

1

Amdahl’s and Gustafson’s Laws
Speedup, efficiency, and scalability

Jan.Christian.Meyer@ntnu.no

2

Every parallel computation
can be serialized
• Given a parallel computation where

– Steps s1, s2, s3, …, sT all need to be taken

– Some subset of steps si-sj are evaluated simultaneously

• Evaluate those in some order (e.g. from i to j)
• If there is another subset of simultaneous operations,

pick an order for it until you have ordered every step
• The parallel parts of a computation can’t depend on

any particular order, that’s what makes them parallel

3

Not every sequential computation
can be parallelized (probably)
• Given a serial computation where

– Steps s1, s2, s3, …, sT all need to be taken

– The input data of every step si contains an element from the output
data of its predecessor si-1 (for i>1)

• Even if we can begin to evaluate s4 before s3 is
complete, it can’t finish first, because it needs the
result from s3

• Some computations are inherently sequential

4

Nota Bene:
That was not a formal proof
• It was a common-sense argument
• We can formalize it, and say that

– A problem is in the class P if it can be solved by a deterministic turing
machine in polynomial time proportional to the problem size

– A problem is in the class NC if it can be solved in parallel polylogarithmic
time proportional to the number of processors

– A problem x is P-complete if it is in P, and any other problem in P can be
reduced to x in polylogarithmic time proportional to the problem size

...and then we get the “P = NC?” problem from
complexity theory, which has been precisely as resistant
to solution as its more famous “P = NP?” cousin

5

Some things just have to be
done in a given order
• On paper, we don’t know whether all computations

can be parallelized or not
• We know that the problem of simulating T steps of a

von Neumann machine is P-Complete, though
• The trick with starting steps simultaneously and only

completing them in requisite order can produce faster
results (but not asymptotically faster)

• We can at least have an intuition about this issue until
someone can prove us wrong

6

Ok, so some steps mandate a sequence.
Now what?

• There is always at least one such sequential
dependency in any program:
– The final operation indirectly depends on the first, no activity can

stop before it has started

– Even if you write code where every statement could theoretically
run simultaneously, it still has to launch and halt in practice

• Parallelizing a program amounts to discriminating
between the sequentially dependent and the
parallelizable steps

7

Total execution time

• Since every program will contain a mixture of
sequentially dependent and parallel operations, we can
define that
– T is the sum of the time costs of all operations in the program,

– f is the fraction of sequential operations it requires, so

– (1-f) must be the fraction of operations that can be parallelized, and

– Ts is the time it takes to run them all in sequence,

– We’re just splitting the sum of operation costs into two parts that
together add up to 1

8

Parallel execution time

• If we suppose that the parallel operations can be
evenly distributed among p processors, the
parallelizable part should only take 1/p as long:

9

Speedup

• Suppose we want to compare a slow and a fast
solution to the same problem

• If the fast one takes ¼ as much time as the slow, we
want to call it “4 times faster”

• That’s the speedup of the fast solution relative to the
slow one:

10

Comparing the two

• If we assume the sequential run is Tslow and the
parallel one is Tfast, we get speedup as a function of
the number of processors:

11

If we could parallelize everything

• If there were no sequential dependencies at all, f would
be 0, and we get

• S(p)=p is called linear speedup
• It would be nice if program performance were equally

improved by every additional processor
• We can’t have it, because f can’t be exactly 0

12

Let the processor count grow

• Let’s pretend that we can have as many processors
as we like without paying for them:

• In other words,

• This observation is called Amdahl’s Law

13

That is horrible!

• The amount of sequential work is built into the
problem we’re solving, not the machine

• If the problem happens to be 10% sequential, no
number of processors can even theoretically speed it
up more than 10 times

• This parallel computing stuff isn’t very impressive
• I Quit!

