types in the SPH kernel.

Listing 3.8 Routine for serializing particles from the cell-grid into a flat
pointer array.

void grid_categorize(void)
{

grid_resize_particles();

int_t n_total = domain.n_field + domain.n_virt + domain.n_ghost;
int_t n_field = 0, n_virt = 0, n_ghost = 0;

memset(domain.particles, 0, n_total * sizeof(particle_t *));

for (int_t y = -1; y < domain.n_cells_y; y++)
{

for (int_t x = -1; x <= domain.n_cells_x; x++)
{

tlhash_t *cell = CELL(x, y);
particle_t *particles[cell->size];
tlhash_values(cell, (void **)particles);
for (int_t i = 0; i < cell->size; i++)
{

particle_t *p = particles[i];
if (p->type == P_FIELD)
{

p->local_idx = n_field;
domain.particles[n_field] = p;
n_field++;

}
else if (p->type == P_VIRT)
{

p->local_idx = domain.n_field + n_virt;
domain.particles[domain.n_field + n_virt] = p;
n_virt++;

}
else
{

p->local_idx = domain.n_field + domain.n_virt + n_ghost;
domain.particles[domain.n_field + domain.n_virt + n_ghost] = p;
n_ghost++;

}
}

}

33

}
}

3.4.7 Particle Migration
Particle migration happens in two steps. First, all field cells are scanned to check if any particles
have moved outside their current cells. If that is the case, the particles in question are moved
to their new cell destinations. The new cell may be a ghost-buffer cell, which means that the
particle has moved outside its current subdomain and will be migrated to an adjacent rank.
The particle migration procedure is almost identical to the particle mirroring procedure. The
only difference is that in the particle migration routine, particles are removed from the cell grid
after the migration has completed.

Listing 3.9 Routine for migrating particles to new cells.
void grid_update(void)
{

int_t n_cells = domain.n_cells_x * domain.n_cells_y;
for (int_t k = 0; k < n_cells; k++)
{

int_t cx = k % domain.n_cells_x;
int_t cy = k / domain.n_cells_x;

tlhash_t *current = CELL(cx, cy);
particle_t *particles[current->size];
tlhash_values(current, (void **)particles);

for (int_t j = 0; j < current->size; j++)
{

particle_t *p = particles[j];
if (p->type == P_FIELD)
{

int_t cellpos[2];
grid_pos2cell(p->x, cellpos);
int_t x = cellpos[0];
int_t y = cellpos[1];

grid_clamp(cellpos);

/* Particle has moved outside its current cell */
if ((x != cx) || (y != cy))
{

tlhash_t *next = CELL(x, y);
tlhash_remove(current, &(p->idx), sizeof(int_t));
tlhash_insert(next, &(p->idx), sizeof(int_t), (void *)p);
/* Particle has moved into halo and does no longer

belong to this domain */
if (x <= -1 || x >= domain.n_cells_x)

domain.n_field--;
}

}
}

}
}

34

3.5 Hardware
In this section we present the compute resources used to conduct benchmarks and experiments.
The node topologies of Idun-E5 and Idun-Gold are shown in Appendix B.

3.5.1 Fram
Fram is supercomputer hosted at the Arctic University of Norway (UIT). It consists of 1004
dual-socket nodes (32256 cores) interconnected with an InfiniBand network. Each node has 2 ×
Intel Xeon E5-2683 v4 CPUs. The system has a theoretical peak performance of 1.1 petaFLOPS.

3.5.2 Idun
Idun is a computing cluster hosted at the Norwegian University of Science and Technology
(NTNU). It consists of several sub-clusters. We use two clusters in this study, namely Idun-E5
and Idun-Gold, described below.

Idun-E5

27 nodes (540 cores). Each node has 2 × Intel Xeon E5-2630 v2 CPUs.

Idun-Gold

12 nodes (336 cores). Each node has 2 × Intel Xeon Gold 6132 CPUs.

Table 3.2 CPU specifications.

Fram

Cores 16 (32)
Base Frequency 2.10 GHz

L3 cache (shared) 40 MB

Max Bandwidth 76.8 GB/s

Max FLOPS NA

Idun-E5

Cores 10 (20)
Base Frequency 2.20 GHz

L3 cache (shared) 25 MB

Max Bandwidth 68.3 GB/s

Max FLOPS NA

Idun-Gold

Cores 14 (28)
Base Frequency 2.60 GHz

L3 cache (shared) 19 MB

Max Bandwidth 119.2 GB/s

Max FLOPS NA

35

3.6 Simulation Setup
We use two different simulation setups when measuring program performance. The dam-break
simulation has already been presented in Section 2.2. With this simulation we get violent surface
flows during the first half of the simulation before the dam eventually calms down. With the
other simulation setup, the still simulation, we get a simulation that has very little dynamic
movement in the dam.

3.6.1 The Still Simulation
The still simulation is similar to the original dam break simulation, but we adjust the width of
the dam to almost completely fill the tank,

L = B −RCell,

leaving only half a cell width between the dam and the tank on each side. The dam is vertically
positioned from a height of RCell/2 to provide sufficient fluid motion as the dam hits the tank.
These parameters yield the initial configuration as shown in Figure 3.13. We note that the still
simulation yields a significantly larger particle count compared to the dam-break simulation
with the same scale, having approximately 2.5 times as many particles.

36

(a)

(b)

Figure 3.13 The two simulation setups we use to measure application
performance. (a) Dam-break simulation, Scale 1, 7381 particles. (b) Still
simulation, Scale 1, 19140 particles.

3.7 Program Metrics
The SPH program metrics are measured using the dam-break simulation to get an overview of
how the SPH application performs under dynamic conditions. We use these metrics to expose
the main characteristics of the SPH application and its potential bottlenecks.

3.7.1 Execution Time
To get an overview of the performance characteristics of the application, we measure TComp and
TComm by timing the SPH kernel and each individual communication routine. We also look at
number of particles transmitted between all ranks. We measure the migration counts and mirror
counts separately as we expect a rather large difference between the two. The measurements
are reported as the averages over a 1000 timesteps across all ranks over 128 K timesteps.

37

3.7.2 Workload
The workload distribution is measured by running the dam-break simulation for 128 K timesteps.
We perform more frequent measurements during the first half of the simulation since we expect
more rapid changes in the workload distribution during the first half of the simulation. The
workload is computed by reducing the local particle count to the master rank (rank 0). The
workload distribution is then reported as the fraction of the total particle count per timestep.
We measure the workload distribution for 4 different scales using 4 ranks. We use a relatively
low rank count for illustration purposes since it makes the distribution measurements more
distinguishable.

3.7.3 Idle Time
The idle time of the SPH application is the total fraction of the execution time where one or
more ranks are have no particles in their domains and, consequently, have no work to do. We
measure the idle time on two ways. First, we measure the number of timesteps required before
all ranks have at least one particle in their domain. Second, we measure the total time spent
waiting in an idle state as a fraction of the total execution time.

