

1

Cache memory

Jan C. Meyer, TDT4200

2

A bare minimum of logic

• The smallest common basis for programming
languages is that they can evaluate
– Expressions: carry out some set of operations on given values

– Variables: give names to values, and recall them later

– Conditionals: do something only when an expression is valid

– Jumps: fetch next expression from a different place in the program

• That is, we’ve got memory and repetitions
(without these, the length of a program must be proportional to the
time required to run it...)

3

Memory locality

• The vast majority of loops
– re-evaluate the same variables every iteration, and/or

– go through an ordered list of elements

• This means that when we read a variable,
– we’ll often need it again soon, and/or

– we’ll soon need some values that are stored close to it

• Those two are called the temporal and spatial locality
of a program.

4

Capacity and speed

• Big memory systems are slow, small ones are fast
• An inaccurate rule of thumb:

– Registers: 10-100s of bytes, ~1 CPU cycle access time

– L1 cache: 16-64kB, 5-10 cycle access time

– L2 cache: 256kB-32MB, 50-100 cycle access time

– ...

– RAM: 4GB+, 500-1000 cycle access time

• The exact numbers change with the season, but their
ratios remain comparable

5

Using what we’ve got

• Bandwidth is easier to improve than latency
• When we have to spend the time to fetch things from

memory, we might as well fetch as much as we can
• Since we expect some spatial and temporal locality

out of the program, it’s a good guess to fetch
– the variable itself (because we’ll need it again soon)

– a bunch of its neighbors (because we’ll need them soon enough)

6

What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU

Give me 10010010

Cache RAM

7

What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU

Tag = 10010
Offset = 010

Cache RAM
10010

Cache miss

8

What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU
Offset = 010

Cache RAM
10010

Give me 10010___

10010 000
10010 001
10010 010
10010 011
10010 100
10010 101
10010 110
10010 111

9

What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU
Offset = 010

Cache RAM
10010

Here they are 10010 000
10010 001
10010 010
10010 011
10010 100
10010 101
10010 110
10010 111

10

What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU
Offset = 010

Cache RAM
10010

10010 000
10010 001
10010 010
10010 011
10010 100
10010 101
10010 110
10010 111

010 is here

11

What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU Cache RAM
10010This is 10010010

12

Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Give me 10010011

13

Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Tag = 10010
Offset = 011

A-HA!

Cache hit

14

Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Tag = 10010
Offset = 011

011 is here

15

Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Here you go

16

As you can see...

• Cache will not save any time on the first fetch
– It is limited by the latency of RAM
– By using more bandwidth, we can predict a future saving

• Cache saves time when the next fetch is from the same
location, or one of its neighbors

• Each little neighborhood of values is called a cache line,
there’s room for several in the cache

• Every cache access requires a search through the tags
that are already associated with lines

...so bigger caches become slower

17

A common speed improvement

• What we have seen is a fully associative cache
• Bigger specimens cut down the search time by a

constant factor
• Use some bits to separate the entire address space

into distinct parts
• Use fully associative caches for each part

18

Set-associative cache

• Divide the space into independent parts called sets

• Statically partition the whole address space between them

CPU

Cache 100 10 010
Tag Set Offset

100

Set 10 Set 11Set 01Set 00

19

Points of order

• The # of sets are called the “ways of associativity”
– What we just drew was a 4-way associative cache

• Line lengths are powers of 2
– We need them to cover all combinations for a group of bits

• Ways of associativity are powers of 2
– We need them to cover all combinations for a group of bits also

• The # of lines in each set can be any nice integer
– This only affects how many tags we must search through before

declaring a cache miss

20

Hierarchical memory

• Because the lookup speeds of caches are tied to their
sizes, a hierarchy of caches has evolved:

• Level 1 sits close to the registers, there are often
separate caches for instructions and data here
– If something isn’t in L1 cache, a bigger L2 is searched (typically contains

both instructions and data, may be private to one processor or shared
between several)

• If something isn’t in L2 cache, L3 is searched, it’s typically shared by every
core on a CPU socket

– There may be an L4 cache which sits outside of the CPU chip
• etc. etc. 3 levels is typical in 2023

• We try not to go to memory unless the last level cache
(LLC) declares a miss

21

Virtual memory

• Modern CPUs also have a memory management unit
(MMU) that allows the operating system to do
something similar with main memory:

The process memory image thinks it has the entire
processor address range to itself, partitioned in pages:

The actual, physical memory is divided into frames
with the same size as pages:

22

Page protection

• The OS maintains a table that maps pages to frames
• Unused pages have a default setting as protected

23

Page fault

• When a protected page is accessed, it creates a
page fault, which triggers the OS to step in and
determine what to do

I want this address!

(knock knock)
Wake up, OS!

24

Mapping to a physical frame

• Within the process image, pages can lie within a memory-
mapped file, or be empty

• Contents are loaded from disk, or initialized as appropriate

I want this address!

This is a new allocation, you
can have a frame full of zeros…
That one is free

25

The program continues

• As the process completes, the program can continue to deal with its
private linear address space

• The OS+MMU take care of the fact that virtual adr. 0x00001000 may
actually be physical adr. 0xCAFE1000 or 0xBEEF1000 or something

Hooray!

Page fault resolved,
I’ll store the mapping in the translation lookaside buffer (TLB)
 and just serve this frame every time you access the page

26

The main benefit of this

• Several programs can share the same physical
memory (as long as none of them take all of it)

P1

P2

RAM

- Only the space that is actually in use is allocated
- The OS can keep P1 from reading/writing in P2s frames

27

The commonly cited 2nd benefit

• If a frame isn’t used for a long time, the OS can
– Protect the page again
– Save its contents in swap space (a file or dedicated disk partition)
– Put it back in a frame when the program needs it again

• This lets us run a set of programs that collectively use
more memory than there is physical backing for

• The transfer to/from disk is quite time consuming, though
– If you try to run a set of programs that frequently overflow into swap

space so that they end up constantly fighting for frames, your computer
will probably freeze up until you cut its power

28

Page sizes

• There’s a tradeoff between size and speed here
– Large pages rarely give page faults, but a 10-byte allocation can

end up getting an entire big page to itself, reducing the utilization of
available physical memory

– Small pages waste less space, but cause page faults more
frequently

• Pages are usually 4096 bytes by default, as a
frequently reasonable compromise

• Page size is often configurable if you recompile the
kernel of your OS

29

Why are we talking about it?

• Several independent programs on one computer can
collaborate on the same problem
– It’s a way to get parallel computing

• Page faults affect the performance of your program
– If you allocate a gigantic array, you’ll be assigned all the virtual

memory almost immediately, but access will be measurably slower at
every 4kB boundary the first time you use the contents

• There are a few more advantages to virtual memory,
but they don’t concern us much in this class

30

Fun fact

• Via a system call, your program can set the
protection bits of its own pages, and register callback
functions for when the OS traps access attempts

• This mechanism can be exploited to write completely
unreadable programs that implement some very
creative tricks

• We won’t need to do that either, but you can look into
it on your spare time if you enjoy such things

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

