

1

Instruction Level Parallelism

Jan.Christian.Meyer@ntnu.no

2

Today’s topic

• A thorough treatment of all the ways to exploit
parallelism at the instruction level requires a long
chapter in a very thick book

• We don’t need to design processors, so a simplified
mental picture of what’s going on will suffice

• I have chosen to highlight
– Pipelining
– Out-of-order execution
– Prefetching & branch prediction
– Vectorization

3

Pipelining

• During the clock race, improved switching
frequencies made it tricky to complete one complex
instruction each clock cycle

• Early RISC architectures broke each operation into 5
stages, to keep up:
– IF (Instruction Fetch)

– ID (Instruction Decode)

– EX (Execute)

– MEM (Memory)

– WB (Write Back)

4

One instruction takes 5 steps

• Alone, an instruction is no faster than it would be with
a 5x slower clock:

IF ID EX MEM WB

T
im

e

5

Two instructions take 6 steps

• With the operations broken into stages, we can start a
new instruction when its predecessor goes to stage 2:

IF ID EX MEM WB

T
im

e

6

IF ID EX MEM WB

Full capacity

• When the pipeline is full (after a 5 step warmup), it
produces a finished result for every step:

T
im

e Finished!
Finished!
Finished!
Finished!

Finished!

Finished!
Finished!

7

IF ID EX MEM WB

Stall & flush

• If instruction 3 needs the result from instruction 2, the
whole thing has to wait:

T
im

e

8

Out-of-order execution

• Bernstein’s conditions define that statements S1, S2 will
produce the same result when run in any order if
– R(S1) ∩ W(S2) = ∅ (S1 doesn’t read what S2 writes)

– W(S1) ∩ R(S2) = ∅ (S1 doesn’t write what S2 reads)

– W(S1) ∩ W(S2) = ∅ (S1 and S2 don’t write in the same place)

(this makes them independent statements)

• It’s arguably just common sense, but looks better when dressed
up as sets and operators

• When we have a window of instructions and their operands, their
independence can be checked automatically

9

Dependences

• When instructions aren’t independent, there is some
kind of… dependence.

• We have three types:
– Data dependence

– Name dependence

– Control dependence

10

Data dependence

• This is when the result of one operation is an input to
a following operation:

// These two expressions are independent
t1 = a*c;
t2 = b*d;
// This one depends on both
x = t1 – t2;

11

Name dependence

• When a name is re-used for a different purpose, its first use must be
finished before the second can begin:

norm = x[0]*x[0] + y[0]*y[0];
sum += norm;
norm = x[1]*x[1] + y[1]*y[1];
sum += norm;
…

• Programmers don’t often re-use their names explicitly
(and advanced compilers invisibly rename the variables if they do)

 but loop iterations can create this effect
• At the instruction level, the CPU has a limited number of registers to

use, they have to be recycled every so often

12

Control dependence

• Branches in the program make it impossible to start
operations simultaneously:

result = 0.0;
rad = x*x + y*y;
if (rad < 1.0)

result = sqrt(rad);

• We can’t overwrite result before the comparison
between rad and 1.0 is complete

13

Superscalar processors

• With automatic (in)dependence detection in place, we
can
– replicate the ALU parts of the Neumann machine

– make the control path dispatch several instructions at once

• This is fondly known as multiple issue in computer
architecture

14

Prefetching & branch prediction

• Programs typically spend most of their time in long loops
(at least when they spend most of their time using the CPU)

• Many loops create regular access patterns in
memory:

double a[1000];
for (int j=0; j<1000; j++)
 a[j] = j*j;

– This loop will ask for 1000 consecutive addresses that are all 8
bytes apart

15

Prefetching

• By default, that kind of loop will regularly create
cache misses at the end of every cache line

• By (inexpensively) adding a small counter device that
tracks how many times we’ve been fetching stride-8
addresses lately, upcoming misses can be avoided
by starting the memory transfer early

• It’ll often be correct, and when it isn’t, the cache
space will just be re-used anyway

16

Branch prediction

• When pre-loading instructions, if() statements,
loop tails, etc. make it hard to decide which branch to
pre-load

• A simple variant is just to always guess that branches
will be taken

...or, for that matter, that they won’t...

• Wrong guesses require the pipeline to be flushed, but
without any kind of guess, we couldn’t fill it in the first
place

17

Slightly fancier branch prediction

• At a moderate increase in complexity,
– A unit with 2 states can switch policies based on whether the last

branch was actually taken or not

– A unit with 4 states can switch policies based on the last two
branches

– Etc. etc.

• It is also possible to store branch statistics next to a
table of the branch instructions’ addresses in the
code

18

Vectorization

• Loops like this are not uncommon:
for (int j=0; j<N; j++)

c[i] = a[i] + b[i];
This can cause a register to contain a[0], a[1], a[2]… in sequence,

another one to contain b[0], b[1], b[2], … and so on

• Vector registers are extra-wide registers that can
store several consecutive values at once:

b[0] b[1] b[2] b[3] b[4] b[5]a[0] a[1] a[2] a[3] a[4] a[5]

a[0],a[1],a[2],a[3] b[0],b[1],b[2],b[3]

vector load vector load

(Memory)

(CPU registers)

19

Combining multiple elements

• With the vector registers loaded, there are
instructions that do the same thing to all of their
elements in parallel:

b[0] b[1] b[2] b[3] b[4] b[5]a[0] a[1] a[2] a[3] a[4] a[5]

a[0],a[1],a[2],a[3]

b[0],b[1],b[2],b[3]

a[0]+b[0], a[1]+b[1], a[2]+b[2], a[3]+b[3]

vector add

20

Combining multiple elements

• Packing data into wide registers like this, we can do 4
times the work in one of the read-modify-write cycles of
Neumann

(as long as the data are laid out consecutively in memory)

b[0] b[1] b[2] b[3] b[4] b[5]a[0] a[1] a[2] a[3] a[4] a[5]

a[0],a[1],a[2],a[3] b[0],b[1],b[2],b[3]

a[0]+b[0], a[1]+b[1], a[2]+b[2], a[3]+b[3]

c[0] c[1] c[2] c[3] c[4] c[5]

vector store

21

In practice

• These were all simple illustrations of principles
– Real pipelines are often much deeper than 5 stages

– Superscalar processors can “typically” issue 2-8 simultaneous
operations

– Highly sophisticated branch predictors and prefetchers have been
invented, but most practical ones aren’t super complicated

– Vectorization is ideally something for the compiler to divine from
your source code, but that doesn’t always succeed

(We will look at how to do it by hand, one of these days)

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

