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Every parallel computation 
can be serialized
• Given a parallel computation where

– Steps s1, s2, s3, …, sT all need to be taken

– Some subset of steps si-sj are evaluated simultaneously

• Evaluate those in some order (e.g. from i to j)
• If there is another subset of simultaneous operations, 

pick an order for it until you have ordered every step
• The parallel parts of a computation can’t depend on 

any particular order, that’s what makes them parallel



  

3

Not every sequential computation 
can be parallelized (probably)
• Given a serial computation where

– Steps s1, s2, s3, …, sT all need to be taken

– The input data of every step si  contains an element from the output 
data of its predecessor si-1  (for i>1)

• Even if we can begin to evaluate s4 before s3 is 
complete, it can’t finish first, because it needs the 
result from s3

• Some computations are inherently sequential
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Nota Bene:
That was not a formal proof
• It was a common-sense argument
• We can formalize it, and say that

– A problem is in the class P if it can be solved by a deterministic turing 
machine in polynomial time proportional to the problem size

– A problem is in the class NC if it can be solved in parallel polylogarithmic 
time proportional to the number of processors

– A problem x is P-complete if it is in P, and any other problem in P can be 
reduced to x in polylogarithmic time proportional to the problem size

...and then we get the “P = NC?” problem from 
complexity theory, which has been precisely as resistant 
to solution as its more famous “P = NP?” cousin
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Some things just have to be 
done in a given order
• On paper, we don’t know whether all computations 

can be parallelized or not
• We know that the problem of simulating T steps of a 

von Neumann machine is P-Complete, though
• The trick with starting steps simultaneously and only 

completing them in requisite order can produce faster 
results (but not asymptotically faster)

• We can at least have an intuition about this issue until 
someone can prove us wrong
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Ok, so some steps mandate a sequence.
Now what?

• There is always at least one such sequential 
dependency in any program:
– The final operation indirectly depends on the first, no activity can 

stop before it has started

– Even if you write code where every statement could theoretically 
run simultaneously, it still has to launch and halt in practice

• Parallelizing a program amounts to discriminating 
between the sequentially dependent and the 
parallelizable steps
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Total execution time

• Since every program will contain a mixture of 
sequentially dependent and parallel operations, we can 
define that
– T is the sum of the time costs of all operations in the program,

– f is the fraction of sequential operations it requires, so

– (1-f) must be the fraction of operations that can be parallelized, and

– Ts is the time it takes to run them all in sequence,

– We’re just splitting the sum of operation costs into two parts that 
together add up to 1
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Parallel execution time

• If we suppose that the parallel operations can be 
evenly distributed among p processors, the 
parallelizable part should only take 1/p as long:
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Speedup

• Suppose we want to compare a slow and a fast 
solution to the same problem

• If the fast one takes ¼ as much time as the slow, we 
want to call it “4 times faster”

• That’s the speedup of the fast solution relative to the 
slow one:
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Comparing the two

• If we assume the sequential run is Tslow and the 
parallel one is Tfast, we get speedup as a function of 
the number of processors:
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If we could parallelize everything

• If there were no sequential dependencies at all, f would 
be 0, and we get

• S(p)=p is called linear speedup
• It would be nice if program performance were equally 

improved by every additional processor
• We can’t have it, because f can’t be exactly 0
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Let the processor count grow

• Let’s pretend that we can have as many processors 
as we like without paying for them:

• In other words,

• This observation is called Amdahl’s Law



  

13

That is horrible!

