
TDT4200 Parallel
programming
PS5
Maren Wessel-Berg & Claudi Lleyda Moltó
October 2023

Practical information
Published: 10/10/23
Deadline: 24/10/23 at 22:00
Evaluation: Pass/Fail

▶ Completing the problem set ismandatory.
▶ The work must be done individually and without helpfrom anyone but the TDT4200 staff.
▶ Reference all sources found on the internet orelsewhere.
▶ The requirements, and how and what to deliver isexplained in the problem set description found onBlackBoard.
▶ Start early!

Where can you get help with the assignment?
▶ Recitation lecture: introduction to the problem set

(Today)Slides will be made available online.
▶ TA hours: ask questions in person

Friday, October 13, 10:00–12:00 in CybeleMonday, October 16, 13:00–15:00 in CybeleFriday, October 20, 10:00–12:00 in CybeleMonday, October 23, 13:00–15:00 in Cybele
▶ Piazza: question forum

Ask questions any time (but give us time to answer).Select the ps5 folder for questions related to thisproblem set.Do not post full or partial solutions!

https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://link.mazemap.com/cZu6EYeo
https://piazza.com/class/llxyp287tqn7nq

Today
▶ Introduce the problem set.
▶ Give an introduction to GPUs and CUDA programming.

GPUs and GPU programming will be covered in the mainlectures, but the assignment schedule is a little ahead ofthis schedule, so we will provide you with theinformation you need to solve the assignments in therecitation lectures.

Topic
Finite difference approximation of the 2D heat equation using CUDA

▶ You will work on the same code as in previousassignments, but this time you will take the sequentialimplementation of the Finite Difference Method (FDM)for solving the 2D heat equation and parallelise it
using CUDA

▶ You will also answer questions about yourimplementation and the curriculum.

GPU vs. CPU
▶ The CPU must be good at many things.

▶ Minimize the latency of a single thread by using cachesand compex control flow logic.
▶ The GPU is optimized for massively parallelcomputations, i.e., it is specialized.

▶ Maximize the throughput of all threads by running manythreads in parallel and hiding latency with computations.

CUDA
▶ Platform and programming model developed byNVIDIA.
▶ Allows us to program NVIDIA GPUs throughprogramming language extensions.
▶ Only compatible with NVIDIA GPUs– other GPUs requireother programming models, e.g., OpenCL.

We will focus on CUDA in the assignments, but the generalGPU concepts do not only apply to NVIDIA GPUs.

We will focus on three main topics
▶ Memory spaces and memory management.
▶ Execution spaces and launcing kernels.
▶ The thread hierarchy and thread identification.

Memory spaces
Host memory and device memory

▶ The CPU and the GPU have separate memory spaces.
▶ We need to manage two different memory spaces.
▶ Data is transferred between the GPU and the CPU (overPCIe or NVLink bus).
▶ Dereferencing a pointer to GPU memory from the CPUwill cause an error (and vice versa).

Memory management
cudaMalloc, cudaMemcpy, cudaFree

▶ The device memory is managed from the host and issimilar to how CPU memory is managed.
Allocate device memory:
cudaMalloc (void** devPtr , s i z e _ t s i ze)

Copy data between host and device:
cudaMemcpy (void* dst , const void* src ,s i z e _ t count , cudaMemcpyKind kind)
Free device memory
cudaFree (void* devPtr)
Type of data copy (the cudaMemcpyKind enum)
cudaMemcopyHostToDevice = 1cudaMemcpyDeviceToHost = 2

Memory management
cudaMalloc, cudaMemcpy, cudaFree

▶ The device memory is managed from the host and issimilar to how CPU memory is managed.
Allocate device memory:
cudaMalloc (void** devPtr , s i z e _ t s i ze)
Copy data between host and device:
cudaMemcpy (void* dst , const void* src ,s i z e _ t count , cudaMemcpyKind kind)

Free device memory
cudaFree (void* devPtr)
Type of data copy (the cudaMemcpyKind enum)
cudaMemcopyHostToDevice = 1cudaMemcpyDeviceToHost = 2

Memory management
cudaMalloc, cudaMemcpy, cudaFree

▶ The device memory is managed from the host and issimilar to how CPU memory is managed.
Allocate device memory:
cudaMalloc (void** devPtr , s i z e _ t s i ze)
Copy data between host and device:
cudaMemcpy (void* dst , const void* src ,s i z e _ t count , cudaMemcpyKind kind)
Free device memory
cudaFree (void* devPtr)

Type of data copy (the cudaMemcpyKind enum)
cudaMemcopyHostToDevice = 1cudaMemcpyDeviceToHost = 2

Memory management
cudaMalloc, cudaMemcpy, cudaFree

▶ The device memory is managed from the host and issimilar to how CPU memory is managed.