3.8 System Metrics
We measure systems metrics using synthetic benchmarks that are tuned to each target system.
In this section we present the implementation and configuration of three benchmarks, namely
the DGEMM benchmark, the Stream benchmark, and the Ping-pong benchmark.

3.8.1 DGEMM benchmark
We measure the floating-point performance per node according to Equation 2.15 using a level
3 BLAS routine. We use the CBLAS library to perform matrix-matrix multiplications for this
benchmark, as it provides hardware optimizations for a range of different CPUs, including the
ones we use in this study. The result is computed as the average FLOPS over 10 consecutive
benchmark executions.

Listing 3.10 DGEMM benchmark using the CBLAS library.
t_start = walltime();

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
M, Q, N, alpha, mat_a, N, mat_b, Q, beta, mat_c, Q);

return walltime() - t_start;

3.8.2 Stream Benchmark
The bandwidth of each system is measured with the Stream benchmark by recording the ex-
ecution time of the Triad routine from Equation 2.12 over 10 benchmark executions. These
measurements are then used together with the combined memory requirement of the Triad
routine to get the total bandwidth of the system. We run the benchmark with an increasing

38

number of threads with both scattered and compact affinity schemes since we expect to see the
effects of memory-channel saturation. The Stream benchmark requires each array operand to be
roughly four times larger than the combined cache memory in order to measure the bandwidth
accurately. We therefore use an operand size of 640 MB on all three systems, which is roughly
6.3, and 8.2 times larger than the total L3 cache memory on Fram, Idun-E5, and Idun-Gold,
respectively. Our Stream-benchmark implementation is listed in Appendix A.

Listing 3.11 Stream benchmark.
t_start = walltime();
#pragma omp parallel for
for (int i = 0; i < STREAM_ARRAY_SIZE; i++)

a[i] = b[i] + scalar * c[i];
t_time = walltime() - t_start;
if (j > 0)
{

timings[TRIAD][MIN] = MIN(timings[TRIAD][MIN], t_time);
timings[TRIAD][MAX] = MAX(timings[TRIAD][MAX], t_time);
timings[TRIAD][AVG] += t_time;

}

3.8.3 Ping-pong Benchmark
We derive the Hockney parameters from Equation 2.9 by performing a series of Ping-pong
benchmarks. We make the assumption that the cost of sending a message between two ranks is
the same both ways. Thus, we need only benchmark n(n − 1)/2 communication pairs. Every
two ranks execute exclusively to avoid communication-channel interference. The setup latency
is derived by measuring the cost of sending a small message (1 byte) back and fourth 1000 times
between every communication pair. The inverse bandwidth is derived by measuring the cost
of sending a large message (100 MB) 10 times back and fourth between every communication
pair. Thus, for a message size of M bytes and N benchmark iterations, the model parameters
can be derived by adjusting the N and M such that either the setup latency or the inverse
bandwidth becomes the domination factor. Our Ping-pong-benchmark implementation is listed
in Appendix A.

Listing 3.12 Ping-pong benchmark.
double t_start;

start = MPI_Wtime();
if (rank == src)
{

for (int_t k = 0; k < num_bench; k++)
MPI_Ssend(send_buff, message_size, MPI_CHAR, dst,

0, MPI_COMM_WORLD);
for (int_t k = 0; k < num_bench; k++)

MPI_Recv(recv_buff, message_size, MPI_CHAR,
dst, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}
if (rank == dst)
{

for (int_t k = 0; k < num_bench; k++)
MPI_Recv(recv_buff, message_size, MPI_CHAR,

src, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

39

for (int_t k = 0; k < num_bench; k++)
MPI_Ssend(send_buff, message_size, MPI_CHAR, src,

0, MPI_COMM_WORLD);
}

return (MPI_Wtime() - t_start) / (2 * num_bench * message_size * sizeof(char));

3.9 Cell Performance
We compare the speedup and parallel efficiency of the Cell+Table and Cell+List methods. For
this purpose we look at the average program runtime across all ranks for a fixed number of
timesteps using the still simulation. With this simulation setup we get a performance measure
of each cell implementation when there is little dynamic movement in the dam, and thus the
difference in program performance will mostly depend on the cell-grid scheme.

We also compare the grid performance using the dam-break simulation. With this simulation
setup we get a performance measure of the cell-grid scheme when there is a lot of dynamic
movement in dam during the first half of the simulation. We measure the performance in total
grid execution time across all ranks. With more dynamic movement in the dam, we expect to
get an indication of the cost of migrating particles to individual cells for Cell+Table method.

40

Chapter 4

Results and Discussion

4.1 Program Metrics
In this section we present performance metrics for the SPH application that is independent of
the cell-grid implementation scheme. These results include the kernel execution time, commu-
nication cost, and workload distribution. We compare the performance of the Cell+Table and
Cell+List methods separately in Section 4.3.

4.1.1 Execution Time
Figure 4.1 shows the total number of particles transmitted between all ranks for particle migra-
tion and particle mirroring. Only exported particles are counted. Figure 4.2 shows the kernel
execution time and communication time.

The mirror count starts relatively high compared to the corresponding migration count and
converges towards approximately 500 particles as the dam stabilizes. We see the same trend
with the particle migration count, albeit with a much lower initial migration count that con-
verges towards zero. With particle mirroring, more ranks corresponds to higher transmission
counts. This can be explained by the communication topology and the fact that every new rank
introduces extra subdomain boundaries where particles are mirrored to adjacent domains. This
does not affect particle migration in the same way since only particles that cross the subdomain
boundary are subject to migration. This leads to much higher transmission counts for particle
mirroring.

The communication cost constitutes a very low fraction of the kernel execution time. In the case
where the domain is split between a high number of ranks, e.g. 41 or 32, such that the width
the subdomain is only 1 or 2 cells, the communication time represents less than 5 % of the total
kernel execution time. Thus, the communication cost is not a limiting performance factor, even
for sparse simulations where particle counts are low.

41

Figure 4.1 Number of particles transmitted as averages of 1000 timesteps.
Migration (left). Mirroring (right). Scale 1, 7381 particles, 128 K timesteps.

Figure 4.2 Kernel execution vs. communication cost as averages of 1000
timesteps. Kernel execution time (left). Communication time (center).
Fraction of communication time to kernel execution time (right). Scale 1,
7381 particles, 128 K timesteps.

4.1.2 Workload
Figure 4.3 displays the workload distribution among 4 ranks for Scale 1, 2, 3 and 4, with the
simulation running for 128 K timesteps. The domain is decomposed vertically among ranks,
giving each consecutive rank a rectangular subdomain. Consequently, as the dam breaks and
starts moving from left to right, the workload is distributed unevenly until the dam has entered
the domain of the rightmost rank. Initially, most of the work will be divided among the left-
most ranks. As the dam breaks and starts moving, particles migrate across subdomains and
the workload gets distributed among multiple ranks. Finally, when the simulation has reached
equilibrium, the workload distribution per rank will be close to 50 %. For Scale 1 we see the
that the entire workload is divided among the first two ranks at timestep 1000. As the simu-
lation progresses and particles start moving into adjacent subdomains, the workload of the two

42

rightmost ranks increases at the same time as the workload of the two leftmost ranks decreases.
At around 128 K timesteps the workload is distributed evenly across all ranks. For the other
scale factors we see a similar wave effect as the dam propagates through the tank.

