
  

1

TDT 24 - Iterative methods
1. Some words about linear algebra
2. The Jacobi method
3. The Gauss-Seidel method
4. Successive Over-Relaxation (SOR)
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The world according to Ole

• Ole Saastad (at UiO) likes to say that
“supercomputers only really do two things:
 linear algebra and Fourier transforms”

• This is not 100% true, but it’s close enough
• The diversity comes from the enormous variety of 

things we can represent in those two ways
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Solving Ax = b

• A is a matrix
• b is a vector full of numbers we know
• x is a vector full of unknown numbers
• That is the only problem linear algebra cares about
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So, x = A-1b , right?

• Well, yes… in principle
• There are some issues:

– Explicitly finding A-1 is really slow when A is huge

– Even with a systematic method, it’s easy to lose precision on a 
computer

• It gets even worse:
– Not every A even has an A-1 in the first place
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Why do we care about huge matrices?

• Most things in this world can be represented by complicated, 
curvy, continuous functions

– Those can lead to really intricate expressions
– Really intricate expressions can be difficult to differentiate, integrate, and 

otherwise analyze

• If we approximate the curves with lots and lots of short, 
straight lines instead, we get almost the same thing

– Those are extremely simple to express, differentiate, integrate, etc.
– We need lots and lots of them in order to stay close to curves
– The curvier our curve is, the more lines we’ll need

• When A is an NxN matrix, and b,x have N elements each, 
Ax = b represents the relationship between N straight lines
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It’s not just about physics

• Graphs can be encoded as matrices
– If you look at the connectivity graph of web pages, it can be 

interpreted as a gigantic matrix

– If you look at the layers of an artificial neural network, they can be 
interpreted as a string of semi-large matrices

– The development of stock prices over time can be interpreted… oh, 
you get the point.

• When you figure out how to make linear algebra out 
of something, you can “just” throw more computing 
power at it to become rich and famous
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The tricky part

• In order to solve Ax = b efficiently and accurately, you 
need to choose a method that works

• The choice of method doesn’t just depend on the size 
of A, but also the values of the numbers that go into it

• We haven’t fully automated this classification of 
matrix types yet, so:
– You have to know what your numbers represent

– This enables you to reason about how to manipulate them
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Today’s menu

• We’ll cover three (closely related) solutions today
– Jacobi iterations

– Gauss/Seidel

– SOR

and think for a moment about the parallelism, so we 
can trade bigger computers for faster results
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An example: FIDAP/ex3
(from the SuiteSparse matrix collection)

• Regrettably, we can’t create example data by just 
pulling a ton of random numbers out of a hat
– They probably won’t correspond to a set of lines that fit together

• The SuiteSparse matrix collection is an online 
repository of various matrices that are derived from 
practical problems

• We can grab one from there, and make sure it has 
the properties we need today
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Tales from the code archive

download.sh
– Downloads our matrix in a simple text format and extracts it
– You can look inside ‘ex3.mtx’ and probably figure out what the meta-data 

represents
– I’m not going to add complexity by parsing the whole format properly, we’ll 

just steal the values for this one example and hardcode everything

convert_full_matrix.c
– The *.mtx file is a compressed representation
– Only coordinate pairs for i>=j are listed, symmetry implies the rest
– This program fills it out as a complete NxN array of numbers, multiplies the 

entries where i=j by 10 (more on that in a minute)
– Finally, it saves the matrix as binary data in ‘ex3.dat’
– Don’t do this to arbitrary *.mtx files without checking how big the matrices 

actually are first
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We’ve got our A

• Where’s the b vector?
– There isn’t one

– Never mind that, we can make one

• If we just add all the values in the rows of A, that’s the same 
thing as multiplying it by a vector full of 1-s

– row_sums.c in the code archive does that, and stores the result in ‘b.dat’

– Now we have our linear system, and can write solvers that produce matching 
‘x.dat’ files

– If the solvers work correctly, we can calculate Ax afterwards and see that it 
actually produces b

– ...or just use the fact that we already know the correct x, because this is a 
constructed example
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Jacobi iterations

• One way to look at Ax = b is to say that each row in A 
corresponds to a (multivariate) linear equation:

is the same thing as
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Solving one equation

• Equation #2 is a bit special for x2

so we can solve it for x2 and get

• If we do the same thing for every row, a pattern emerges:

“b minus the off-diagonal Ax, divided by the diagonal”
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Shortening it a little

• If we just remember that “sigma” for row i stands for 
the product of the off-diagonal A elements and x, it’s 
easier (and common) to write
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How this works

• If we know the x vector that solves Ax=b and put all the 
numbers in, all the equations we just suggested will be 
perfectly balanced

