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Some background

• Our goal today is to establish some terminology to 
discuss parallel computer design

• You may recognize the elements from other classes 
on computer fundamentals, but I’ll repeat them to 
make sure that we’re all on the same page

• I’ll also simplify them quite a bit, in order to establish 
an appropriate level of abstraction that will allow us to 
finish this course before Christmas
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Start with (main) memory

• This is its own separate circuitry, its only job is to 
receive table indices and react accordingly

Address Contents

00000000 01001000

00000001 01100101

00000010 01101100

00000011 01101100

00000100 01101111

00000101 00100000

00000110 00000000

What do you have

at 00000101? That is 00100000



  

4

Start with (main) memory

• We can also overwrite entries in the table:

Address Contents

00000000 01001000

00000001 01100101

00000010 01101100

00000011 01101100

00000100 01101111

00000101 00100000

00000110 01110111

Put this in

at 00000110! 
The number is 
01110111

OK:
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This table is enormous

• We can assign separate parts of it to contain
– Numbers that represent specific actions (the program)

– Numbers that we want to apply the actions to (the data)

• They’re all just some numbers, but we can feed them 
into different parts of the processor when we know 
which numbers are kept where:

Instruction
codes

Arbitrary
numbers

Program DataRAM
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We need some wires

• The interconnect is an interface that lets external devices 
get numbers from memory

• I’ll take it for granted in the next few slides, but it’s there.

Instruction
codes

Arbitrary
numbers

Program DataRAM

Interconnection fabric

Address? Number
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Time to read instructions
• Programs execute one step at a time

– IP contains the location of the current operation
– The control path feeds it into a gizmo that knows what all the codes mean
– The IP is updated (mostly, incremented) to point at the next operation

when the operation is finished

Instruction
codes

Arbitrary
numbers

Program DataRAM

Instruction Pointer (IP)

Instruction Decoder

“add”
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Instructions require data
• Some of the instructions just transport data 

between memory and local storage registers:

Instruction
codes

Arbitrary
numbers

Program DataRAM

Instruction Pointer (IP)

Instruction Decoder R0 R1 R2 ...

“copy from addr. in R0 into R2”

42

Registers
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Instructions require data
• Other instructions do something to the data in 

the registers:

Instruction
codes

Arbitrary
numbers

Program DataRAM

Instruction Pointer (IP)

Instruction Decoder R0 R1 R2 ...

“Add 1 to R2 and put it in R1”

Arithmetic/Logic Unit (ALU)

+1
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Instructions require data
• Temporary results are made (semi-)permanent 

by copying them back into memory:

Instruction
codes

Arbitrary
numbers

Program DataRAM

Instruction Pointer (IP)

Instruction Decoder R0 R1 R2 ...

“copy value R1 into addr. R0” ALU

43
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The von Neumann architecture
• We now have a (simplified) picture of it:

Instruction
codes

Arbitrary
numbers

Program DataRAM

Instruction Pointer (IP)

Instruction Decoder Registers

ALU

CPU

Control path Data path

(Interconnect)
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How do we write the instructions?

• They are derived from a more readable text
   written in some suitable programming language

• TDT4205 Compiler Construction deals with how this

   translation takes place

int a;
a = 42;
a = a + 1;

sub 4,R0

mov 42,(R0)

mov (R0),R2
mov 1, R1
add R2,R1
mov R2,(R0)

textSource code

Compiler
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How do we write the data?

• Constants and initialized global values are also 
derived from the source program

const char *foo = 
    “Hello, “;

sub 4,R0

mov 42,(R0)

mov (R0),R2
mov 1, R1
add R2,R1
mov R2,(R0)

textSource code

Compiler

data
[ H, e, l, … ]
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The executable file

• These are the contents of the binary executable that 
your compiler produces

sub 4,R0

mov 42,(R0)

mov (R0),R2
mov 1, R1
add R2,R1
mov R2,(R0)

text

data
[ H, e, l, … ]
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Intermediate values

• We also need space for data that are produced (and 
deleted) during program execution:

text

data

Heap

Stack Compiler places function arguments
and local variables here

Program code places data of dynamically
calculated sizes here
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Here’s a complete process image
• This one is taken from McKusick & Neville-Neil’s book about 

the design of the FreeBSD operating system, but your 
favorite OS will feature something very similar
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Our sequential processing model

• We have an abstract computer, complete with
– A program to run

– A translation mechanism that separates data and instructions

– An instruction-interpreting unit

– A data-manipulating unit

• It’s a model because it’s a simplified way to reason 
about what actually happens, which is consistent with 
the results we obtain

• It’s sequential because it requires that each 
instruction is completed before we start work on the 
next one 
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The strength of Neumann

• When you’re a programmer, you have a simple way 
to improve system performance:

Rewrite the same calculation using fewer or shorter instructions

• When you’re a hardware designer, you have a simple 
way to improve system performance:

Implement the same instructions in ways that work faster

• The von Neumann computer is a bridging model:
Programmers can improve performance for every computer

Hardware designers can improve performance for every program
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The weakness(es) of Neumann
#1
• Programs become strings of read-modify-write cycles
• We illustrated one before, it goes

– Read data to work on from memory into registers
– Combine the values in the registers
– Write the results from registers back into memory

• This means that the program will run at the speed of 
memory access whenever it needs to load new data
– ...but in modern computers, the processor can work hundreds of times 

faster than memory…

• This constraint is known as the von Neumann bottleneck
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The weakness(es) of Neumann
#2
• Sequential programs can only finish as quickly as the 

sum of their operations
• CPU clock speeds grew rapidly from 1965 until 

around 2003, but they have leveled off since then
• The only other way to get through all the instructions 

faster is to work on more than 1 instruction 
simultaneously

• The von Neumann machine can’t do it
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The weakness(es) of Neumann
#3
• It gives all available memory to every program, and 

makes no distinction between frequently used and 
entirely idle addresses

• We can only run 1 program at a time
• It can only use 1 gigantic table of addresses
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The bridging model for parallel computing

• We don’t have one.
• Sorry.
• That doesn’t mean that no such thing can exist, but it 

certainly hasn’t been invented yet
• It is a work in progress
• It has been a work in progress for decades

I strongly advise you not to hold your breath waiting for one
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The fallout

• We write programs in the von Neumann style, and try 
to detect the parts that can be done in parallel

• Some mechanisms find them automatically
• Other mechanisms require them to be explicitly 

identified by the programmer
• Whether the improvements are automatic or manual, 

programmers can only improve system performance by 
adapting their code to the type of computer it targets

(specifically, how its design extends the von Neumann model)
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That is our main topic

• We will discuss explicit ways to run
– Multiple collaborating processes (distributed memory)
– Multiple instruction streams in one process (shared memory)
– Multiple operations in one instruction (vector operations)
– Multiple processor types in one program (hybrid programming)

• …but we’ll start with some invisible adaptations in 
modern systems
– Cache memory
– Virtual memory
– Instruction-Level Parallelism (ILP)

•  Stay tuned. :)
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