Figure 4.3 Workload distribution for different scales. 4 ranks, 128 K
timesteps.

4.1.3 Idle Time
Figure 4.4 shows the relationship between simulation timesteps and idle time. The left figure
shows the number of timesteps required to reach zero idle time for different scales factors. The
right figure shows the corresponding idle time as the percentage of the total execution time.
The staircase pattern is caused by particles entering a new subdomain for the first time. The
reduction in idle time equals the workload distribution per rank, which in this case is 1/8 (12.5 %)
for 8 ranks. The average increase in the number of timesteps required before all ranks have some
degree of work increases by approximately 30 % per scale increment. If cr is a constant denoting
the first timestep all r ranks have work to do for a scale factor s, then the expected idle time
can be approximated by the following equation,

43

T (cr, s)Idle = cr1.3s. (4.1)

Figure 4.4 Total fraction of program execution time spent idle. 14 K
timesteps, 8 ranks. Left: Number of timesteps required before all ranks
have work to do. Right: Idle time as percentage of total execution time.

4.2 System Metrics
In this section we present performance metrics for Fram, Idun-E5, and Idun-Gold.

4.2.1 DGEMM Benchmark
Table 4.1 lists the DGEMM benchmark results. We see that Idun-Gold achieves the highest node
performance of the three, with a compute capacity that is 17 % higher compared to Fram. Idun-
E5 has the lowest node performance. Adjusting the results to single-thread performance, we see
that the performance per thread correlates with the CPU clock frequency listed in Table 3.2.

Table 4.1 DGEMM benchmark results.

System GFLOPS per node GFLOPS per core

Fram 428.9 13.4
Idun-E5 357.2 17.9
Idun-Gold 504.2 18.0

44

4.2.2 Stream Benchmark
Figure 4.5 shows the results from the Stream benchmark. For Fram, Idun-E5, and Idun-Gold, the
measured bandwidth constitutes 61.9 %, 70.1 %, and 72.6 % of the theoretical peak bandwidth
reported from the hardware manufacturer. Using a compact affinity scheme, we see that the
memory channel is saturated as the number of threads starts to fill the first socket. As additional
threads start to execute on the second socket, we see a linear increase in bandwidth for every
new thread. Running the benchmark with scattered affinity, the increase in bandwidth happens
more rapidly due to both memory channels being utilized. The saw-tooth pattern occurs on
every odd-numbered thread count and is caused by one memory channel being slightly more
saturated than the other, thereby causing a slight decrease in measured bandwidth.

Table 4.2 Stream benchmark results.

System Affinity Min [GB/s] Max [GB/s] Avg [GB/s]

Fram
Compact 123.4 123.8 123.6
Scatter 122.8 123.2 123.1

Idun-E5
Compact 98.4 98.8 98.6
Scatter 95.9 96.1 96.0

Idun-Gold
Compact 167.4 167.8 167.6
Scatter 156.4 158.2 157.8

45

(a) (b)

(c)

Figure 4.5 Stream benchmark results. (a) Fram. (b) Idun-E5. (c)
Idun-Gold.

4.2.3 Ping-pong Benchmark
The Hockney parameters derived using the Ping-pong benchmark are listed in Table 4.3. The
values listed here are the maximum average values for each rank affinity: intra socket, inter
socket, and inter node. The raw individual metrics for every communication pair is shown in
Figure 4.6 (setup latency) and Figure 4.7 (inverse bandwidth). The setup latency dominates the
inverse bandwidth until a certain number of particles is reached. This limit is encountered when
the message size is around α/β bytes, which corresponds to around 20–30 particles depending on
the system. Since the Hockney parameters were derived using message sizes up to 100 MB, the
validity of communication-cost prediction is restricted to transmission loads smaller or equal to
100 MB. Since we know that the SPH application has transmission loads significantly lower than
100 MB, even for high rank counts, the validity of the model applies to all test cases conducted
in this study.

46

Table 4.3 COMMS1 parameter measurements.

Intra socket Inter socket Inter node

Fram
α [s] 2.13e-06 2.96e-06 9.66e-06
β [s/byte] 2.95e-10 3.1e-10 1.84e-10

Idun-E5
α [s] 6.42e-07 1.45e-06 3.17e-06
β [s/byte] 2.85e-10 3.05e-10 3.43e-10

Idun-Gold
α [s] 5.87e-07 1.69e-06 5.44e-06
β [s/byte] 2.45e-10 2.69e-10 1.79e-10

47

(a) (b)

(c)

Figure 4.6 Setup latency . (a) Fram, 128 ranks. (b) Idun-E5, 120 ranks.
(c) Idun-Gold, 112 ranks.

48

(a) (b)

(c)

Figure 4.7 Inverse bandwidth. (a) Fram, 128 ranks. (b) Idun-E5, 120
ranks. (c) Idun-Gold, 112 ranks.

4.2.4 Roofline
Using the peak bandwidth from the Stream benchmark and peak FLOPS from the DGEMM
benchmark, we get the Roofline ceilings for Fram, Idun-E5, and Idun-Gold, as shown in Fig-
ure 4.8. We get the theoretical operational intensity for the SPH kernel by counting the number
of floating-point operations involving particle pairs, which is 89n for n particle pairs. The total
memory requirement for n particle pairs is 56n. Since both the number of floating-point oper-
ations and the memory requirement per particle scale by the same factor n, we can remove n
from the equation. The operational intensity for the SPH application then becomes I = 89/56.

49

Plotting the SPH kernel in the Roofline model shows that the SPH kernel is memory bound on
all three systems.

Figure 4.8

4.3 Cell Performance
In this section we present and compare performance metrics for the Cell+Table and Cell+List
methods.

4.3.1 Still Test
For the still simulation, the Cell+Table method achieves a speedup of 30.1 % to 65.1 %, respec-
tively, compared to the Cell+List method.

The parallel efficiency declines rapidly as the rank count is increased for both methods. The
efficiency of the Cell+Table method declines from 86.9 % with 4 ranks, to 9.1 % with 32 ranks.
The efficiency for the Cell+List is almost identical, starting with an efficiency of 80.1 % for 4
ranks, declining to 6.7 % with 32 ranks.

The communication cost constitutes only a very small fraction of the total execution time,
even for high rank counts. We know that the two main performance bottlenecks of the SPH
application is particle-pair creation and kernel execution. Therefore, increasing the rank count
above a certain point only marginally contributes to performance increase, which causes a rapid
decline in parallel efficiency. The performance inprovement of the Cell+Table method over the
Cell+List method comes from the low maintanance cost using persistent hash tables and less
memory traffic when scanning cells for particle pairs.

50

Figure 4.9 Speedup and efficiency for Cell+Table vs. Cell+List. Scale 1,
7381 particles.