• The amount of sequential work is built into the 
problem we’re solving, not the machine

• If the problem happens to be 10% sequential, no 
number of processors can even theoretically speed it 
up more than 10 times

• This parallel computing stuff isn’t very impressive
• I Quit!
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The small print

• When Gene Amdahl made this argument back in 1967, 
he was working for IBM

• At the time, their business was to sell faster sequential 
computers, not more parallel ones

• What the argument doesn’t mention, is that it assumes 
we try to solve the same, fixed problem on sequential 
and parallel computers
– That’s like replacing a car with a bus and complaining that you can’t 

drive it any faster
– Clearly, a waste of capacity
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Total execution time (again)

• If you look at the Amdahl argument, we could actually cancel the 
total time T from every term in the speedup expression right away
– The argument has to do with the ratio between two different ways to 

distribute the same amount of run time
– the exact value of T doesn’t really matter, we could just say it’s 1

• I kept it in as a reminder of an assumption we started from:
Ts = fT + (1-f)T

says that we’re calculating everything in proportion to an amount of work 
that always takes T time sequentially

• Amdahl’s law assumes constant serial time
i.e. we apply ever more processors to the same amount of work
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The other way to do it

• If we assume constant parallel time instead, we get
Tp = fT + (1-f)T

• For this to hold, we must assume that every time we 
add one to p, we also add another (1-f)T units of work 
to occupy the additional processor

• Since we’re growing the size of the problem in 
proportion to the processor count, bigger problems 
will take longer to run sequentially:

Ts = fT + p(1-f)T
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Speedup (again)

• Let us call this one “scaled speedup” Ss, so as not to 
confuse it with the other one:

• As you can see, Ss(p) doesn’t approach any limit as p grows
– We’re back in business!

(...as long as we size up the problem in proportion to the machine)

• This observation is called Gustafson’s Law
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Amdahl, less formally
1-f
p 

f +

p=2

p=4

p=8

p=1

1/f of the work will
never go away with
additional p...

(time moves in 
this direction)
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Gustafson, less formally

(time moves in 
this direction)

(p-1) processors are idle
for 1/f of the time

p=1

p=2

p=4

p=8

p-(p-1)f = f+p(1-f)
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Mind the gap

• The difference between speedup and scaled speedup is that

                    “the program runs x times faster”

has different meanings for each
• Speedup x says

“I can do the same work in 1/x time”

• Scaled speedup x says
“I can do x times the work in the same amount of time”

• You can relate them to each other if you want, but
• They’re not directly comparable without a little bit of 

arithmetic in between



  

21

Strong scaling curves

• Amdahl-flavor speedup curves look like this:

– At best, they can be almost-linear for a while in the 
beginning, but they always level off and approach
their asymptote toward infinity
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Weak scaling curves

• Gustafson-flavor speedup curves look like this:

– They’re linear, but their gradient is not quite 1
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Efficiency

• The formula for parallel efficiency is mercifully simple:

• The amount of speedup divided evenly among the 
processors that produced it gives us a sense of how 
much each one contributed

• When speedup is linear, efficiency is 1
(In practice it drops with growing p, but hopefully as little as possible)
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“Scalability”

• This word unfortunately has far too many definitions, 
and most of them are imprecise*

(my favourite one is “ability to imagine a slightly larger computer”)

• It intuitively has something to do with capacity 
increases, though

• We can usefully refer to some related terms

* “What is scalability?” , M.D. Hill, ACM SIGARCH Computer Architecture News, Vol. 18, No. 4, 1990
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Modes of scalability

• Strong scaling
Studies of how speedup changes with processor count are said to 
be carried out in the strong mode

• Weak scaling
Studies of how scaled speedup changes with processor count are 
said to be carried out in the weak mode

• “Strong” and “weak” are just some names, they tell 
you different things about system performance

(It is a mistake to think that strong is better than weak, but the terms 
can have that effect on people who are not familiar with them)
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Quantity vs. quality

• Horizontal scaling
– Means to upgrade your system with more of the same components 

you had from before

– Improves upon the parallel part of execution (when it works)

• Vertical scaling
– Means to upgrade your system with more powerful components 

than the ones you had from before

– Improves upon the sequential part of execution (when it works)
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Theory & practice

• In theory, theory and practice are the same
– In practice, they aren’t

• We’re pretending that the parallel part can always be 
evenly distributed among any number of processors
– This is very rarely the case

• Gustafson pretends that we can grow the parallel 
workload without increasing the sequential
– This is also very rare, but sequential growth is often small in comparison 

to the parallel part

• We can actually observe superlinear speedup S(p)>p
– We’ll return to the conditions required for this to happen
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