

1

TDT 24 - Iterative methods
1. Some words about linear algebra
2. The Jacobi method
3. The Gauss-Seidel method
4. Successive Over-Relaxation (SOR)

2

The world according to Ole

• Ole Saastad (at UiO) likes to say that
“supercomputers only really do two things:
 linear algebra and Fourier transforms”

• This is not 100% true, but it’s close enough
• The diversity comes from the enormous variety of

things we can represent in those two ways

3

Solving Ax = b

• A is a matrix
• b is a vector full of numbers we know
• x is a vector full of unknown numbers
• That is the only problem linear algebra cares about

4

So, x = A-1b , right?

• Well, yes… in principle
• There are some issues:

– Explicitly finding A-1 is really slow when A is huge

– Even with a systematic method, it’s easy to lose precision on a
computer

• It gets even worse:
– Not every A even has an A-1 in the first place

5

Why do we care about huge matrices?

• Most things in this world can be represented by complicated,
curvy, continuous functions

– Those can lead to really intricate expressions
– Really intricate expressions can be difficult to differentiate, integrate, and

otherwise analyze

• If we approximate the curves with lots and lots of short,
straight lines instead, we get almost the same thing

– Those are extremely simple to express, differentiate, integrate, etc.
– We need lots and lots of them in order to stay close to curves
– The curvier our curve is, the more lines we’ll need

• When A is an NxN matrix, and b,x have N elements each,
Ax = b represents the relationship between N straight lines

6

It’s not just about physics

• Graphs can be encoded as matrices
– If you look at the connectivity graph of web pages, it can be

interpreted as a gigantic matrix

– If you look at the layers of an artificial neural network, they can be
interpreted as a string of semi-large matrices

– The development of stock prices over time can be interpreted… oh,
you get the point.

• When you figure out how to make linear algebra out
of something, you can “just” throw more computing
power at it to become rich and famous

7

The tricky part

• In order to solve Ax = b efficiently and accurately, you
need to choose a method that works

• The choice of method doesn’t just depend on the size
of A, but also the values of the numbers that go into it

• We haven’t fully automated this classification of
matrix types yet, so:
– You have to know what your numbers represent

– This enables you to reason about how to manipulate them

8

Today’s menu

• We’ll cover three (closely related) solutions today
– Jacobi iterations

– Gauss/Seidel

– SOR

and think for a moment about the parallelism, so we
can trade bigger computers for faster results

9

An example: FIDAP/ex3
(from the SuiteSparse matrix collection)

• Regrettably, we can’t create example data by just
pulling a ton of random numbers out of a hat
– They probably won’t correspond to a set of lines that fit together

• The SuiteSparse matrix collection is an online
repository of various matrices that are derived from
practical problems

• We can grab one from there, and make sure it has
the properties we need today

10

Tales from the code archive

download.sh
– Downloads our matrix in a simple text format and extracts it
– You can look inside ‘ex3.mtx’ and probably figure out what the meta-data

represents
– I’m not going to add complexity by parsing the whole format properly, we’ll

just steal the values for this one example and hardcode everything

convert_full_matrix.c
– The *.mtx file is a compressed representation
– Only coordinate pairs for i>=j are listed, symmetry implies the rest
– This program fills it out as a complete NxN array of numbers, multiplies the

entries where i=j by 10 (more on that in a minute)
– Finally, it saves the matrix as binary data in ‘ex3.dat’
– Don’t do this to arbitrary *.mtx files without checking how big the matrices

actually are first

11

We’ve got our A

• Where’s the b vector?
– There isn’t one

– Never mind that, we can make one

• If we just add all the values in the rows of A, that’s the same
thing as multiplying it by a vector full of 1-s

– row_sums.c in the code archive does that, and stores the result in ‘b.dat’

– Now we have our linear system, and can write solvers that produce matching
‘x.dat’ files

– If the solvers work correctly, we can calculate Ax afterwards and see that it
actually produces b

– ...or just use the fact that we already know the correct x, because this is a
constructed example

12

Jacobi iterations

• One way to look at Ax = b is to say that each row in A
corresponds to a (multivariate) linear equation:

is the same thing as

13

Solving one equation

• Equation #2 is a bit special for x2

so we can solve it for x2 and get

• If we do the same thing for every row, a pattern emerges:

“b minus the off-diagonal Ax, divided by the diagonal”

14

Shortening it a little

• If we just remember that “sigma” for row i stands for
the product of the off-diagonal A elements and x, it’s
easier (and common) to write

15

How this works

• If we know the x vector that solves Ax=b and put all the
numbers in, all the equations we just suggested will be
perfectly balanced