4.3.2 Dam-break Test
For the dam-break test, Cell+Table achieves a speedup of 24.4 % and 28.6 %, respectively, com-
pared to the Cell+List method.

For the Cell+Table method we see that overhead of migrating particles to new cells introduces
some overhead during the early stages of the simulation. After around 20 K to 30 K timesteps,
the number of particles that migrate between cells decreases, causing the overall grid cost to
go down as there is less movement in the dam. For the Cell+List however, we observe that the
overhead of re-building the cell grid at every timestep incurs a constant overhead that persists
throughout the simulation, also after the dam has calmed down.

51

Figure 4.10 Grid maintenance cost. 128 K timesteps.

4.4 Model Validation

4.4.1 Communication Cost
The communication cost is predicted with the Hockney model (Equation 2.9) using the machine
parameters for setup latency and inverse bandwidth derived using the Ping-pong benchmark.
We validate the Hockney model using the average maximum measurements for setup latency
and inverse bandwidth for each rank affinity. The prediction error of the communication cost
is shown in Figure 4.11. We see that the prediction error converges towards zero as the total
number of export particles declines. This suggests that the machine metric for the inverse
bandwidth introduces some inaccuracy when the fluid motion is violent and the transmission
load changes frequently during the first 40 K timesteps of the simulation. This error can be
accounted by modelling the prediction error and extending Equation 2.9,

TComm = aij +Mβij − ε(M), (4.2)

where ε(M) is the expected error prediction for M bytes. The definition of ε(M) may vary
depending on the target system. For our measurements we suggest an exponential error function
to reduce the error prediction when there is a lot of movement in the dam during the first half
of the simulation. However, since the communication cost constitutes a very small fraction of
the total execution time, the extra effort spent modeling the (very small) prediction error may
not be worth it.

52

(a) (b)

(c)

Figure 4.11 Fram communication cost prediction error. (a) Intra socket.
(b) Inter socket. (c) Inter node.

4.4.2 Computational Cost
Modeling the computational cost involves predicting the number of particles and particles pairs
in the local domain. From Figure 4.12 we see that there is linear relationship between the
number of particles currently in the domain and the number of generated particle pairs. We see
a similar relationship between the number of local particles and exported particles. We therefore
end up with a linear model for both cases,

p(n) = (mn+ r), (4.3)

where n is the number of particles in the local domain. Table 4.4 lists the parameters for each
model.

53

Table 4.4 Particle prediction coefficients.

Function Coefficients Values Asymptotic Standard Error

p(n)Pair
m 19.451 0.4994 (2.567 %)
r -589.96 299.6 (50.77 %)

p(n)Export
m 0.112845 0.004522 (4.008 %)
r -4.02341 2.713 (67.42 %)

Figure 4.12

4.4.3 Memory Cost
The two main sources of memory usage comes from the two arrays holding particles and particles
pairs, and the cell-grid data structure. The required memory for n particles is

M(n)Particles = 2nm, (4.4)

where m is the size of a single particle in bytes. The memory requirement for particles pairs
is based on two assumptions. First, we assume that every particle interacts with every other
particle in neighboring cells. This is not practically possible since peripheral particles may have
only a few or no interactions. Thus it is a pessimistic assumption. Second, measurements show
that no cell contains more than 32 particles throughout the lifetime of the simulation. Based
on these two assumptions we can define an upper limit memory requirement for particle pairs,

54

M(n)Pairs =
nmk

2
, (4.5)

where k = 32×9 = 288 is an upper limit to the number of possible interactions for every particle
in the domain. We divide k by 2 since we treat the particle pairs (i, j) and (j, i) as the same
interaction.

Figure 4.13 Memory usage for particles and particle pairs by scale factor.

55

Chapter 5

Conclusion

In this study we have implemented two different subdomain discretization techniques; the
Cell+Table method that implements grid cells using persistent hash tables, and the Cell+List
method that implements grid cells using volatile linked lists. We find that the Cell+Table out-
performs the Cell+List method with a performance increase of more than 24 % and 30 % for two
different test cases, respectively. We have found that implementing grid cells using persistent
hash tables can yield significant performance increase based on two observations. First, the
lower bound of the operational intensity for the SPH proxy application is relatively small. This
shows that the ratio of the number of floating-point operations to the number of memory opera-
tions for the SPH kernel is low, and that the SPH kernel is memory bound for the systems used
in this study. Since the gap between floating-point performance and memory latency has shown
no signs of getting smaller over recent years, it is reasonable to assume that the SPH kernel will
be memory bound on most modern computing systems for the foreseeable future. Representing
grid cells using persistent hash tables will therefore yield less memory traffic and consequently
higher application performance compared to the alternative approach of using volatile linked
lists as cell representations. Second, we also see that the cost of migrating particles between
individual cells is low enough so that the Cell+Table method outperforms the Cell+List method
for violent surface flows. Based on these observations, we recommend using the Cell+Table
method as the cell-grid scheme for SPH applications with similar characteristics as the SPH
application used in this study.

We have developed a suite of benchmarks for measuring machine metrics that can be used to
model application performance. These benchmarks include the DGEMM benchmark (using
the CBLAS library) for measuring peak system FLOPS, the Stream benchmark for measuring
system bandwidth, and the Ping-pong benchmark for deriving the Hockney parameters for setup
latency and inverse bandwidth.

We have found that the average particle transmission load between individual ranks quickly
declines as the fluid simulation calms down. Even during the first half of the simulation when
there is a lot of dynamic fluid motion, the communication cost constitutes a small fraction
of the total execution time. (Less than 5 % for the dam-break simulation with Scale 1 and 41
ranks.) The program routines for finding particle pairs and computing the SPH kernel constitute

56

the main bottlenecks of the SPH application, and should therefore be the main concern of
optimization.

For modeling field particles and particle pairs, and field particles and transmission counts, we
propose a linear estimate that is independent of Scale. Furthermore, we find tha the Hock-
ney model accurately describes the communication cost of inter-rank communication with low
prediction-error rates using machine metrics from the Ping-pong benchmark. We also note that
the setup latency is the dominating cost factor up to a certain limit defined by αij/βij .

Based on our experiments we provide the following summary and recommendations for running
the SPH application on parallel systems:

• The operational intensity of the SPH application has a small lower bound and there-
fore benefits from implementing grid cells using persistent hash tables in order to reduce
memory traffic.

• The SPH application benefits from subdomain discretization for simulations that have
non-trivial amount of particles. Since a relatively large number of particles is needed for
the simulation to behave realistically according to the fluid medium, cell-grid discretization
will reduce the overall execution time significantly.

• There is a linear correspondence between the number of field particles and the number of
particle pairs and exported particles. This can be used to analyze the workload per rank
ahead of time when running on large parallel systems.

• The number of ranks is limited by the relationship between the cell size and the tank width.
Therefore the SPH application will benefit from thread-level optimizations to reduce the
pair-creation and kernel-execution routines.

• For simulations with little dynamic movement, the communication cost can be factored
out, and the setup latency becomes the dominating factor.