• If we just guess some random x and hope for the best, 
they probably won’t

• However:
– If we only make our sigma out of the guessed values and take the result as 

a new guess for xi , it might be closer to the solution than our previous guess

– Under a certain condition, it provably is

– I’m not proving it, they do that in math class
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The certain condition

• If the diagonal element Aii in row i is bigger than the (absolute) 
sum of all its neighbors, this method improves each guess a 
little bit

• When this is the case in every row, we say that the A matrix is 
strictly diagonally dominant

• ex3 isn’t strictly diagonally dominant the way it’s provided from 
the web

• This is why we multiplied the diagonal by 10
– Probably ruining the fluid mechanics problem we got the matrix from

– Still, we got a linear system that we can solve with Jacobi iterations
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The Jacobi iteration method

• Guess some random x vector, and call it xold or 
something

• Do this to every row in order to get new x-values

Check if the new x values are close enough to the old 
that we can say they’ve stopped changing
– Or, if you prefer, close enough to a solution that we can call them one.

That requires you to calculate a little bit more, though

• Do it again if they are not (yet) close enough

Input:
old x-valuesOutput:

new x-values
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In code

• The program ‘jacobi.c’ does what we just described
– At least if you prepared ex3.dat and b.dat before running it

• The solution comes out in ‘x.dat’
– We expect it to be a vector of all 1-s, since that’s how we made b

– ‘plot_solution.gp’ draws a picture of ‘x.dat’ so we can see it’s all 1-s

– If you look super-closely at the values, they’re a little bit off, but we 
can use them still (or increase precision in exchange for more 
iterations)
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Gauss-Seidel iterations

• This is exactly the same thing, except for one observation:
– When we’re working somewhere in the middle of the rows, we’ve already 

produced improved guesses for a bunch of our x-s

– Why not use those improved estimates in the sigma-part immediately, 
instead of postponing them for the next iteration?

– It can’t be any worse than waiting

• What happens in the code:
– All we really need to do, is stop using separate vectors for new and old 

values

– Just put the updates right into one single x-vector right away

• See implementation in ‘gauss-seidel.c’
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Gauss-Seidel advantages

• (Slightly) lower memory requirement, since we only 
use one vector where there were two

• Finds the answer almost twice as fast for this 
example

• What’s not to like?
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Gauss-Seidel disadvantage

• It’s not as easy to parallelize
– Half the execution time is good and all that, but why don’t we just get ~1/4 

the time by running Jacobi iterations on 4 cores instead?

– The Jacobi iteration is perfectly parallelizable, all the reading is from old 
values and all the writing is in new values

– The Gauss-Seidel iteration has a dependency where you can’t update x5 
before you’re finished with x0,1,2,3,4…

• There are algorithms for this
– Once you have x0, you can add it to all the other sigmas in parallel

– This wavefront type of method isn’t as effective as the full-on parallelism of 
Jacobi

– It also isn’t as easy to program correctly
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SOR

• This is a variant of Gauss-Seidel in which the update is turned 
into a weighted sum of the old and new values:

• I didn’t write code for this, but it’s not hard
– you can try it at home

• Pick omega-values between 0 and 2
– The best one will depend on your A and your b, so a reasonably good one is 

usually found by testing

– 1.5 is not a bad place to start, usually

• Advantages/disadvantages are exactly as for Gauss-Seidel
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Alternative parallelization of G-S and 
SOR

• Lots of discretizations create matrices with regularly 
spaced, diagonal lines
– We get those from approximating areas and volumes using squares 

and cubes

• Those contain a pattern where you can update many 
rows in parallel as long as they don’t require each 
others’ values in the sigma part of the update
– Typically, you can do one half in parallel first and the other half in 

parallel afterwards

– That is called Red/Black ordering

– It doesn’t work trivially on ex3, but I can fix you an example if you ask
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What I hope you can take away from all this

• In math classes, these methods usually appear in the 
form of equations that we memorize to pass an exam

• When you face an unsolved, real-life problem, it can 
be fantastically productive to think

“Hmmm… can I turn this into a matrix and a pair of vectors?”

• If you can, then it’s “easy” to super-size your solution
• This mode of thinking gets easier with practice

– It can be hard to come up with examples to practice on

– Now you have this ex3-example to start from if you want to
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For less sloppy notation:

• I just waved my hands and ran some code today

• If you prefer a more thorough and mathematical treatment 
of the same material, I highly recommend

Numerical Mathematics and Computing
by E. Ward Cheney and David Kincaid

• It’s a whole book, so it has chapters on all kinds of other 
neat stuff as well
– Jacobi, Gauss-Seidel, and SOR are covered somewhere in the two chapters 

on linear systems

– I haven’t checked whether they move around between editions or not.
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