• If we just guess some random x and hope for the best,
they probably won’t

• However:
– If we only make our sigma out of the guessed values and take the result as

a new guess for xi , it might be closer to the solution than our previous guess

– Under a certain condition, it provably is

– I’m not proving it, they do that in math class

16

The certain condition

• If the diagonal element Aii in row i is bigger than the (absolute)
sum of all its neighbors, this method improves each guess a
little bit

• When this is the case in every row, we say that the A matrix is
strictly diagonally dominant

• ex3 isn’t strictly diagonally dominant the way it’s provided from
the web

• This is why we multiplied the diagonal by 10
– Probably ruining the fluid mechanics problem we got the matrix from

– Still, we got a linear system that we can solve with Jacobi iterations

17

The Jacobi iteration method

• Guess some random x vector, and call it xold or
something

• Do this to every row in order to get new x-values

Check if the new x values are close enough to the old
that we can say they’ve stopped changing
– Or, if you prefer, close enough to a solution that we can call them one.

That requires you to calculate a little bit more, though

• Do it again if they are not (yet) close enough

Input:
old x-valuesOutput:

new x-values

18

In code

• The program ‘jacobi.c’ does what we just described
– At least if you prepared ex3.dat and b.dat before running it

• The solution comes out in ‘x.dat’
– We expect it to be a vector of all 1-s, since that’s how we made b

– ‘plot_solution.gp’ draws a picture of ‘x.dat’ so we can see it’s all 1-s

– If you look super-closely at the values, they’re a little bit off, but we
can use them still (or increase precision in exchange for more
iterations)

19

Gauss-Seidel iterations

• This is exactly the same thing, except for one observation:
– When we’re working somewhere in the middle of the rows, we’ve already

produced improved guesses for a bunch of our x-s

– Why not use those improved estimates in the sigma-part immediately,
instead of postponing them for the next iteration?

– It can’t be any worse than waiting

• What happens in the code:
– All we really need to do, is stop using separate vectors for new and old

values

– Just put the updates right into one single x-vector right away

• See implementation in ‘gauss-seidel.c’

20

Gauss-Seidel advantages

• (Slightly) lower memory requirement, since we only
use one vector where there were two

• Finds the answer almost twice as fast for this
example

• What’s not to like?

21

Gauss-Seidel disadvantage

• It’s not as easy to parallelize
– Half the execution time is good and all that, but why don’t we just get ~1/4

the time by running Jacobi iterations on 4 cores instead?

– The Jacobi iteration is perfectly parallelizable, all the reading is from old
values and all the writing is in new values

– The Gauss-Seidel iteration has a dependency where you can’t update x5
before you’re finished with x0,1,2,3,4…

• There are algorithms for this
– Once you have x0, you can add it to all the other sigmas in parallel

– This wavefront type of method isn’t as effective as the full-on parallelism of
Jacobi

– It also isn’t as easy to program correctly

22

SOR

• This is a variant of Gauss-Seidel in which the update is turned
into a weighted sum of the old and new values:

• I didn’t write code for this, but it’s not hard
– you can try it at home

• Pick omega-values between 0 and 2
– The best one will depend on your A and your b, so a reasonably good one is

usually found by testing

– 1.5 is not a bad place to start, usually

• Advantages/disadvantages are exactly as for Gauss-Seidel

23

Alternative parallelization of G-S and
SOR

• Lots of discretizations create matrices with regularly
spaced, diagonal lines
– We get those from approximating areas and volumes using squares

and cubes

• Those contain a pattern where you can update many
rows in parallel as long as they don’t require each
others’ values in the sigma part of the update
– Typically, you can do one half in parallel first and the other half in

parallel afterwards

– That is called Red/Black ordering

– It doesn’t work trivially on ex3, but I can fix you an example if you ask

24

What I hope you can take away from all this

• In math classes, these methods usually appear in the
form of equations that we memorize to pass an exam

• When you face an unsolved, real-life problem, it can
be fantastically productive to think

“Hmmm… can I turn this into a matrix and a pair of vectors?”

• If you can, then it’s “easy” to super-size your solution
• This mode of thinking gets easier with practice

– It can be hard to come up with examples to practice on

– Now you have this ex3-example to start from if you want to

25

For less sloppy notation:

• I just waved my hands and ran some code today

• If you prefer a more thorough and mathematical treatment
of the same material, I highly recommend

Numerical Mathematics and Computing
by E. Ward Cheney and David Kincaid

• It’s a whole book, so it has chapters on all kinds of other
neat stuff as well
– Jacobi, Gauss-Seidel, and SOR are covered somewhere in the two chapters

on linear systems

– I haven’t checked whether they move around between editions or not.

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