• A compact affinity scheme should be used since ranks are organized in increasing order
and every rank communicates with its left and right neighbors.

57

Bibliography

[1] K. J. Barker, K. Davis, A. Hoisie, et al., “Using performance modeling to design large-scale
systems,” Computer, vol. 42, no. 11, pp. 42–49, Nov. 2009. doi: 10.1109/MC.2009.372.

[2] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics — theory and
application to non-spherical stars,” Monthly Notices of the Royal Astronomical Society,
vol. 181, pp. 375–389, Nov. 1977. doi: 10.1093/mnras/181.3.375.

[3] L. B. Lucy, “A numerical approach to the testing of the fission hypothesis,” Astronomical
Journal, vol. 82, pp. 1013–1024, Dec. 1977. doi: 10.1086/112164.

[4] J. Monaghan, “Simulating free surface flows with sph,” J. Comput. Phys., vol. 110, no. 2,
pp. 399–406, Feb. 1994. doi: 10.1006/jcph.1994.1034.

[5] M. Ozbulut, M. Yildiz, and O. Goren, “A numerical investigation into the correction
algorithms for SPH method in modeling violent free surface flows,” International Journal
of Mechanical Sciences, vol. 79, pp. 56–65, 2014. doi: 10.1016/j.ijmecsci.2013.
11.021.

[6] P. Pacheco, An Introduction to Parallel Programming, 1st. Morgan Kaufmann, Inc., 2011.

[7] G. M. Amdahl, “Validity of the single processor approach to achieving large scale comput-
ing capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer Confer-
ence, 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

[8] J. L. Gustafson, “Reevaluating Amdahl’s law,” Commun. ACM, vol. 31, no. 5, pp. 532–
533, May 1988. doi: 10.1145/42411.42415.

[9] R. W. Hockney, “The communication challenge for MPP: Intel paragon and Meiko CS-2,”
Parallel Computing, vol. 20, no. 3, pp. 389–398, 1994. doi: 10.1016/S0167-8191(06)
80021-9.

[10] A. Lastovetsky, V. Rychkov, and M. O’Flynn, “Accurate heterogeneous communication
models and a software tool for their efficient estimation,” IJHPCA, vol. 24, pp. 34–48,
Feb. 2010. doi: 10.1177/1094342009359012.

[11] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no. 8,
pp. 103–111, Aug. 1990. doi: 10.1145/79173.79181.

[12] D. Culler, R. Karp, D. Patterson, et al., “Logp: Towards a realistic model of parallel
computation,” in Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPOPP ’93, Association for Computing Machinery,
1993, pp. 1–12. doi: 10.1145/155332.155333.

58

https://doi.org/10.1109/MC.2009.372
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1086/112164
https://doi.org/10.1006/jcph.1994.1034
https://doi.org/10.1016/j.ijmecsci.2013.11.021
https://doi.org/10.1016/j.ijmecsci.2013.11.021
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1177/1094342009359012
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/155332.155333

[13] A. Alexandrov, M. F. Ionescu, K. E. Schauser, et al., “Loggp: Incorporating long messages
into the logp model—one step closer towards a realistic model for parallel computation,”
in Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, ser. SPAA ’95, Association for Computing Machinery, 1995, pp. 95–105. doi:
10.1145/215399.215427.

[14] T. Kielmann, H. Bal, and K. Verstoep, “Fast measurement of logp parameters for message
passing platforms,” vol. 1800, Jan. 2000, pp. 1176–1183. doi: 10.1007/3-540-45591-
4_162.

[15] J. McCalpin, “Memory bandwidth and machine balance in high performance computers,”
IEEE Technical Committee on Computer Architecture (TCCA) Newsletter, vol. 2, Dec.
1995.

[16] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance
model for multicore architectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.
doi: 10.1145/1498765.1498785.

[17] J. J. Dongarra, J. Du Croz, S. Hammarling, et al., “A set of level 3 basic linear algebra
subprograms,” ACM Trans. Math. Softw., vol. 16, no. 1, pp. 1–17, Mar. 1990. doi: 10.
1145/77626.79170.

[18] Q. Wang, X. Zhang, Y. Zhang, et al., “AUGEM: Automatically generate high performance
dense linear algebra kernels on x86 CPUs,” in SC ’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, 2013,
pp. 1–12. doi: 10.1145/2503210.2503219.

[19] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quantitative
Approach, 5th. Morgan Kaufmann, Inc., 2011.

[20] The MPI Forum, MPI: A message passing interface standard, version 3.1, 2015.

[21] L. Dagum and R. Menon, “OpenMP: An industry-standard API for shared-memory pro-
gramming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55, Jan. 1998. doi: 10.1109/
99.660313.

[22] J. Valstad and J. Ragunathan, “Performance modeling of CFD application scalability
using co-design methods,” Master’s Thesis, 2018.

59

https://doi.org/10.1145/215399.215427
https://doi.org/10.1007/3-540-45591-4_162
https://doi.org/10.1007/3-540-45591-4_162
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313

Appendix A

Listing A.1 SPH header file.
1 #ifndef COMMON_H
2 #define COMMON_H
3
4 #include <getopt.h>
5 #include <math.h>
6 #include <mpi.h>
7 #include <omp.h>
8 #include <stdbool.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <unistd.h>
14
15 #define MAX_ITERATION_DEFAULT 200000
16 #define CHECKPOINT_WRITE 100
17 #define CHECKPOINT_CUTOFF 128000
18
19 static const int OPTION_PRINT_DEBUG_INFO = 0;
20
21 typedef int64_t int_t;
22 typedef double real_t;
23
24 #define PI 3.141592654
25 #define TABLE_BUCKETS 16
26 #define PARTICLE_CAP 65536
27 #define PAIR_CAP 65536
28
29 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
30 #define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
31 #define CELL(x, y) (grid[((y) + 1) * (domain.n_cells_x + 2) + (x) + 1])
32
33 #define debug_printf(format, ...) do { \
34 if (OPTION_PRINT_DEBUG_INFO) fprintf(stderr, format, __VA_ARGS__); \
35 } while (0)
36
37 enum { P_FIELD, P_VIRT, P_GHOST };
38
39 enum { C_MIGRATE, C_MIRROR, C_FIELD, C_PAIRS, C_PAIRS_PREDICT, NUM_COUNTERS };
40

