
TDT4200 Parallel
programming
PS1

Maren Wessel-Berg & Claudi Lleyda Moltó

September 2023



Practical information
Published: 05/09/23
Deadline: 12/09/23 at 22:00
Evaluation: pass/fail

▶ Completing the problem set ismandatory.
▶ The work must be done individually and without help

from anyone but the TDT4200 staff.
▶ Reference all sources found on the internet or

elsewhere.
▶ The requirements, and how and what to deliver is

explained in the problem set description found on
BlackBoard.

▶ Start the exercises early!



Where can you get help with the assignment?

▶ Recitation lecture: introduction to the problem set
(Today)
Slides will be made available online.

▶ TA hours: ask questions in person
Friday, September 8, 10:00–12:00 in Cybele
Monday, September 11, 13:00–15:00 in Cybele

▶ Piazza: question forum
Ask questions any time (but give us time to answer).
Select the ps1 folder for questions related to this
problem set.
Do not post full or partial solutions!

https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://piazza.com/class/llxyp287tqn7nq


Partial differential equations
▶ Equations where the unknowns are functions.
▶ We have some information on the derivatives of the

unknowns.

Example
Let’s solve the following PDE

∂u

∂x
= cos(x), such that u(0) = 0.

We can integrate with respect to x and get that, for some
constant C,

u(x) = sin(x) + C.

We use the starting condition to deduce C = 0, and we find

u(x) = sin(x).



Temperature simulation
The heat equation
A harder PDE to solve is the heat equation, given by

∂u

∂t
= K

∂2u

∂x2
.

where K > 0 is the thermal diffusivity of the medium.

▶ Intuitively, the term ∂2u
∂x2 corresponds to the average of

the temperatures around a point x, minus the
temperature at x.

▶ The derivative ∂u
∂t at a point x will be larger when the

difference is larger, and smaller when the difference is
smaller.

▶ This has a tendency to uniformize the temperature at
every point with its neighbours.



Temperature simulation
▶ Finding a solution to the heat equation can be difficult.

Discretization
▶ We discretize the spatial domain into the

samples x0, . . . , xN , with a constant step size of ∆x, and
we approximate the derivative of u with respect space
with the central difference approximation.

▶ We discretize the time domain into the
samples t0, . . . , tK , with a constant step size of ∆t, and
we approximate the derivative of u with respect to time
with the one-sided backward difference approximation.

With these we obtain the following approximation

uki − uk−1
i

∆t
=

uki−1 − 2uki + uki+1

∆x2
.



Temperature simulation

From the obtained approximation

uki − uk−1
i

∆t
= K

uki−1 − 2uki + uki+1

∆x2

we deduce

uk−1
i =

(
1 + 2K

∆t

∆x2

)
uki −K

∆t

∆x2
(
uki−1 + uki+1

)
.

We are able to express the temperature at an instant k − 1
in terms of the temperatures at the instant k.
Watch out for edge cases
We must remember to account for the boundary conditions!



Temperature simulation
Try it yourself!
If instead of using the one-sided backward difference
approximation we had used the one-sided forward
difference approximation for the time derivative of u, then
we could have solved for uk+1

i , and we would have deduced
the following expression

uk+1
i =

(
1− 2K

∆t

∆x2

)
uki +K

∆t

∆x2
(
uki−1 + uki+1

)
,

The very similar expression we had just found, namely,

uk−1
i =

(
1 + 2K

∆t

∆x2

)
uki −K

∆t

∆x2
(
uki−1 + uki+1

)
,

leads to very different approaches as to solving the PDE.



Explicit temperature simulation
Finite difference method
Let us start with the equation we obtained from the
one-sided forward difference approximation.

uk+1
i =

(
1− 2K

∆t

∆x2

)
uki +K

∆t

∆x2
(
uki−1 + uki+1

)
We can use this recurrent expression to directly calculate
approximations for each subsequent time-step, based on
the values at the previous one.

Pros and cons
▶ While this method is easy to implement and runs

efficiently, it can be numerically unstable.
▶ It is advisable to use smaller time-steps to reduce the

instability, meaning that it will usually require more
iterations in comparison to other approaches.



Implicit temperature simulation
Following now from the equation

uk−1
i =

(
1 + 2K

∆t

∆x2

)
uki −K

∆t

∆x2
(
uki−1 + uki+1

)
.

If we write

D = 1 + 2K
∆t

∆x2
and U = L = −K

∆t

∆x2

we get
uk−1
i = Luki−1 +Duki + Uuki+1.

This suggests a linear system Au⃗k = u⃗k−1 where A is a
tridiagonal matrix.
Boundary conditions
If we agree to use the Neumann boundary condition we get

uk−1
0 = Duk0 + 2Uuk1 and uk−1

N = 2LukN−1 +DukN .



