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A bare minimum of logic

• The smallest common basis for programming 
languages is that they can evaluate
– Expressions: carry out some set of operations on given values

– Variables: give names to values, and recall them later

– Conditionals: do something only when an expression is valid

– Jumps: fetch next expression from a different place in the program

• That is, we’ve got memory and repetitions
(without these, the length of a program must be proportional to the 
time required to run it...)
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Memory locality

• The vast majority of loops
– re-evaluate the same variables every iteration, and/or

– go through an ordered list of elements

• This means that when we read a variable,
– we’ll often need it again soon, and/or

– we’ll soon need some values that are stored close to it

• Those two are called the temporal and spatial locality 
of a program.
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Capacity and speed

• Big memory systems are slow, small ones are fast
• An inaccurate rule of thumb:

– Registers: 10-100s of bytes, ~1 CPU cycle access time

– L1 cache: 16-64kB, 5-10 cycle access time

– L2 cache: 256kB-32MB, 50-100 cycle access time

– ...

– RAM: 4GB+, 500-1000 cycle access time

• The exact numbers change with the season, but their 
ratios remain comparable
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Using what we’ve got

• Bandwidth is easier to improve than latency
• When we have to spend the time to fetch things from 

memory, we might as well fetch as much as we can
• Since we expect some spatial and temporal locality 

out of the program, it’s a good guess to fetch
– the variable itself (because we’ll need it again soon)

– a bunch of its neighbors (because we’ll need them soon enough)
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What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU

Give me 10010010

Cache RAM
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What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU

Tag    = 10010
Offset = 010

Cache RAM
10010

Cache miss
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What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU
Offset = 010

Cache RAM
10010

Give me 10010___

10010 000
10010 001
10010 010
10010 011
10010 100
10010 101
10010 110
10010 111
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What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU
Offset = 010

Cache RAM
10010

Here they are 10010 000
10010 001
10010 010
10010 011
10010 100
10010 101
10010 110
10010 111
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What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU
Offset = 010

Cache RAM
10010

10010 000
10010 001
10010 010
10010 011
10010 100
10010 101
10010 110
10010 111

010 is here
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What a simple cache does

• Suppose we have an 8-bit CPU, and it wants address 10010010...

CPU Cache RAM
10010This is 10010010
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Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Give me 10010011



  

13

Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Tag    = 10010
Offset = 011

A-HA!

Cache hit
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Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Tag    = 10010
Offset = 011

011 is here
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Next iteration

• Now the CPU wants address 10010011

CPU Cache RAM
10010

Here you go
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As you can see...

• Cache will not save any time on the first fetch
– It is limited by the latency of RAM
– By using more bandwidth, we can predict a future saving

• Cache saves time when the next fetch is from the same 
location, or one of its neighbors

• Each little neighborhood of values is called a cache line, 
there’s room for several in the cache

• Every cache access requires a search through the tags 
that are already associated with lines

...so bigger caches become slower
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A common speed improvement

• What we have seen is a fully associative cache
• Bigger specimens cut down the search time by a 

constant factor
• Use some bits to separate the entire address space 

into distinct parts
• Use fully associative caches for each part
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Set-associative cache

• Divide the space into independent parts called sets

• Statically partition the whole address space between them

CPU

Cache 100 10 010
Tag Set Offset

100

Set 10 Set 11Set 01Set 00
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Points of order

• The # of sets are called the “ways of associativity”
– What we just drew was a 4-way associative cache

• Line lengths are powers of 2
– We need them to cover all combinations for a group of bits

• Ways of associativity are powers of 2
– We need them to cover all combinations for a group of bits also

• The # of lines in each set can be any nice integer
– This only affects how many tags we must search through before 

declaring a cache miss
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Hierarchical memory

• Because the lookup speeds of caches are tied to their 
sizes, a hierarchy of caches has evolved:

• Level 1 sits close to the registers, there are often 
separate caches for instructions and data here
– If something isn’t in L1 cache, a bigger L2 is searched (typically contains 

both instructions and data, may be private to one processor or shared 
between several)

• If something isn’t in L2 cache, L3 is searched, it’s typically shared by every 
core on a CPU socket

– There may be an L4 cache which sits outside of the CPU chip
• etc. etc. 3 levels is typical in 2023

• We try not to go to memory unless the last level cache 
(LLC) declares a miss
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Virtual memory

• Modern CPUs also have a memory management unit 
(MMU) that allows the operating system to do 
something similar with main memory:

The process memory image thinks it has the entire
processor address range to itself, partitioned in pages:

The actual, physical memory is divided into frames
with the same size as pages:



  

22

Page protection

• The OS maintains a table that maps pages to frames
• Unused pages have a default setting as protected
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Page fault

• When a protected page is accessed, it creates a 
page fault, which triggers the OS to step in and 
determine what to do

I want this address!

(knock knock)
Wake up, OS!
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Mapping to a physical frame

• Within the process image, pages can lie within a memory-
mapped file, or be empty

• Contents are loaded from disk, or initialized as appropriate

I want this address!

This is a new allocation, you
can have a frame full of zeros…
That one is free
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The program continues

• As the process completes, the program can continue to deal with its 
private linear address space

• The OS+MMU take care of the fact that virtual adr. 0x00001000 may 
actually be physical adr. 0xCAFE1000 or 0xBEEF1000 or something

Hooray!

Page fault resolved,
I’ll store the mapping in the translation lookaside buffer (TLB)
    and just serve this frame every time you access the page
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The main benefit of this

• Several programs can share the same physical 
memory (as long as none of them take all of it)

P1

P2

RAM

- Only the space that is actually in use is allocated
- The OS can keep P1 from reading/writing in P2s frames
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The commonly cited 2nd benefit

• If a frame isn’t used for a long time, the OS can
– Protect the page again
– Save its contents in swap space (a file or dedicated disk partition)
– Put it back in a frame when the program needs it again

• This lets us run a set of programs that collectively use 
more memory than there is physical backing for

• The transfer to/from disk is quite time consuming, though
– If you try to run a set of programs that frequently overflow into swap 

space so that they end up constantly fighting for frames, your computer 
will probably freeze up until you cut its power
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Page sizes

• There’s a tradeoff between size and speed here
– Large pages rarely give page faults, but a 10-byte allocation can 

end up getting an entire big page to itself, reducing the utilization of 
available physical memory

– Small pages waste less space, but cause page faults more 
frequently

• Pages are usually 4096 bytes by default, as a 
frequently reasonable compromise

• Page size is often configurable if you recompile the 
kernel of your OS
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Why are we talking about it?

• Several independent programs on one computer can 
collaborate on the same problem
– It’s a way to get parallel computing

• Page faults affect the performance of your program
– If you allocate a gigantic array, you’ll be assigned all the virtual 

memory almost immediately, but access will be measurably slower at 
every 4kB boundary the first time you use the contents

• There are a few more advantages to virtual memory, 
but they don’t concern us much in this class
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Fun fact

• Via a system call, your program can set the 
protection bits of its own pages, and register callback 
functions for when the OS traps access attempts

• This mechanism can be exploited to write completely 
unreadable programs that implement some very 
creative tricks

• We won’t need to do that either, but you can look into 
it on your spare time if you enjoy such things
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