60

41 enum { T_PAIRS, T_GRID, T_COMP, T_COMM, T_COMM_PREDICT, NUM_TIMERS };
42
43 /* Defined in sph.c */
44 extern int size, rank, east, west;
45 extern int_t n_field, n_global;
46 extern float SCALE;
47
48 /**
49 *
50 * Benchmarking
51 *
52 ***/
53
54 #define BENCH_CHECKPOINT 1000
55
56 /**
57 *
58 * Kernel parameters
59 *
60 ***/
61
62 /* Defined in sph.c */
63 extern real_t B; /* Tank width */
64
65 static const real_t density = 1e3;
66 static const real_t dt = 1e-4;
67 static const real_t sos = 50.0;
68
69 #define T (0.6 * SCALE) /* Dam height */
70 #define L (1.2 * SCALE) /* Dam width */
71 #define DELTA (0.01) /* Resolution (0.01) */
72 #define H (0.94 * DELTA * 1.4142135623)
73
74 #define CELL_SIZE (3.0 * H)
75 #define RADIUS (3.0 * H) /* Interaction radius */
76
77 #define X(k) ((domain.particles[(k)])->x[0])
78 #define Y(k) ((domain.particles[(k)])->x[1])
79 #define VX(k) ((domain.particles[(k)])->v[0])
80 #define VY(k) ((domain.particles[(k)])->v[1])
81 #define M(k) ((domain.particles[(k)])->mass)
82 #define RHO(k) ((domain.particles[(k)])->rho)
83 #define P(k) ((domain.particles[(k)])->p)
84 #define TYPE(k) ((domain.particles[(k)])->type)
85 #define HSML(k) ((domain.particles[(k)])->hsml)
86 #define INTER(k) ((domain.particles[(k)])->interactions)
87 #define INDVXDT(k, i) ((domain.particles[(k)])->indvxdt[(i)])
88 #define EXDVXDT(k, i) ((domain.particles[(k)])->exdvxdt[(i)])
89 #define DVX(k, i) ((domain.particles[(k)])->dvx[(i)])
90 #define DRHODT(k) ((domain.particles[(k)])->drhodt)
91 #define AVRHO(k) ((domain.particles[(k)])->avrho)
92 #define WSUM(k) ((domain.particles[(k)])->w_sum)
93
94 /**
95 *
96 * Structures
97 *
98 ***/

61

99
100 typedef struct world_t world_t;
101 typedef struct particle_t particle_t;
102 typedef struct domain_t domain_t;
103 typedef struct pair_t pair_t;
104 typedef struct bucket_t bucket_t;
105
106 struct world_t
107 {
108 int_t n_cells_x;
109 int_t n_cells_y;
110 int_t origin[2]; /* Cell origin */
111 int_t n_field;
112 };
113
114 struct domain_t
115 {
116 int_t n_cells_x;
117 int_t n_cells_y;
118 int_t origin[2]; /* Cell origin */
119 int_t n_field;
120 int_t n_virt;
121 int_t n_ghost;
122 particle_t **particles;
123 int_t particle_cap;
124 pair_t *pairs;
125 int_t pair_cap;
126 int_t n_pairs;
127 };
128
129 struct particle_t
130 {
131 int_t idx;
132 int_t local_idx;
133 int_t interactions;
134 int_t type;
135 int_t cell[2];
136 real_t x[2]; /* 2D position */
137 real_t v[2]; /* 2D velocity */
138 real_t mass; /* Mass */
139 real_t rho; /* Density */
140 real_t p; /* Pressure */
141 real_t hsml;
142 /* Differentials */
143 real_t indvxdt[2];
144 real_t exdvxdt[2];
145 real_t dvx[2];
146 real_t drhodt;
147 /* Density correction */
148 real_t avrho;
149 real_t w_sum;
150 };
151
152 struct pair_t
153 {
154 particle_t *ip;
155 particle_t *jp;
156 real_t r; /* Distance between particles */

62

157 real_t q; /* Normalized distance */
158 real_t w; /* Edge weight */
159 real_t dwdx[2]; /* Influence on velocity */
160 };
161
162 struct bucket_t
163 {
164 particle_t *particle;
165 bucket_t *next;
166 };
167
168 #endif /* COMMON_H */

Listing A.2 Benchmark routines for measuring SPH metrics.
1 #include "common.h"
2
3 void bench_add_count(double *c_acc, int type, double count)
4 {
5 c_acc[type] += count;
6 }
7
8 void bench_write_count(char *path, double *c_acc, int acc_size, long timestep)
9 {
10 static int delta = 0;
11
12 if (timestep == 0)
13 return;
14
15 delta = timestep - delta;
16
17 if (rank == 0)
18 MPI_Reduce(MPI_IN_PLACE, c_acc, acc_size, MPI_DOUBLE, MPI_SUM, 0, ←↩

MPI_COMM_WORLD);
19 else
20 MPI_Reduce(c_acc, c_acc, acc_size, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
21
22 if (rank == 0)
23 {
24 FILE *fp = fopen(path, "a");
25 fprintf(fp, "%ld ", timestep);
26 for (int i = 0; i < acc_size; i++)
27 fprintf(fp, "%lf ", c_acc[i] / (double)delta);
28 fprintf(fp, "\n");
29 fclose(fp);
30 }
31
32 for (int i = 0; i < acc_size; i++)
33 c_acc[i] = 0;
34
35 delta = timestep;
36 }
37
38 void bench_write_rank_count(char *path, int src, double *c_acc, int acc_size, long ←↩

timestep)
39 {
40 static int delta = 0;
41

63

42 if (timestep == 0)
43 return;
44
45 delta = timestep - delta;
46
47 if (rank == src)
48 {
49 FILE *fp = fopen(path, "a");
50 fprintf(fp, "%ld ", timestep);
51 for (int i = 0; i < acc_size; i++)
52 fprintf(fp, "%lf ", c_acc[i] / (double)delta);
53 fprintf(fp, "\n");
54 fclose(fp);
55 }
56
57 for (int i = 0; i < acc_size; i++)
58 c_acc[i] = 0;
59
60 delta = timestep;
61 }
62
63 void bench_add_timing(double *t_acc, int type, double time)
64 {
65 t_acc[type] += time;
66 }
67
68 void bench_clear_timing(double *t_acc, int acc_size)
69 {
70 for (int i = 0; i < acc_size; i++)
71 t_acc[i] = 0;
72 }
73
74 void bench_write_rank_timing(char *path, int src, double *t_acc, long timestep)
75 {
76 static int delta = 0;
77
78 if (timestep == 0)
79 return;
80
81 delta = timestep - delta;
82
83 if (rank == src)
84 {
85 FILE *fp = fopen(path, "a");
86 fprintf(fp, "%ld ", timestep);
87 for (int i = 0; i < NUM_TIMERS; i++)
88 fprintf(fp, "%lf ", t_acc[i] / (double)delta);
89
90 double error = ((t_acc[T_COMM_PREDICT] - t_acc[T_COMM]) / (double)delta);
91
92 fprintf(fp, "%lf ", error);
93 fprintf(fp, "\n");
94 fclose(fp);
95 }
96
97 for (int i = 0; i < NUM_TIMERS; i++)
98 t_acc[i] = 0;
99

64

100 delta = timestep;
101 }
102
103 void bench_write_timing(char *path, double *t_acc, long timestep)
104 {
105 static int delta = 0;
106
107 if (timestep == 0)
108 return;
109
110 delta = timestep - delta;
111
112 if (rank == 0)
113 MPI_Reduce(MPI_IN_PLACE, t_acc, NUM_TIMERS, MPI_DOUBLE, MPI_SUM, 0, ←↩