Implicit temperature simulation
Tridiagonal matrix
We can picture the linear system we have obtained, namely,

uk−1
i = Luki−1 +Duki + Uuki+1,

uk−1
0 = Duk0 + 2Uuk1 and uk−1

N = 2LukN−1 +DukN ,

in matrix form.
If we set N = K = 4 we get the example

D 2U 0 0 0
L D U 0 0
0 L D U 0
0 0 L D U
0 0 0 2L D



uk0
uk1
uk2
uk3
uk4

 =


uk−1
0

uk−1
1

uk−1
2

uk−1
3

uk−1
4





Implicit temperature simulation
Linear is good :D
Reinterpreting the problem in terms of solving a linear
system of equations opens the doors to many methods. In
this exercise we will look at
▶ the Jacobi method,
▶ the Gauss–Seidel method,
▶ the Red/Black Gauss–Seidel method.

We can abstract away from most of our specific setting, the
heat equation, and reason solely about linear systems of
equations.

Pros and cons
Although these methods will generally be slower per
iteration, as every iteration will now involve solving a system
of equations; they will generally be more stable, and allow
us to use larger time-steps, requiring less iterations overall.



The Jacobi method
Informal explanation
Let Ax⃗ = b⃗ be a linear system where A is strictly diagonally
dominant.
▶ We can use a random vector x⃗′ as a guess for a solution

to the system. Unsurprisingly, this solution will
generally not be a very good one.

▶ If we use the guess to solve the system, that is, taking

x′′i =
bi −

∑
j ̸=iAi,jx

′
j

Ai,i
,

then the new vector x⃗′′ will be a better approximation of
the solution than x⃗′.

▶ We can perform this operation iteratively, and we will
eventually approach the correct answer.



The Jacobi method

Implementation details
▶ Remember

D = 1 + 2K
∆t

∆x2
and U = L = −K

∆t

∆x2
,

where K, ∆x and ∆t are all positive values.
Therefore D > 1 and U = L < 0, and our system matrix
is strictly diagonally dominant, and we can use the
Jacobi method.

▶ Notice how every iteration of this method is highly
parallelizable. Every value can be computed
simultaneously.



The Gauss–Seidel method
Informal explanation
Let Ax⃗ = b⃗ be a linear system where A is strictly diagonally
dominant again.
▶ This method is similar to the Jacobi method.
▶ When calculating the values, that is in,

x′′i =
bi −

∑
j ̸=iAi,jx

′
j

Ai,i
,

we use the previously obtained values of x′′i when
calculating x′′j for j > i.

▶ This introduces a data dependency in every iteration,
breaking the high parallelizability of the Jacobi method.
In turn, the method converges faster, as our improved
guesses are propagated throughout the iteration.



The Gauss–Seidel method

Implementation details
▶ The Gauss–Seidel method has the advantage that we do

not necessarily need to store an additional copy of the
matrix, reducing the memory requirements.

▶ Although the high parallelizability of the Jacobi method
is lost, there are some parallelization options available,
but not as trivial.



The Red/Black Gauss–Seidel method
Informal explanation
Let Ax⃗ = b⃗ be a linear system where A is strictly diagonally
dominant yet again.
▶ This method follows the same idea as the Gauss–Seidel

method. Notice how in our scenario, when updating the
value at a point, we only need information on it’s
neighbours.

▶ Therefore, if we split the domain in a checkerboard
pattern, colored black and red, we can update the
values in each color in any order, provided we do so
independently of updating the values in the other color.

▶ Therefore, we can update the temperatures in the “red”
squares in parallel, and then update the temperatures
in the “black” squares in parallel.



The Red/Black Gauss–Seidel method

Implementation details
▶ This method keeps the pros of the Gauss–Seidel

method, without greatly reducing the parallelization
potential.

▶ One must remember the values in different partitions
of the domain must be updated in a sequential manner.
That is, update all the “red” cells before updating all the
“black” cells.

▶ This is only possible because of the data dependencies
in out formulas. This must be addressed on a
problem-per-problem basis, and the partitions might be
different or impossible.



Summary
General considerations for explicit and implicit methods
▶ Explicit methods are often simpler to implement, but

require more iterations with a smaller time-step, and
may be more unstable.

▶ Implicit methods rely on heavier theory, and are often
harder to implement. Conversely, they will often come
with greater guarantees such as numerical stability,
earlier convergence or high parallelizability.

For this problem set we will be working with the three
aforementioned implicit methods, but the rest of the
exercises will revolve around the explicit method.

▶ Math is fun, but today you do not need to understand it
to do these exercises!



Timing your code

▶ To time your code it is recommended that you use
the gettimeofday function from sys/time.h.

▶ Use the manual pages to read the documentation about
it. That is, running man 3 getttimeofday.

▶ If you are programming in languages such as Fortran, C,
or C++, the manual pages are your friends, and you
need to learn how to navigate them.

▶ They are also extremely useful in Unix-like operating
systems.