14

The small print

• When Gene Amdahl made this argument back in 1967,
he was working for IBM

• At the time, their business was to sell faster sequential
computers, not more parallel ones

• What the argument doesn’t mention, is that it assumes
we try to solve the same, fixed problem on sequential
and parallel computers
– That’s like replacing a car with a bus and complaining that you can’t

drive it any faster
– Clearly, a waste of capacity

15

Total execution time (again)

• If you look at the Amdahl argument, we could actually cancel the
total time T from every term in the speedup expression right away
– The argument has to do with the ratio between two different ways to

distribute the same amount of run time
– the exact value of T doesn’t really matter, we could just say it’s 1

• I kept it in as a reminder of an assumption we started from:
Ts = fT + (1-f)T

says that we’re calculating everything in proportion to an amount of work
that always takes T time sequentially

• Amdahl’s law assumes constant serial time
i.e. we apply ever more processors to the same amount of work

16

The other way to do it

• If we assume constant parallel time instead, we get
Tp = fT + (1-f)T

• For this to hold, we must assume that every time we
add one to p, we also add another (1-f)T units of work
to occupy the additional processor

• Since we’re growing the size of the problem in
proportion to the processor count, bigger problems
will take longer to run sequentially:

Ts = fT + p(1-f)T

17

Speedup (again)

• Let us call this one “scaled speedup” Ss, so as not to
confuse it with the other one:

• As you can see, Ss(p) doesn’t approach any limit as p grows
– We’re back in business!

(...as long as we size up the problem in proportion to the machine)

• This observation is called Gustafson’s Law

18

Amdahl, less formally
1-f
p

f +

p=2

p=4

p=8

p=1

1/f of the work will
never go away with
additional p...

(time moves in
this direction)

19

Gustafson, less formally

(time moves in
this direction)

(p-1) processors are idle
for 1/f of the time

p=1

p=2

p=4

p=8

p-(p-1)f = f+p(1-f)

20

Mind the gap

• The difference between speedup and scaled speedup is that

 “the program runs x times faster”

has different meanings for each
• Speedup x says

“I can do the same work in 1/x time”

• Scaled speedup x says
“I can do x times the work in the same amount of time”

• You can relate them to each other if you want, but
• They’re not directly comparable without a little bit of

arithmetic in between

21

Strong scaling curves

• Amdahl-flavor speedup curves look like this:

– At best, they can be almost-linear for a while in the
beginning, but they always level off and approach
their asymptote toward infinity

22

Weak scaling curves

• Gustafson-flavor speedup curves look like this:

– They’re linear, but their gradient is not quite 1

23

Efficiency

• The formula for parallel efficiency is mercifully simple:

• The amount of speedup divided evenly among the
processors that produced it gives us a sense of how
much each one contributed

• When speedup is linear, efficiency is 1
(In practice it drops with growing p, but hopefully as little as possible)

24

“Scalability”

• This word unfortunately has far too many definitions,
and most of them are imprecise*

(my favourite one is “ability to imagine a slightly larger computer”)

• It intuitively has something to do with capacity
increases, though

• We can usefully refer to some related terms

* “What is scalability?” , M.D. Hill, ACM SIGARCH Computer Architecture News, Vol. 18, No. 4, 1990

25

Modes of scalability

• Strong scaling
Studies of how speedup changes with processor count are said to
be carried out in the strong mode

• Weak scaling
Studies of how scaled speedup changes with processor count are
said to be carried out in the weak mode

• “Strong” and “weak” are just some names, they tell
you different things about system performance

(It is a mistake to think that strong is better than weak, but the terms
can have that effect on people who are not familiar with them)

26

Quantity vs. quality

• Horizontal scaling
– Means to upgrade your system with more of the same components

you had from before

– Improves upon the parallel part of execution (when it works)

• Vertical scaling
– Means to upgrade your system with more powerful components

than the ones you had from before

– Improves upon the sequential part of execution (when it works)

27

Theory & practice

• In theory, theory and practice are the same
– In practice, they aren’t

• We’re pretending that the parallel part can always be
evenly distributed among any number of processors
– This is very rarely the case

• Gustafson pretends that we can grow the parallel
workload without increasing the sequential
– This is also very rare, but sequential growth is often small in comparison

to the parallel part

• We can actually observe superlinear speedup S(p)>p
– We’ll return to the conditions required for this to happen

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

