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Classifications of parallel computers

• We have surveyed how performance has been 
automatically extracted from sequential computers

• Today, we start with the visibly parallel designs
• Flynn’s taxonomy is one way to sort them
• Shared and distributed memory designs make another 

way to sort them
• Important performance characteristics come out of how 

the parallel units are wired up to communicate with 
each other
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Flynn’s taxonomy

• According to Flynn, there are two things to deal with
– Instructions

– Data

and we can have either 1 or many of each at a time
– Single

– Multiple

• This gives us 4 combinations:

Single Multiple

Single

Multiple

SISD SIMD

MISD MIMD

Instructions

Data
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SISD

• This is your vanilla-flavor regular von Neumann 
machine

• One instruction is run at a time
• One set of operands are affected
• Everything happens in sequence
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SIMD

• This is a vector machine
• Single Instruction means we’re only doing one thing 

at a time
• Multiple Data applies the same action to many sets of 

operands simultaneously
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MISD

• This combination exists mostly because it’s a valid 
combination of M and S in Flynn’s system

• It would represent a machine that can load only one 
set of operands at a time, but apply lots of different 
instructions to them
– That’s blooming useless interesting

• You can make an argument that pipelines are a kind 
of MISD parallelism, but most references to MISD are 
purely of theoretical interest
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MIMD

• With multiple instructions and multiple operands at 
the same time, we need fully independent processors

• Our programs will make them work towards the same 
goal, but they’re not synchronized by their 
construction

• This is the kind of parallelism we get with threads, 
processes, etc.
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Flynn is kind of old-fashioned

• This 4-way division of parallelism was originally 
meant to classify all parallel architectures

• In the years since it was introduced, we have
– invented systems that don’t fit neatly into it

– developed a need for additional vocabulary that it doesn’t cover

• Even though the terms aren’t crystal clear 
descriptions of machinery, they still work in order to 
invoke an idea when we discuss particular systems

• They’re so basic that everyone should know them
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In tune with the times

• More pertinently, we can divide our parallel 
computers into shared memory and distributed 
memory variants

• The main difference is whether or not they can 
examine each others’ values without asking

• Shared memory partitions the memory image of a 
process, distributed memory works with several 
processes
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Shared memory

• Here’s the memory image of a process again:

text

data

heap

stack

These contain global data

This contains function
arguments & local variables
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Threads

• Originally, threads were a mechanism meant to dispatch a 
concurrent function call until its result was required

• That requires additional stacks and IPs, but nothing more:

text

data

heap

stack0

stack1

SP
IP

SP
IP

1 processor
can interleave
these in time
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Threads & multiple cores

• If we have different processors with independent IP 
and SP registers, they can execute threads 
simultaneously:
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Core 1
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Threads & invisible communication

• If threads coordinate access to the same location outside of their 
own stacks, the result is instantly available to all of them:

text

data
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IP

Core 0

Core 1

Write!

Read!
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Threads & race conditions

• If threads try to write to the same location simultaneously, 
the result will be determined by timing (last writer wins)
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Write!
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Shared memory pros & cons

• The good part:
– Threads only need to keep 1 copy of their shared data, and they 

can all work on modifying it

– ...as long as they coordinate who can write at any given time

• The bad part:
– Threads have to live inside the address space of a single process, 

so a single OS must manage their memory, and therefore they 
can’t live on separate computers

– We only get as many as we can fit into one machine
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Distributed memory

• If we replicate processes instead, we get the situation 
from our discussion of virtual memory:

OS Process 1 Process 2
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Not distributed memory communication

• This won’t work, the page tables prevent process 1 
from writing where process 2 can read

OS Process 1 Process 2

Send!
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Distributed memory communication

• When processes are launched simultaneously, we can give them each 
other’s ID numbers

• This allows them to establish some shared workspace under supervision
• Function calls can transmit data to and from it, but traffic has to be 

initiated by the process itself

OS Process 1 Process 2

Send to 2

Receive from 1?

Here you go
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Distributed memory pros & cons

• The good part:
– Processes can’t involuntarily have their memory corrupted, they 

only receive what they have asked for in a designated place

– There’s one more thing, which we get to in a moment

• The bad part:
– After data transmission, there are two copies of the thing you 

wanted to communicate, which occupies twice as much memory.
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Distributed memory:
the extra good part
• Processes are already assumed to have completely 

distinct address spaces, so it doesn’t matter whether 
they run on the same computer or not:

OS Process 1 Process 2OS

Send to 2 Receive from 1

Network

Any messages for me?

Yes...
Here’s your message
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Multi-computer parallelism

• The difference between two processes on one 
computer and two processes on two computers is 
handled by communication libraries and OS

• Inside the processes, the send- and receive-calls can 
look exactly the same, the difference is just that it 
takes a little longer to shift data across a network 
than it takes to copy between memory banks

• If we run out of processors, we can just add another 
machine
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Interconnects

• In shared memory systems, one way to connect a set 
of processors to a set of memory banks is a crossbar:

P0

P1

P2

P3

M0 M1 M2 M3

Efficient, but impractical for large numbers,
cost grows as product of processors and memory
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(Fat) trees

• Another is to associate processors with memory 
modules that are their responsibility:

• Less expensive at scale, but gives non-uniform 
memory access (NUMA) effects (remote is slower)

• Fat trees compensate for cross-section traffic volume 
by providing more bandwidth near the root
of the tree structure

P0 M0 P1 M1 P2 M2 P3 M3
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Mesh

• Constant number of links per unit, messages routed 
throughout the network in several “hops”:

P0 M0 P1 M1 P2 M2

P3 M3 P4 M4 P5 M5

P6 M6 P7 M7 P8 M8

Very scalable, but communication latency
grows linearly with distance
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Torus

• This is just a mesh that wraps around the edges:
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Hypercube

• Add 1 dimension by replicating what you had from 
before, and connecting all the matching points:

1D 2D 3D

...

- Requires log2P links per processor for P processors
- Particularly good for d-cube algorithms, e.g. the
  Fast Fourier Transform
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Interconnection fabrics

• Several of these graph shapes can typically be found 
at various levels of granularity in a large computer

• In combination, we call them the interconnect fabric
– Some parts are memory logic

– Some parts are network connections

– To a suitably parallelized program, they combine into how much it 
costs to send data from A to B
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