

1

Flynn’s taxonomy, shared & distributed memory

Jan.Christian.Meyer@ntnu.no

2

Classifications of parallel computers

• We have surveyed how performance has been
automatically extracted from sequential computers

• Today, we start with the visibly parallel designs
• Flynn’s taxonomy is one way to sort them
• Shared and distributed memory designs make another

way to sort them
• Important performance characteristics come out of how

the parallel units are wired up to communicate with
each other

3

Flynn’s taxonomy

• According to Flynn, there are two things to deal with
– Instructions

– Data

and we can have either 1 or many of each at a time
– Single

– Multiple

• This gives us 4 combinations:

Single Multiple

Single

Multiple

SISD SIMD

MISD MIMD

Instructions

Data

4

SISD

• This is your vanilla-flavor regular von Neumann
machine

• One instruction is run at a time
• One set of operands are affected
• Everything happens in sequence

5

SIMD

• This is a vector machine
• Single Instruction means we’re only doing one thing

at a time
• Multiple Data applies the same action to many sets of

operands simultaneously

1
2
3
4

5
6
7
8

6
8

10
12

+ =

Single instruction

Multiple
data

6

MISD

• This combination exists mostly because it’s a valid
combination of M and S in Flynn’s system

• It would represent a machine that can load only one
set of operands at a time, but apply lots of different
instructions to them
– That’s blooming useless interesting

• You can make an argument that pipelines are a kind
of MISD parallelism, but most references to MISD are
purely of theoretical interest

7

MIMD

• With multiple instructions and multiple operands at
the same time, we need fully independent processors

• Our programs will make them work towards the same
goal, but they’re not synchronized by their
construction

• This is the kind of parallelism we get with threads,
processes, etc.

8

Flynn is kind of old-fashioned

• This 4-way division of parallelism was originally
meant to classify all parallel architectures

• In the years since it was introduced, we have
– invented systems that don’t fit neatly into it

– developed a need for additional vocabulary that it doesn’t cover

• Even though the terms aren’t crystal clear
descriptions of machinery, they still work in order to
invoke an idea when we discuss particular systems

• They’re so basic that everyone should know them

9

In tune with the times

• More pertinently, we can divide our parallel
computers into shared memory and distributed
memory variants

• The main difference is whether or not they can
examine each others’ values without asking

• Shared memory partitions the memory image of a
process, distributed memory works with several
processes

10

Shared memory

• Here’s the memory image of a process again:

text

data

heap

stack

These contain global data

This contains function
arguments & local variables

11

Threads

• Originally, threads were a mechanism meant to dispatch a
concurrent function call until its result was required

• That requires additional stacks and IPs, but nothing more:

text

data

heap

stack0

stack1

SP
IP

SP
IP

1 processor
can interleave
these in time

12

Threads & multiple cores

• If we have different processors with independent IP
and SP registers, they can execute threads
simultaneously:

text

data

heap

stack0

stack1

SP
IP

SP
IP

Core 0

Core 1

13

Threads & invisible communication

• If threads coordinate access to the same location outside of their
own stacks, the result is instantly available to all of them:

text

data

heap

stack0

stack1

SP
IP

SP
IP

Core 0

Core 1

Write!

Read!

14

Threads & race conditions

• If threads try to write to the same location simultaneously,
the result will be determined by timing (last writer wins)

text

data

heap

stack0

stack1

SP
IP

SP
IP

Core 0

Core 1

Write!

Write!

15

Shared memory pros & cons

• The good part:
– Threads only need to keep 1 copy of their shared data, and they

can all work on modifying it

– ...as long as they coordinate who can write at any given time

• The bad part:
– Threads have to live inside the address space of a single process,

so a single OS must manage their memory, and therefore they
can’t live on separate computers

– We only get as many as we can fit into one machine

16

Distributed memory

• If we replicate processes instead, we get the situation
from our discussion of virtual memory:

OS Process 1 Process 2

17

Not distributed memory communication

• This won’t work, the page tables prevent process 1
from writing where process 2 can read

OS Process 1 Process 2

Send!

18

Distributed memory communication

• When processes are launched simultaneously, we can give them each
other’s ID numbers

• This allows them to establish some shared workspace under supervision
• Function calls can transmit data to and from it, but traffic has to be

initiated by the process itself

OS Process 1 Process 2

Send to 2

Receive from 1?

Here you go

19

Distributed memory pros & cons

• The good part:
– Processes can’t involuntarily have their memory corrupted, they

only receive what they have asked for in a designated place

– There’s one more thing, which we get to in a moment

• The bad part:
– After data transmission, there are two copies of the thing you

wanted to communicate, which occupies twice as much memory.

20

Distributed memory:
the extra good part
• Processes are already assumed to have completely

distinct address spaces, so it doesn’t matter whether
they run on the same computer or not:

OS Process 1 Process 2OS

Send to 2 Receive from 1

Network

Any messages for me?

Yes...
Here’s your message

21

Multi-computer parallelism

• The difference between two processes on one
computer and two processes on two computers is
handled by communication libraries and OS

• Inside the processes, the send- and receive-calls can
look exactly the same, the difference is just that it
takes a little longer to shift data across a network
than it takes to copy between memory banks

• If we run out of processors, we can just add another
machine

22

Interconnects

• In shared memory systems, one way to connect a set
of processors to a set of memory banks is a crossbar:

P0

P1

P2

P3

M0 M1 M2 M3

Efficient, but impractical for large numbers,
cost grows as product of processors and memory

23

(Fat) trees

• Another is to associate processors with memory
modules that are their responsibility:

• Less expensive at scale, but gives non-uniform
memory access (NUMA) effects (remote is slower)

• Fat trees compensate for cross-section traffic volume
by providing more bandwidth near the root
of the tree structure

P0 M0 P1 M1 P2 M2 P3 M3

24

Mesh

• Constant number of links per unit, messages routed
throughout the network in several “hops”:

P0 M0 P1 M1 P2 M2

P3 M3 P4 M4 P5 M5

P6 M6 P7 M7 P8 M8

Very scalable, but communication latency
grows linearly with distance

25

Torus

• This is just a mesh that wraps around the edges:

26

Hypercube

• Add 1 dimension by replicating what you had from
before, and connecting all the matching points:

1D 2D 3D

...

- Requires log2P links per processor for P processors
- Particularly good for d-cube algorithms, e.g. the
 Fast Fourier Transform

27

Interconnection fabrics

• Several of these graph shapes can typically be found
at various levels of granularity in a large computer

• In combination, we call them the interconnect fabric
– Some parts are memory logic

– Some parts are network connections

– To a suitably parallelized program, they combine into how much it
costs to send data from A to B

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