Allocate device memory:
cudaMalloc (void** devPtr , s i z e _ t s i ze)

Copy data between host and device:
cudaMemcpy (void* dst , const void* src ,s i z e _ t count , cudaMemcpyKind kind)

Free device memory
cudaFree (void* devPtr)

Type of data copy (the cudaMemcpyKind enum)
cudaMemcopyHostToDevice = 1cudaMemcpyDeviceToHost = 2

Kernels
▶ Kernels are functions that run on the GPU and specifywhat the threads should do.

A function is declared as a kernel through the functionexecution space specifier __global__
▶ A kernel is executed in parallel by all threads, i.e., ifthere are N threads, the kernel is executed N times inparallel.

The number of threads that should execute a kernel isspecified by configuration parameters inside theconstruct < < <...> > > when the kernel is called.

Execution spaces

▶ In general, we want to distinguish between functionsthat are to be run on the CPU and functions that are tobe run on the GPU.
Function Execution Space Specifiers:
/ / Host and dev i ce ca l l ab l e , dev i ce executed__g loba l__ void kernel (Params . . .) { }
/ / Dev ice ca l l ab l e , dev i ce executed__device__ void kernel (Params . . .) { }
/ / Host ca l l ab l e , host executed (de fau l t)__host__ void kernel (Params . . .) { }

The thread hierarchy
Organisation

Threads arecontained within

blocks that areorganized in a
grid.
NoteA block can hold a maximum of 1024 threads.A grid can hold a maximum of 231 − 1 blocks.

The thread hierarchy
Organisation

Threads arecontained within
blocks that areorganized in a

grid.

NoteA block can hold a maximum of 1024 threads.A grid can hold a maximum of 231 − 1 blocks.

The thread hierarchy
Organisation

Threads arecontained within
blocks that areorganized in a
grid.

2x2x2 grid

8x1x4 thread block

NoteA block can hold a maximum of 1024 threads.A grid can hold a maximum of 231 − 1 blocks.

The thread hierarchy
Organisation

Threads arecontained within
blocks that areorganized in a
grid.

2x2x2 grid

8x1x4 thread block

NoteA block can hold a maximum of 1024 threads.A grid can hold a maximum of 231 − 1 blocks.

The thread hierarchy
Identification

▶ A thread that executes a kernel has a unique ID that canbe accessed from the kernel through built-in variables:
threadIdx
blockIdx

▶ This can be useful, for example, if we want each threadto operate on different data...

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉

gridy = ⌈ny/4⌉
▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉

gridy = ⌈ny/4⌉
▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉

gridy = ⌈ny/4⌉
▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?

▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?

▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?

▶ What do you do withthreads with an ID"outside" the domain?

▶ Build your grid tomatch the physicaldomain.
▶ Determine the size ofyour thread blocks.

Example: 4× 4

gridx = ⌈nx/4⌉
gridy = ⌈ny/4⌉

▶ Why should you roundup the number ofblocks?
▶ What do you do withthreads with an ID"outside" the domain?

(0,0) ▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

(0,0) (1,0) ▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

(0,0) (1,0) (2,0) ▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

(0,0) (1,0) (2,0) (3,0) ▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

(0,0) (1,0) (2,0) (3,0)

(0,1)

▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1)

▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1)

▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

▶ What thread is this?

Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

▶ What thread is this?
Thread block: (3, 1)

Local thread index:
(2, 1)

▶ Use the built-invariables:

▶ What thread is this?
Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:

▶ What thread is this?
Thread block: (3, 1)
Local thread index:
(2, 1)

▶ Use the built-invariables:
gridDim . x ; / / 4gridDim . y ; / / 4blockDim . x ; / / 4blockDim . y ; / / 4blockIdx . x ; / / 3blockIdx . y ; / / 1threadIdx . x ; / / 2threadIdx . y ; / / 1

int x = blockDim . x * blockIdx . x + threadIdx . x ; / / 14
int y = blockDim . y * blockIdx . y + threadIdx . y ; / / 5

The thread hierarchy
Identification

▶ By using the thread IDs and the calculation on theprevious slide we can map the grid of thread blocks tothe physical domain so that one thread is responsiblefor calculating one grid point.