MPI_COMM_WORLD);
114 else
115 MPI_Reduce(t_acc, t_acc, NUM_TIMERS, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
116
117 if (rank == 0)
118 {
119 FILE *fp = fopen(path, "a");
120 fprintf(fp, "%ld ", timestep);
121 for (int i = 0; i < NUM_TIMERS; i++)
122 fprintf(fp, "%lf ", t_acc[i] / (double)delta);
123
124 /* Total time, excluding T_COMM_PREDICT */
125 double sum = 0;
126 for (int i = 0; i < NUM_TIMERS - 1; i++)
127 sum += t_acc[i] / (double)delta;
128 fprintf(fp, "%lf ", sum);
129
130 fprintf(fp, "\n");
131 fclose(fp);
132 }
133
134 for (int i = 0; i < NUM_TIMERS; i++)
135 t_acc[i] = 0;
136
137 delta = timestep;
138 }
139
140 void bench_write_idle(char *path, double *t_acc, double *t_idle, long timestep)
141 {
142 static int delta = 0;
143
144 if (timestep == 0)
145 return;
146
147 delta = timestep - delta;
148
149 /* Total runtime */
150 if (rank == 0)
151 MPI_Reduce(MPI_IN_PLACE, t_acc, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
152 else
153 MPI_Reduce(t_acc, t_acc, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
154
155 /* Total idle time */
156 if (rank == 0)

65

157 MPI_Reduce(MPI_IN_PLACE, t_idle, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
158 else
159 MPI_Reduce(t_idle, t_idle, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
160
161 MPI_Barrier(MPI_COMM_WORLD);
162
163 if (rank == 0)
164 {
165 FILE *fp = fopen(path, "a");
166 fprintf(fp, "%ld %lf %lf\n", timestep, *t_acc / delta, *t_idle / delta);
167 fclose(fp);
168 }
169
170 *t_acc = *t_idle = 0;
171 delta = timestep;
172 }
173
174 void bench_write_workload(char *path, long n_field, long timestep)
175 {
176 if (timestep == 0)
177 return;
178
179 long counts[size];
180
181 if (rank == 0)
182 {
183 counts[0] = n_field;
184 for (int r = 1; r < size; r++)
185 MPI_Recv(&(counts[r]), 1, MPI_LONG, r, 0, MPI_COMM_WORLD, ←↩

MPI_STATUS_IGNORE);
186 }
187 else
188 {
189 MPI_Send(&n_field, 1, MPI_LONG, 0, 0, MPI_COMM_WORLD);
190 }
191
192 MPI_Barrier(MPI_COMM_WORLD);
193
194 if (rank == 0)
195 {
196 FILE *fp = fopen(path, "a");
197
198 long sum = n_field;
199 for (int r = 1; r < size; r++)
200 sum += counts[r];
201
202 fprintf(fp, "%.0lfK %ld ", timestep / (double)1000, sum);
203 for (int r = 0; r < size; r++)
204 {
205 fprintf(fp, "%ld ", counts[r]);
206 }
207 fprintf(fp, "\n");
208
209 fclose(fp);
210 }
211 }

Listing A.3 Ping-pong benchmark.

66

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <inttypes.h>
5 #include <sys/time.h>
6 #include <mpi.h>
7
8 typedef double real_t;
9 typedef uint64_t int_t;
10
11 enum { T_ALPHA, T_BETA };
12
13 int rank, size;
14
15 MPI_Group world_group;
16
17 real_t *matrix;
18 real_t *vector;
19
20 char *send_buff;
21 char *recv_buff;
22
23 int *pairs;
24 int num_pairs = 0;
25
26 int_t MSG_SIZE_MAX = 100 * 1e6; /* 100 MiB */
27 int_t NUM_BENCH_MIN = 5;
28 int_t NUM_BENCH_MAX = 1000;
29
30 /* Root matrix */
31 #define MAT(k, x, y) matrix[(k) * size * size + size * (y) + (x)]
32
33 /* Local vector */
34 #define VEC(k, x) vector[(k) * size + (x)]
35
36 /* Communication pairs */
37 #define TUPLE(i, j) pairs[2 * (i) + (j)]
38
39 void create_tuples(void)
40 {
41 num_pairs = (size * (size - 1) / 2);
42 pairs = (int *)calloc(num_pairs * 2, sizeof(int));
43 int k = 0;
44 for (int i = 0; i < size - 1; i++)
45 {
46 for (int j = i + 1; j < size; j++)
47 {
48 TUPLE(k, 0) = i;
49 TUPLE(k, 1) = j;
50 k++;
51 }
52 }
53 }
54
55 void initialize_buffers(void)
56 {
57 create_tuples();
58 if (rank == 0)

67

59 matrix = (double *)calloc(2 * size * size, sizeof(double));
60 vector = (double *)calloc(2 * size, sizeof(double));
61 send_buff = (char *)calloc(MSG_SIZE_MAX, sizeof(char));
62 recv_buff = (char *)calloc(MSG_SIZE_MAX, sizeof(char));
63 double j = 0.0;
64 for (int_t i = 0; i < MSG_SIZE_MAX; i++)
65 send_buff[i] = ++j;
66 }
67
68 void comms1(int src, int dst, int_t message_size, int_t num_bench, int k)
69 {
70 double start, time;
71
72 start = MPI_Wtime();
73 if (rank == src)
74 {
75 for (int_t k = 0; k < num_bench; k++)
76 MPI_Ssend(send_buff, message_size, MPI_CHAR, dst,
77 0, MPI_COMM_WORLD);
78 for (int_t k = 0; k < num_bench; k++)
79 MPI_Recv(recv_buff, message_size, MPI_CHAR,
80 dst, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
81 }
82 if (rank == dst)
83 {
84 for (int_t k = 0; k < num_bench; k++)
85 MPI_Recv(recv_buff, message_size, MPI_CHAR,
86 src, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
87 for (int_t k = 0; k < num_bench; k++)
88 MPI_Ssend(send_buff, message_size, MPI_CHAR, src,
89 0, MPI_COMM_WORLD);
90 }
91 time = MPI_Wtime() - start;
92
93 if (rank != dst)
94 VEC(k, dst) = time / (2 * num_bench * message_size * sizeof(char));
95 }
96
97 void create_communicator(int src, int dst, MPI_Comm *COMM_PAIR)
98 {
99 int pair[2] = { src, dst };
100 MPI_Group group;
101 /* Create group */
102 MPI_Group_incl(world_group, 2, pair, &group);
103 /* Create communicator */
104 MPI_Comm_create_group(MPI_COMM_WORLD, group, 0, COMM_PAIR);
105 }
106
107 void run_comms1(int_t message_size, int_t num_bench, int k)
108 {
109 if (rank == 0)
110 {
111 if (k == T_ALPHA)
112 printf("Computing alpha...\n");
113 else
114 printf("Computing beta...\n");
115 }
116

