
  

1

Instruction Level Parallelism

Jan.Christian.Meyer@ntnu.no



  

2

Today’s topic

• A thorough treatment of all the ways to exploit 
parallelism at the instruction level requires a long 
chapter in a very thick book

• We don’t need to design processors, so a simplified 
mental picture of what’s going on will suffice

• I have chosen to highlight
– Pipelining
– Out-of-order execution
– Prefetching & branch prediction
– Vectorization
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Pipelining

• During the clock race, improved switching 
frequencies made it tricky to complete one complex 
instruction each clock cycle

• Early RISC architectures broke each operation into 5 
stages, to keep up:
– IF (Instruction Fetch)

– ID (Instruction Decode)

– EX (Execute)

– MEM (Memory)

– WB (Write Back)
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One instruction takes 5 steps

• Alone, an instruction is no faster than it would be with 
a 5x slower clock:

IF ID EX MEM WB

T
im

e
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Two instructions take 6 steps

• With the operations broken into stages, we can start a 
new instruction when its predecessor goes to stage 2:

IF ID EX MEM WB

T
im

e
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IF ID EX MEM WB

Full capacity

• When the pipeline is full (after a 5 step warmup), it 
produces a finished result for every step:

T
im

e Finished!
Finished!
Finished!
Finished!

Finished!

Finished!
Finished!
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IF ID EX MEM WB

Stall & flush

• If instruction 3 needs the result from instruction 2, the 
whole thing has to wait:

T
im

e
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Out-of-order execution

• Bernstein’s conditions define that statements S1, S2 will 
produce the same result when run in any order if
– R(S1) ∩ W(S2) = ∅ (S1 doesn’t read what S2 writes)

– W(S1) ∩ R(S2) = ∅ (S1 doesn’t write what S2 reads)

– W(S1) ∩ W(S2) = ∅ (S1 and S2 don’t write in the same place)

(this makes them independent statements)

• It’s arguably just common sense, but looks better when dressed 
up as sets and operators

• When we have a window of instructions and their operands, their 
independence can be checked automatically
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Dependences

• When instructions aren’t independent, there is some 
kind of… dependence.

• We have three types:
– Data dependence

– Name dependence

– Control dependence
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Data dependence

• This is when the result of one operation is an input to 
a following operation:

// These two expressions are independent
t1 = a*c;
t2 = b*d;
// This one depends on both
x = t1 – t2;
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Name dependence

• When a name is re-used for a different purpose, its first use must be 
finished before the second can begin:

norm = x[0]*x[0] + y[0]*y[0];
sum += norm;
norm = x[1]*x[1] + y[1]*y[1];
sum += norm;
…

• Programmers don’t often re-use their names explicitly
(and advanced compilers invisibly rename the variables if they do)

 but loop iterations can create this effect
• At the instruction level, the CPU has a limited number of registers to 

use, they have to be recycled every so often



  

12

Control dependence

• Branches in the program make it impossible to start 
operations simultaneously:

result = 0.0;
rad = x*x + y*y;
if ( rad < 1.0 )

result = sqrt(rad);

• We can’t overwrite result before the comparison 
between rad and 1.0 is complete
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Superscalar processors

• With automatic (in)dependence detection in place, we 
can
– replicate the ALU parts of the Neumann machine

– make the control path dispatch several instructions at once

• This is fondly known as multiple issue in computer 
architecture
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Prefetching & branch prediction

• Programs typically spend most of their time in long loops
(at least when they spend most of their time using the CPU)

• Many loops create regular access patterns in 
memory:

double a[1000];
for ( int j=0; j<1000; j++ )
    a[j] = j*j;

– This loop will ask for 1000 consecutive addresses that are all 8 
bytes apart
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Prefetching

• By default, that kind of loop will regularly create 
cache misses at the end of every cache line

• By (inexpensively) adding a small counter device that 
tracks how many times we’ve been fetching stride-8 
addresses lately, upcoming misses can be avoided 
by starting the memory transfer early

• It’ll often be correct, and when it isn’t, the cache 
space will just be re-used anyway
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Branch prediction

• When pre-loading instructions, if() statements, 
loop tails, etc. make it hard to decide which branch to 
pre-load

• A simple variant is just to always guess that branches 
will be taken

...or, for that matter, that they won’t...

• Wrong guesses require the pipeline to be flushed, but 
without any kind of guess, we couldn’t fill it in the first 
place
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Slightly fancier branch prediction

• At a moderate increase in complexity,
– A unit with 2 states can switch policies based on whether the last 

branch was actually taken or not

– A unit with 4 states can switch policies based on the last two 
branches

– Etc. etc.

• It is also possible to store branch statistics next to a 
table of the branch instructions’ addresses in the 
code
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Vectorization

• Loops like this are not uncommon:
for ( int j=0; j<N; j++ )

c[i] = a[i] + b[i];
This can cause a register to contain a[0], a[1], a[2]… in sequence,

another one to contain b[0], b[1], b[2], … and so on

• Vector registers are extra-wide registers that can 
store several consecutive values at once:

b[0] b[1] b[2] b[3] b[4] b[5]a[0] a[1] a[2] a[3] a[4] a[5]

a[0],a[1],a[2],a[3] b[0],b[1],b[2],b[3]

vector load vector load

(Memory)

(CPU registers)
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Combining multiple elements

• With the vector registers loaded, there are 
instructions that do the same thing to all of their 
elements in parallel: 

b[0] b[1] b[2] b[3] b[4] b[5]a[0] a[1] a[2] a[3] a[4] a[5]

a[0],a[1],a[2],a[3]

b[0],b[1],b[2],b[3]

a[0]+b[0], a[1]+b[1], a[2]+b[2], a[3]+b[3]

vector add
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Combining multiple elements

• Packing data into wide registers like this, we can do 4 
times the work in one of the read-modify-write cycles of 
Neumann

(as long as the data are laid out consecutively in memory)

b[0] b[1] b[2] b[3] b[4] b[5]a[0] a[1] a[2] a[3] a[4] a[5]

a[0],a[1],a[2],a[3] b[0],b[1],b[2],b[3]

a[0]+b[0], a[1]+b[1], a[2]+b[2], a[3]+b[3]

c[0] c[1] c[2] c[3] c[4] c[5]

vector store
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In practice

• These were all simple illustrations of principles
– Real pipelines are often much deeper than 5 stages

– Superscalar processors can “typically” issue 2-8 simultaneous 
operations

– Highly sophisticated branch predictors and prefetchers have been 
invented, but most practical ones aren’t super complicated

– Vectorization is ideally something for the compiler to divine from 
your source code, but that doesn’t always succeed

(We will look at how to do it by hand, one of these days)
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