▶ Remember to add guards!

int x = blockDim . x * blockIdx . x + threadIdx . x ;
int y = blockDim . y * blockIdx . y + threadIdx . y ;
/ / . . .

The thread hierarchy
Identification

▶ By using the thread IDs and the calculation on theprevious slide we can map the grid of thread blocks tothe physical domain so that one thread is responsiblefor calculating one grid point.
▶ Remember to add guards!

int x = blockDim . x * blockIdx . x + threadIdx . x ;
int y = blockDim . y * blockIdx . y + threadIdx . y ;
i f (/* GUARD */) {/ / . . .}

Example: SAXPY
Single-precision AX Plus Y

▶ A vector x scaled by a addedwith another vector y.
▶ We want to distribute onecomponent per thread.

▶ yi = a · xi + yi

▶ How many threads perblock?
▶ How are they organizedwithin each block?
▶ Proposition: Organize asmany threads as possiblewithin one-dimensionalblocks since the vectors areinherently one-dimensional.

x0

x1

x2

x3

...

xn−1

xn−2

xn

a · +

y0

y1

y2

y3

yn−1

yn−2

yn

...

Example: SAXPY
Single-precision AX Plus Y

▶ A vector x scaled by a addedwith another vector y.
▶ We want to distribute onecomponent per thread.
▶ yi = a · xi + yi

▶ How many threads perblock?

▶ How are they organizedwithin each block?
▶ Proposition: Organize asmany threads as possiblewithin one-dimensionalblocks since the vectors areinherently one-dimensional.

x0

x1

x2

x3

...

xn−1

xn−2

xn

a · +

y0

y1

y2

y3

yn−1

yn−2

yn

...

Example: SAXPY
Single-precision AX Plus Y

▶ A vector x scaled by a addedwith another vector y.
▶ We want to distribute onecomponent per thread.
▶ yi = a · xi + yi

▶ How many threads perblock?
▶ How are they organizedwithin each block?

▶ Proposition: Organize asmany threads as possiblewithin one-dimensionalblocks since the vectors areinherently one-dimensional.

x0

x1

x2

x3

...

xn−1

xn−2

xn

a · +

y0

y1

y2

y3

yn−1

yn−2

yn

...

Example: SAXPY
Single-precision AX Plus Y

▶ A vector x scaled by a addedwith another vector y.
▶ We want to distribute onecomponent per thread.
▶ yi = a · xi + yi

▶ How many threads perblock?
▶ How are they organizedwithin each block?
▶ Proposition: Organize asmany threads as possiblewithin one-dimensionalblocks since the vectors areinherently one-dimensional.

x0

x1

x2

x3

...

xn−1

xn−2

xn

a · +

y0

y1

y2

y3

yn−1

yn−2

yn

...

Example: SAXPY
Building the grid (n = 4096)

▶ Elements pervector: n = 4096

▶ Max threads perblock: 1024

▶ Threads per block:
Nt = min(n, 1024)

▶ Thread blocks:
Nb = ⌈ n

Nt
⌉ = 4

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

x0 . . . x1023 x1024 . . . x2047 x2048 . . . x3071 x3072 . . . x4095

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

=

a
×

+

Example: SAXPY
Building the grid (n = 4096)

▶ Elements pervector: n = 4096

▶ Max threads perblock: 1024
▶ Threads per block:

Nt = min(n, 1024)

▶ Thread blocks:
Nb = ⌈ n

Nt
⌉ = 4

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

x0 . . . x1023 x1024 . . . x2047 x2048 . . . x3071 x3072 . . . x4095

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

=

a
×

+

Example: SAXPY
Building the grid (n = 4096)

▶ Elements pervector: n = 4096

▶ Max threads perblock: 1024
▶ Threads per block:

Nt = min(n, 1024)

▶ Thread blocks:
Nb = ⌈ n

Nt
⌉ = 4

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

x0 . . . x1023 x1024 . . . x2047 x2048 . . . x3071 x3072 . . . x4095

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

=

a
×

+

Example: SAXPY
Building the grid (n = 4096)