68

117 int state = 0;
118
119 for (int i = 0; i < num_pairs; i++)
120 {
121 int src = TUPLE(i, 0);
122 int dst = TUPLE(i, 1);
123
124 MPI_Barrier(MPI_COMM_WORLD);
125
126 if (rank == src || rank == dst)
127 {
128 MPI_Comm COMM_PAIR;
129 create_communicator(src, dst, &COMM_PAIR);
130 MPI_Barrier(COMM_PAIR);
131 comms1(src, dst, message_size, num_bench, k);
132 MPI_Comm_free(&COMM_PAIR);
133 }
134
135 if (rank == 0)
136 {
137 switch (state)
138 {
139 case 0:
140 if (i / (double)num_pairs > 0.25)
141 {
142 state = 1;
143 printf("25%%\n");
144 }
145 break;
146 case 1:
147 if (i / (double)num_pairs > 0.50)
148 {
149 state = 2;
150 printf("50%%\n");
151 }
152 break;
153 case 2:
154 if (i / (double)num_pairs > 0.75)
155 {
156 state = 3;
157 printf("75%%\n");
158 }
159 break;
160 default:
161 break;
162 }
163 }
164 }
165
166 if (rank == 0)
167 printf("Done!\n");
168 }

Listing A.4 Stream benchmark.
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <float.h>

69

4 #include <limits.h>
5 #include <sys/time.h>
6 #include <omp.h>
7
8 #include "common.h"
9
10 #ifndef STREAM_ARRAY_SIZE
11 #define STREAM_ARRAY_SIZE 10000000
12 #endif
13
14 static real_t a[STREAM_ARRAY_SIZE];
15 static real_t b[STREAM_ARRAY_SIZE];
16 static real_t c[STREAM_ARRAY_SIZE];
17
18 /* MIN, MAX, AVG */
19 static double timings[4][3] = {
20 [COPY] = { FLT_MAX, 0.0, 0.0 },
21 [SCALE] = { FLT_MAX, 0.0, 0.0 },
22 [ADD] = { FLT_MAX, 0.0, 0.0 },
23 [TRIAD] = { FLT_MAX, 0.0, 0.0 }
24 };
25
26 double BYTES_TRIAD = 0;
27
28 #define MIN(a, b) ((a) < (b) ? (a) : (b))
29 #define MAX(a, b) ((a) > (b) ? (a) : (b))
30
31 double walltime(void)
32 {
33 static struct timeval t;
34 gettimeofday(&t, NULL);
35 return ((double)t.tv_sec + (double)t.tv_usec * 1.0E-6);
36 }
37
38 int clock_ticks()
39 {
40 const int M = 20;
41
42 double t1, t2, time_value[M];
43
44 /* Collect a sequence of ’M’ unique time values from the system */
45 for (int i = 0; i < M; i++)
46 {
47 t1 = walltime();
48 while(((t2 = walltime()) - t1) < 1.0E-6);
49 time_value[i] = t1 = t2;
50 }
51
52 /* Determine the minimum difference between these ’M’ values. This result
53 will be the estimate (in microseconds) for the clock granularity. */
54 int min_delta = 1000000;
55 for (int i = 1; i < M; i++)
56 {
57 int delta = (int)(1.0E6 * (time_value[i] - time_value[i - 1]));
58 min_delta = MIN(min_delta, MAX(delta, 0));
59 }
60
61 return min_delta;

70

62 }
63
64 void run_stream(void)
65 {
66 double t_start, t_latency;
67
68 BYTES_TRIAD = 3 * sizeof(real_t) * (STREAM_ARRAY_SIZE * 1.0E-9);
69
70 #pragma omp parallel for
71 for (int j = 0; j < STREAM_ARRAY_SIZE; j++)
72 {
73 a[j] = 1.0;
74 b[j] = 2.0;
75 c[j] = 0.0;
76 }
77
78 #pragma omp parallel for
79 for (int j = 0; j < STREAM_ARRAY_SIZE; j++)
80 a[j] = 2.0 * a[j];
81
82 real_t scalar = 3.0;
83
84 for (int j = 0; j < NUM_BENCH; j++)
85 {
86 /* COPY */
87 t_start = walltime();
88 #pragma omp parallel for
89 for (int i = 0; i < STREAM_ARRAY_SIZE; i++)
90 c[i] = a[i];
91 t_latency = walltime() - t_start;
92 if (j > 0)
93 {
94 timings[COPY][MIN] = MIN(timings[COPY][MIN], t_latency);
95 timings[COPY][MAX] = MAX(timings[COPY][MAX], t_latency);
96 timings[COPY][AVG] += t_latency;
97 }
98
99 /* SCALE */
100 t_start = walltime();
101 #pragma omp parallel for
102 for (int i = 0; i < STREAM_ARRAY_SIZE; i++)
103 b[i] = scalar * c[i];
104 t_latency = walltime() - t_start;
105 if (j > 0)
106 {
107 timings[SCALE][MIN] = MIN(timings[SCALE][MIN], t_latency);
108 timings[SCALE][MAX] = MAX(timings[SCALE][MAX], t_latency);
109 timings[SCALE][AVG] += t_latency;
110 }
111
112 /* ADD */
113 t_start = walltime();
114 #pragma omp parallel for
115 for (int i = 0; i < STREAM_ARRAY_SIZE; i++)
116 c[i] = a[i] + b[i];
117 t_latency = walltime() - t_start;
118 if (j > 0)
119 {

71

120 timings[ADD][MIN] = MIN(timings[ADD][MIN], t_latency);
121 timings[ADD][MAX] = MAX(timings[ADD][MAX], t_latency);
122 timings[ADD][AVG] += t_latency;
123 }
124
125 /* TRIAD */
126 t_start = walltime();
127 #pragma omp parallel for
128 for (int i = 0; i < STREAM_ARRAY_SIZE; i++)
129 a[i] = b[i] + scalar * c[i];
130 t_latency = walltime() - t_start;
131 if (j > 0)
132 {
133 timings[TRIAD][MIN] = MIN(timings[TRIAD][MIN], t_latency);
134 timings[TRIAD][MAX] = MAX(timings[TRIAD][MAX], t_latency);
135 timings[TRIAD][AVG] += t_latency;
136 }
137 }
138
139 for (int i = 0; i < 4; i++)
140 timings[i][AVG] /= ((int)NUM_BENCH - 1);
141
142 int threads = 0;
143 #pragma omp parallel
144 {
145 #pragma omp master
146 threads = omp_get_num_threads();
147 }
148 }

72

Appendix B

Figure B.1 Idun-E5 node topology.

73

Figure B.2 Idun-Gold node topology.

74

	Problem Description
	Abstract
	Introduction
	Background
	Smoothed Particle Hydrodynamics
	The Dam-break Problem
	Application Scalability
	Communication Models
	Performance Models
	Architectural Models
	Programming Models
	Data Structures
	Statistical Analysis

	Methodology
	Problem Domain
	Subdomain Discretization
	Grid Model: Cell+List
	Grid Model: Cell+Table
	Hardware
	Simulation Setup
	Program Metrics
	System Metrics
	Cell Performance

	Results and Discussion
	Program Metrics
	System Metrics
	Cell Performance
	Model Validation

	Conclusion
	References
	Appendix
	Appendix