▶ Elements pervector: n = 4096

▶ Max threads perblock: 1024
▶ Threads per block:

Nt = min(n, 1024)

▶ Thread blocks:
Nb = ⌈ n

Nt
⌉ = 4

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

x0 . . . x1023 x1024 . . . x2047 x2048 . . . x3071 x3072 . . . x4095

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

=

a
×

+

Example: SAXPY
Building the grid (n = 4096)

▶ Elements pervector: n = 4096

▶ Max threads perblock: 1024
▶ Threads per block:

Nt = min(n, 1024)

▶ Thread blocks:
Nb = ⌈ n

Nt
⌉ = 4

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

x0 . . . x1023 x1024 . . . x2047 x2048 . . . x3071 x3072 . . . x4095

y0 . . . y1023 y1024 . . . y2047 y2048 . . . y3071 y3072 . . . y4095

=

a
×

+

Example: SAXPY
Implementation

int n = 4096;
f loat a , *h_x , *h_y , *d_x , *d_y ;
cudaMalloc (&d_x , sizeof (f loat) * n) ;cudaMalloc (&d_y , sizeof (f loat) * n) ;cudaMemcpy (d_x , h_x , sizeof (f loat) * n ,cudaMemcpyHostToDevice) ;cudaMemcpy (d_y , h_y , sizeof (f loat) * n ,cudaMemcpyHostToDevice) ;
dim3 threadBlockDims = {1024 , 1 , 1 } ;dim3 gridDims = { c e i l (n/1024) , 1 , 1 } ;
saxpy <<<gridDims , threadBlockDims>>> (n , a , d_x , d_y) ;
cudaMemcpy (h_y , d_y , sizeof (f loat) * n ,cudaMemcpyDeviceToHost) ;cudaFree (d_x) ;cudaFree (d_y) ;

Example: SAXPY
Implementation

__g loba l__ saxpy (const int n , const float a ,
const float *x , const float *y){

int idx = threadIdx . x + blockIdx . x * blockDim . x ;
i f (idx >= n) return ;y [idx] = a*x [idx] + y [idx] ;}

Pro-tips

Variable names
r ea l _ t *h_mass ; / / Host va r iab l er ea l _ t *d_mass ; / / Dev ice va r i ab l e
Error handling
cudaError_t status ;status = cudaMalloc (&devPtr , /* s i z e */) ;
i f (status != cudaSuccess) {f p r i n t f (stderr ,"GPU Error : %s %s %d\n" ,cudaGetErrorString (code) , __F ILE__ , __LINE__) ;/ / I f you want to abort at t h i s point , add an abortex i t (EXIT_FAILURE) ;}

Your tasks
1. Setup

▶ Allocate memory on the host (CPU) and the device (GPU).
▶ Transfer data from the host to the device.
▶ Specify grid and block layout.

2. Write kernels and device functions to parallelise the
time_step and boundary_condition functions.

3. Handle results and teardown
▶ Transfer data from the device to the host.
▶ Free previously allocated memory.

Your tasks
1. Setup

▶ Allocate memory on the host (CPU) and the device (GPU).
▶ Transfer data from the host to the device.
▶ Specify grid and block layout.

2. Write kernels and device functions to parallelise the
time_step and boundary_condition functions.

3. Handle results and teardown
▶ Transfer data from the device to the host.
▶ Free previously allocated memory.

Your tasks
1. Setup

▶ Allocate memory on the host (CPU) and the device (GPU).
▶ Transfer data from the host to the device.
▶ Specify grid and block layout.

2. Write kernels and device functions to parallelise the
time_step and boundary_condition functions.

3. Handle results and teardown
▶ Transfer data from the device to the host.
▶ Free previously allocated memory.

Where should you run the code?

▶ You might have an NVIDIA GPU in your personal
computer.

You can check with the command
lspci | grep -i nvidia

Use this guide to install CUDA.
▶ Oppdal and Selbu have NVIDIA T4 GPUs.

The document under Sources and Syllabus in Blackboardexplains how to connect to and use the Snotra cluster.
Note that to compile the code on Oppdal or Selbu youneed to update the Makefile so that the correct compileris used:
#PARALLEL_CC := nvccPARALLEL_CC := / usr / local / cuda−12.2/ bin / nvcc

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

Extra resources
CUDA C++ Programming Guide
CUDA Runtime API Reference
Debugging with CUDA-GDB

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html

